Gravity and Entanglement

Josh
June 27, 2018
This seminar is a very quick introduction to the role played by entanglement in quantum gravity and holography. If you want to learn more, the following three sets of lecture notes are highly recommended:

1. Entanglement
1. Entanglement
2. Entanglement entropy
1. Entanglement
2. Entanglement entropy
3. Entanglement entropy in QFT
1. Entanglement
2. Entanglement entropy
3. Entanglement entropy in QFT
4. Holographic entanglement entropy
1. Entanglement
2. Entanglement entropy
3. Entanglement entropy in QFT
4. Holographic entanglement entropy
5. Geometry from entanglement
Entanglement
Let $\mathcal{H}_A, \mathcal{H}_B$ be two Hilbert spaces, with orthonormal bases $\{|i\rangle_A\}, \{|j\rangle_B\}$ respectively, where $i, j = 1, 2, \ldots$.
Let $\mathcal{H}_A, \mathcal{H}_B$ be two Hilbert spaces, with orthonormal bases $\{|i\rangle_A\}, \{|j\rangle_B\}$ respectively, where $i, j = 1, 2, \ldots$.

The states $|i, j\rangle = |i\rangle_A \otimes |j\rangle_B$ comprise an orthonormal basis of the product Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.
Let $\mathcal{H}_A, \mathcal{H}_B$ be two Hilbert spaces, with orthonormal bases
$\{ |i\rangle_A \}, \{ |j\rangle_B \}$ respectively, where $i, j = 1, 2, \ldots$.

The states $|i, j\rangle = |i\rangle_A \otimes |j\rangle_B$ comprise an orthonormal basis of the
product Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.

Elements of \mathcal{H} are joint states.
The product structure of \mathcal{H} allows for the presence of entanglement in joint states.
The product structure of \mathcal{H} allows for the presence of entanglement in joint states.

If a state $|\psi\rangle \in \mathcal{H}$ can be written as the product of two states $|\psi_A\rangle \in \mathcal{H}_A$, $|\psi_B\rangle \in \mathcal{H}_B$, i.e. $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$, then there is no entanglement.
The product structure of \mathcal{H} allows for the presence of entanglement in joint states.

If a state $|\psi\rangle \in \mathcal{H}$ can be written as the product of two states $|\psi_A\rangle \in \mathcal{H}_A$, $|\psi_B\rangle \in \mathcal{H}_B$, i.e. $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$, then there is no entanglement.

Otherwise, it is an entangled state.
The product structure of \mathcal{H} allows for the presence of entanglement in joint states.

If a state $|\psi\rangle \in \mathcal{H}$ can be written as the product of two states $|\psi_A\rangle \in \mathcal{H}_A$, $|\psi_B\rangle \in \mathcal{H}_B$, i.e. $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$, then there is no entanglement.

Otherwise, it is an entangled state.

For example, $|1, 1\rangle$ is not entangled, while $\frac{1}{\sqrt{2}} (|1, 2\rangle + |2, 1\rangle)$ is.
This definition of entanglement is qualitative. Either a state is entangled, or it isn’t.
This definition of entanglement is qualitative. Either a state is entangled, or it isn’t.

It would be desirable to have a quantitative measure of entanglement, i.e. one that can tell us the degree to which a state is entangled.
Entanglement entropy
When a state is entangled, knowledge about the part of the state in \mathcal{H}_A provides information about the part of the state in \mathcal{H}_B.
When a state is entangled, knowledge about the part of the state in \mathcal{H}_A provides information about the part of the state in \mathcal{H}_B.

This *only* happens for entangled states. Furthermore, the amount of information one can obtain is dependent on the nature of the entanglement.
When a state is entangled, knowledge about the part of the state in \mathcal{H}_A provides information about the part of the state in \mathcal{H}_B.

This *only* happens for entangled states. Furthermore, the amount of information one can obtain is dependent on the nature of the entanglement.

We should therefore be able to quantify entanglement in terms of the amount of information available. Information is most naturally measured in terms of entropy.
To calculate the ‘entanglement entropy’ of a state, we need to use density matrices.
To calculate the ‘entanglement entropy’ of a state, we need to use density matrices.

A density matrix on a Hilbert space \mathcal{H} is an self-adjoint, positive semi-definite operator $\rho \in \mathcal{L}(\mathcal{H})$ satisfying $\text{tr} \, \rho = 1$.
To calculate the ‘entanglement entropy’ of a state, we need to use density matrices.

A density matrix on a Hilbert space \mathcal{H} is an self-adjoint, positive semi-definite operator $\rho \in \mathcal{L}(\mathcal{H})$ satisfying $\text{tr}\rho = 1$.

Density matrices should be thought of as the quantum generalisation of a classical set of probabilities p_i satisfying $\sum_i p_i = 1$, $p_i \geq 0$.
To calculate the ‘entanglement entropy’ of a state, we need to use density matrices.

A density matrix on a Hilbert space \mathcal{H} is an self-adjoint, positive semi-definite operator $\rho \in \mathcal{L}(\mathcal{H})$ satisfying $\text{tr} \rho = 1$.

Density matrices should be thought of as the quantum generalisation of a classical set of probabilities p_i satisfying $\sum_i p_i = 1, \ p_i \geq 0$.

Density matrices can account for both quantum uncertainty and statistical uncertainty.
Whenever there is statistical uncertainty in a state, measuring that state will give us some information about the real world.

In terms of density matrices, the amount of information we can expect to obtain from such a measurement is given by the von Neumann entropy

$$S = \text{tr}(\log \rho)$$

(1)

This is the quantum mechanical generalisation of the classical Shannon entropy

$$S = \sum p_i \log p_i$$

(2)
Whenever there is statistical uncertainty in a state, measuring that state will give us some information about the real world.

In terms of density matrices, the amount of information we can expect to obtain from such a measurement is given by the von Neumann entropy

$$S = - \text{tr}(\rho \log \rho).$$

(1)
Whenever there is statistical uncertainty in a state, measuring that state will give us some information about the real world.

In terms of density matrices, the amount of information we can expect to obtain from such a measurement is given by the von Neumann entropy

$$S = - \text{tr}(\rho \log \rho).$$

This is the quantum mechanical generalisation of the classical Shannon entropy

$$S = - \sum_i p_i \log p_i.$$
For example, given a normalised state $|\psi\rangle \in \mathcal{H}$, one can construct an associated density matrix $\rho = |\psi\rangle \langle \psi|$.
For example, given a normalised state $|\psi\rangle \in \mathcal{H}$, one can construct an associated density matrix $\rho = |\psi\rangle \langle \psi|$. Density matrices constructed in this way are pure, meaning there is no statistical uncertainty in the quantum state. This is consistent with the fact that their corresponding von Neumann entropies are zero.
For example, given a normalised state $|\psi\rangle \in \mathcal{H}$, one can construct an associated density matrix $\rho = |\psi\rangle \langle \psi|$.

Density matrices constructed in this way are pure, meaning there is no statistical uncertainty in the quantum state. This is consistent with the fact that their corresponding von Neumann entropies are zero.

On the other hand, consider for example the density matrix $\rho = \frac{1}{2} (|\psi_1\rangle \langle \psi_1| + |\psi_2\rangle \langle \psi_2|)$, where $|\psi_1\rangle, |\psi_2\rangle$ are orthonormal.
For example, given a normalised state $|\psi\rangle \in \mathcal{H}$, one can construct an associated density matrix $\rho = |\psi\rangle \langle \psi|$.

Density matrices constructed in this way are pure, meaning there is no statistical uncertainty in the quantum state. This is consistent with the fact that their corresponding von Neumann entropies are zero.

On the other hand, consider for example the density matrix $\rho = \frac{1}{2}(|\psi_1\rangle \langle \psi_1| + |\psi_2\rangle \langle \psi_2|)$, where $|\psi_1\rangle, |\psi_2\rangle$ are orthonormal. This is a mixed density matrix. It represents a state which could be either $|\psi_1\rangle$ or $|\psi_2\rangle$, each with probability half. The von Neumann entropy is $S = \log 2$.

We need one more piece to define entanglement entropy.
We need one more piece to define entanglement entropy.

Given a density matrix ρ on the product Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$, we can define the ‘reduced density matrix’ ρ_A on the \mathcal{H}_A factor by taking the partial trace of ρ over the \mathcal{H}_B factor.
We need one more piece to define entanglement entropy.

Given a density matrix ρ on the product Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$, we can define the ‘reduced density matrix’ ρ_A on the \mathcal{H}_A factor by taking the partial trace of ρ over the \mathcal{H}_B factor. The partial trace is defined through

$$\rho_A = \text{tr}_B \rho = \sum_k \langle k |_B \rho | k \rangle_B,$$ \hspace{1cm} (3)
We need one more piece to define entanglement entropy.

Given a density matrix ρ on the product Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$, we can define the ‘reduced density matrix’ ρ_A on the \mathcal{H}_A factor by taking the partial trace of ρ over the \mathcal{H}_B factor.

The partial trace is defined through

$$\rho_A = \operatorname{tr}_B \rho = \sum_k \langle k | B \rho | k \rangle_B , \quad (3)$$

and the components of the reduced density matrix are

$$\langle i | A \rho_A | j \rangle_A = \sum_k \langle i, k | \rho | j, k \rangle . \quad (4)$$
The reduced density matrix ρ_A is the density matrix we would use if we were completely ignorant of the state in B.
The reduced density matrix ρ_A is the density matrix we would use if we were completely ignorant of the state in B.

In general, even if the original density matrix ρ is pure, the reduced density matrix ρ_A may be mixed. In fact, this occurs exactly when ρ contains entanglement.
The reduced density matrix \(\rho_A \) is the density matrix we would use if we were completely ignorant of the state in \(B \).

In general, even if the original density matrix \(\rho \) is pure, the reduced density matrix \(\rho_A \) may be mixed. In fact, this occurs exactly when \(\rho \) contains entanglement.

The entanglement entropy \(S_A \) of a density matrix \(\rho \) in the factor \(\mathcal{H}_A \) is defined as the von Neumann entropy of \(\rho_A \).

\[
S_A = - \text{tr}_A \rho_A \log \rho_A
\]

(5)
Here are some examples:
Here are some examples:

- $\rho = |\psi\rangle \langle \psi|$, where $|\psi\rangle = |1, 1\rangle$. Then $\rho_A = |1\rangle_A \langle 1|_A$, and $S_A = 0$.

Here are some examples:

- \(\rho = |\psi\rangle \langle \psi |, \) where \(|\psi\rangle = |1, 1\rangle. \) Then \(\rho_A = |1\rangle_A \langle 1|_A, \) and \(S_A = 0. \)

- \(\rho = |\psi\rangle \langle \psi |, \) where \(|\psi\rangle = \frac{1}{\sqrt{2}}(|1, 2\rangle + |2, 1\rangle). \) Then \(\rho_A = \frac{1}{2}(|1\rangle_A \langle 1|_A + |2\rangle_A \langle 2|_A), \) and \(S_A = \log 2. \)
Here are some examples:

- $\rho = |\psi\rangle \langle \psi|$, where $|\psi\rangle = |1, 1\rangle$. Then $\rho_A = |1\rangle_A \langle 1|_A$, and $S_A = 0$.

- $\rho = |\psi\rangle \langle \psi|$, where $|\psi\rangle = \frac{1}{\sqrt{2}}(|1, 2\rangle + |2, 1\rangle)$. Then $\rho_A = \frac{1}{2}(|1\rangle_A \langle 1|_A + |2\rangle_A \langle 2|_A)$, and $S_A = \log 2$.

- $\rho = \frac{1}{2}(|1, 2\rangle \langle 1, 2| + |2, 1\rangle \langle 2, 1|)$. Then $\rho_A = \frac{1}{2}(|1\rangle_A \langle 1|_A + |2\rangle_A \langle 2|_A)$, and $S_A = \log 2$.

Entanglement entropy in QFT
Consider now a general QFT. The Hilbert space \mathcal{H} of such a theory consists of states living on a spatial surface Σ.

\[\Sigma \]

(Gauge symmetries can make this more complicated.)
Consider now a general QFT. The Hilbert space \mathcal{H} of such a theory consists of states living on a spatial surface Σ.

Suppose we decompose Σ into two complementary subregions A and $B = \overline{A}$.
Consider now a general QFT. The Hilbert space \mathcal{H} of such a theory consists of states living on a spatial surface Σ.

Suppose we decompose Σ into two complementary subregions A and $B = \overline{A}$.

Under reasonable locality assumptions, the full Hilbert space decomposes as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$, where \mathcal{H}_A contains the degrees of freedom living in A, and \mathcal{H}_B contains the degrees of freedom living in B.
Consider now a general QFT. The Hilbert space \mathcal{H} of such a theory consists of states living on a spatial surface Σ.

Suppose we decompose Σ into two complementary subregions A and $B = \bar{A}$.

Under reasonable locality assumptions, the full Hilbert space decomposes as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$, where \mathcal{H}_A contains the degrees of freedom living in A, and \mathcal{H}_B contains the degrees of freedom living in B.

(Gauge symmetries can make this more complicated.)
If we are given a density matrix ρ on the full Hilbert space \mathcal{H}, we can as before compute the reduced density matrix ρ_A on the factor \mathcal{H}_A, and then find the entanglement entropy $S_A = - \text{tr}_A \rho_A \log \rho_A$.
If we are given a density matrix ρ on the full Hilbert space \mathcal{H}, we can as before compute the reduced density matrix ρ_A on the factor \mathcal{H}_A, and then find the entanglement entropy $S_A = -\text{tr}_A \rho_A \log \rho_A$. We can similarly associate an entanglement entropy S_A with every possible subregion $A \subset \Sigma$.
If we are given a density matrix ρ on the full Hilbert space \mathcal{H}, we can as before compute the reduced density matrix ρ_A on the factor \mathcal{H}_A, and then find the entanglement entropy $S_A = - \text{tr}_A \rho_A \log \rho_A$.

We can similarly associate an entanglement entropy S_A with every possible subregion $A \subset \Sigma$.

S_A tells us how much information we can expect to learn about the state outside of A, after measuring the state inside of A.
The calculation of S_A is generally hard, but there are some special cases for which it has been done.
The calculation of S_A is generally hard, but there are some special cases for which it has been done.

For example, in a 2D CFT with central charge c, consider the vacuum state $\rho = |0\rangle \langle 0|$. Let A be a subregion of length L. Then

$$S_A = \frac{c}{3} \log \left(\frac{L}{\epsilon} \right),$$

where $\frac{1}{\epsilon}$ is a UV cutoff.
The calculation of S_A is generally hard, but there are some special cases for which it has been done.

For example, in a 2D CFT with central charge c, consider the vacuum state $\rho = |0\rangle \langle 0|$. Let A be a subregion of length L. Then

$$S_A = \frac{c}{3} \log \left(\frac{L}{\epsilon} \right),$$

(6)

where $\frac{1}{\epsilon}$ is a UV cutoff.

It is characteristic of local QFTs that the vacuum state is highly entangled.
Holographic entanglement entropy
Entanglement entropy has very interesting properties in quantum gravity.
Entanglement entropy has very interesting properties in quantum gravity.

The most well-known of these is given by the Ryu-Takayanagi conjecture in the context of AdS/CFT.
Entanglement entropy has very interesting properties in quantum gravity.

The most well-known of these is given by the Ryu-Takayanagi conjecture in the context of AdS/CFT.

All we will need to know about AdS/CFT is that it provides a one-to-one mapping between degrees of freedom living in a CFT on the boundary of a spacetime, and those living in the gravitational bulk.
A density matrix ρ in AdS/CFT can be interpreted as living on the boundary.
A density matrix ρ in AdS/CFT can be interpreted as living on the boundary. Let A be a subregion of the boundary, and let \bar{A} be its complement.
A density matrix ρ in AdS/CFT can be interpreted as living on the boundary. Let A be a subregion of the boundary, and let \bar{A} be its complement. The Hilbert space of the CFT decomposes into two factors containing the degrees of freedom present in A and \bar{A} respectively.
A density matrix ρ in AdS/CFT can be interpreted as living on the boundary. Let A be a subregion of the boundary, and let \overline{A} be its complement. The Hilbert space of the CFT decomposes into two factors containing the degrees of freedom present in A and \overline{A} respectively. Given a density matrix ρ for the whole system, one can thus obtain a reduced density matrix for the degrees of freedom in A by taking the partial trace over \mathcal{H}_A:

$$\rho_A = \text{tr}_{\overline{A}} \rho.$$
The claim of Ryu and Takayanagi is that (at leading order in \hbar) the associated entanglement entropy should be given by one quarter of the area of a certain surface in the bulk.
The claim of Ryu and Takayanagi is that (at leading order in \hbar) the associated entanglement entropy should be given by one quarter of the area of a certain surface in the bulk.

Precisely, let T be a surface in the bulk which shares its boundary with A, $\partial T = \partial A$. Let T_{min} be the surface with this property whose area is minimal, and let A_{min} be the area of T_{min}.

$S_A = \frac{A_{\text{min}}}{4}$.
The claim of Ryu and Takayanagi is that (at leading order in \hbar) the associated entanglement entropy should be given by one quarter of the area of a certain surface in the bulk.

Precisely, let T be a surface in the bulk which shares its boundary with A, $\partial T = \partial A$. Let T_{min} be the surface with this property whose area is minimal, and let A_{min} be the area of T_{min}.

Then the entanglement entropy at leading order is given by

$$S_A = \frac{A_{\text{min}}}{4}.$$
\[S_A = \frac{A_{\text{min}}}{4}. \]

Many checks of the Ryu-Takayanagi conjecture have been carried out, and it has always been found to be reliable.
$S_A = \frac{A_{\text{min}}}{4}$.

Many checks of the Ryu-Takayanagi conjecture have been carried out, and it has always been found to be reliable.

There exist also some non-rigorous proofs of its validity.
Many checks of the Ryu-Takayanagi conjecture have been carried out, and it has always been found to be reliable.

There exist also some non-rigorous proofs of its validity.

The Ryu-Takayanagi conjecture applies to holographic theories where the bulk theory of gravity is general relativity, but there are generalisations to higher derivative theories of gravity. In these cases the area is replaced by some other geometric quantity.
It can be shown that the Ryu-Takayanagi formula implies the Bekenstein-Hawking formula.
It can be shown that the Ryu-Takayanagi formula implies the Bekenstein-Hawking formula.

Thus the Ryu-Takayanagi conjecture is a vast generalisation of black hole entropy.
Spacetime from entanglement
Up to this point we have been assuming the existence of geometry and locality, and stating properties about the entanglement of states consistent with such assumptions.
Up to this point we have been assuming the existence of geometry and locality, and stating properties about the entanglement of states consistent with such assumptions.

But the Ryu-Takayanagi conjecture implies that much of the bulk geometry is encoded in the entanglement structure of the density matrix ρ.
Up to this point we have been assuming the existence of geometry and locality, and stating properties about the entanglement of states consistent with such assumptions.

But the Ryu-Takayanagi conjecture implies that much of the bulk geometry is encoded in the entanglement structure of the density matrix ρ.

Entanglement is an absolutely fundamental feature of a quantum theory. Geometry is not.
Up to this point we have been assuming the existence of geometry and locality, and stating properties about the entanglement of states consistent with such assumptions.

But the Ryu-Takayanagi conjecture implies that much of the bulk geometry is encoded in the entanglement structure of the density matrix ρ.

Entanglement is an absolutely fundamental feature of a quantum theory. Geometry is not.

This has lead to the fascinating suggestion that, in quantum gravity, geometry does not exist a priori, but emerges from the entanglement structure of the quantum state of the universe.
The most succinct statement of this idea is provided by the conceptual equation

\[\text{ER} = \text{EPR}. \]

(7)
The most succinct statement of this idea is provided by the conceptual equation

\[\text{ER} = \text{EPR}. \] (7)

\text{ER} \text{ stands for Einstein-Rosen, and refers to the wormhole connecting the two sides of a black hole.}
The most succinct statement of this idea is provided by the conceptual equation

\[
ER = EPR.
\]

\(ER\) stands for Einstein-Rosen, and refers to the wormhole connecting the two sides of a black hole.

\(EPR\) stands for Einstein-Podolsky-Rosen, and refers to two far separated particles set up in an entangled state.
The most succinct statement of this idea is provided by the conceptual equation

$$\text{ER} = \text{EPR}.$$ \hspace{1cm} (7)

ER stands for Einstein-Rosen, and refers to the wormhole connecting the two sides of a black hole.

EPR stands for Einstein-Podolsky-Rosen, and refers to two far separated particles set up in an entangled state.

This equation is meant to portray the idea that setting up the EPR pair is *equivalent* to creating a wormhole connecting them.
The most succinct statement of this idea is provided by the conceptual equation

\[\text{ER} = \text{EPR}. \] (7)

\textbf{ER} stands for Einstein-Rosen, and refers to the wormhole connecting the two sides of a black hole.

\textbf{EPR} stands for Einstein-Podolsky-Rosen, and refers to two far separated particles set up in an entangled state.

This equation is meant to portray the idea that setting up the EPR pair is \textit{equivalent} to creating a wormhole connecting them.

In other words, by modifying the entanglement structure of the state of universe, we have modified the geometry of spacetime.
The idea of emergent geometry allows us to reason about gravitational physics by using mathematical facts about entanglement. For example:

- The 'first law of entanglement' implies the linearised Einstein equations.
- 'Relative entropy inequalities' allow one to define a well-behaved completely general notion of perturbative gravitational energy.
- 'Strong subadditivity' is related to the null energy condition.
The idea of emergent geometry allows us to reason about gravitational physics by using mathematical facts about entanglement. For example:

- The ‘first law of entanglement’ implies the linearised Einstein equations.
The idea of emergent geometry allows us to reason about gravitational physics by using mathematical facts about entanglement. For example:

- The ‘first law of entanglement’ implies the linearised Einstein equations.
- ‘Relative entropy inequalities’ allow one to define a well-behaved completely general notion of perturbative gravitational energy.
The idea of emergent geometry allows us to reason about gravitational physics by using mathematical facts about entanglement. For example:

- The ‘first law of entanglement’ implies the linearised Einstein equations.
- ‘Relative entropy inequalities’ allow one to define a well-behaved completely general notion of perturbative gravitational energy.
- ‘Strong subadditivity’ is related to the null energy condition.
This idea is still very much in the conceptual stages, but has seen a rapid increase in attention and progress in the last few years.
This idea is still very much in the conceptual stages, but has seen a rapid increase in attention and progress in the last few years. Attempts to take it to its logical conclusion involve phrases like ‘tensor networks’ and ‘quantum error correction’.
This idea is still very much in the conceptual stages, but has seen a rapid increase in attention and progress in the last few years.

Attempts to take it to its logical conclusion involve phrases like ‘tensor networks’ and ‘quantum error correction’.

These sound very interesting, but I haven’t yet been able to fully understand how they work. See those lecture notes for more on them.
The end