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The two-dimensional dynamics of a thin film of viscous fluid spreading between a
permeable horizontal plate and an overlying thin elastic sheet is explored. We use a
lubrication model to describe the balance between the elastic stress, the hydrostatic
pressure gradient and the viscous resistance of the flow, as fluid spreads laterally
from a source and simultaneously drains through the plate. A family of asymptotic
solutions are described in which the flow is dominated by either the hydrostatic
pressure gradient or the elastic stress associated with the deformation of the sheet. In
these solutions, although the deformation of the sheet above the porous plate arises
from the fluid flow below the sheet, the fluid typically separates from the sheet a
short distance upstream of the full extent of the draining zone, with the region of
flow being driven purely by the hydrostatic pressure gradient. As a result, an air gap
develops below the sheet up to the point where it touches back down onto the plate.
With a very light or stiff elastic sheet, this touchdown point may extend far beyond
the fluid draining zone, but otherwise it is similar to the extent of the draining zone.

Key words: gravity currents, Hele-Shaw flows, low-Reynolds-number flows

1. Introduction

The motion of fluid through a domain with elastic boundaries has generated
considerable attention, with applications including the re-opening of airways (Jensen
et al. 2002; Grotberg & Jensen 2004), the suppression of viscous fingering in a
deformable Hele-Shaw cell (Pihler-Puzović et al. 2012, 2013, 2015; Al-Housseiny,
Christov & Stone 2013), the adhesion of elastic elements (Hosoi & Mahadevan
2004) and the injection of viscous magma into the Earth’s crust, which leads to the
formation of laccoliths (Bunger & Cruden 2011; Michaut 2011). There has also been
an increasing interest in the process of hydraulic fracturing owing to its importance
for shale gas production, as well as in more conventional oil and gas reservoirs.

† Email address for correspondence: finn.box@maths.ox.ac.uk
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FIGURE 1. (Colour online) Schematic diagram of a current propagating below an elastic
sheet with leakage. The figure indicates the coordinate system and illustrates the various
dimensional variables. The red line denotes the profile of the current in the region xF <
x < ld. We consider that the fluid spreads laterally from the source in both the +x and
�x directions; however, we exploit the mirror symmetry of the system about the injection
point and consider only the +x direction.

Hydraulic fracturing is a complex process that involves the migration of a pressurised
fluid into a fracture, such that, if the integrated stress of the fluid on the walls of the
fracture exceeds the fracture toughness of the rock, then the fracture advances into
the formation (Detournay 2016). However, if the walls of the fracture are permeable,
then the fluid may be able to leak off into the formation, reducing the pressure
within the fracture to such a degree that a quasi-steady balance can be established
between the injection of fluid into the fracture and the subsequent leakage into the
surrounding rock. In this limit, fracture growth is suppressed (Garagash & Detournay
2000; Garagash, Detournay & Adachi 2011; Gordeliy & Detournay 2011).

Although theoretical models have been developed and explored using analytical and
numerical approaches, experimental modelling of hydraulic fracturing at a laboratory
scale is difficult, and so there is value in developing a relatively simple analogue
laboratory experiment from which some of the key principles and physical balances
may be explored. Furthermore, there are a number of new challenges associated with
the fate of particles in the fluid entering the fracture for which a well-characterised
analogue system may provide an ideal experimental laboratory. The purpose of this
paper is to develop a simple, analogue model of a hydraulic fracture based on the
motion of a thin film of fluid injected between a permeable horizontal plate and
an overlying, initially planar, elastic sheet, as shown in figure 1. Our aim is not
to simulate the hydraulic fracturing process, but to characterise the motion of fluid
injected between a porous plate and an elastic sheet. The elastic sheet provides a
simplified, analogue model of the elastic stress on the walls of the fracture, while the
porous plate allows for fluid to drain off, and thereby permits the establishment of
a quasi-steady-state flow. Here, we characterise the dynamics controlling the motion
of a viscous fluid injected into this model system by developing a theoretical model
based on lubrication theory. In subsequent work we will present an experimental
study of the system and explore some of the complexities associated, for example,
with the injection of particles with the fluid.

The motion of a fluid injected into a narrow gap between an elastic sheet and a
rigid boundary has been explored by a number of authors, including Flitton & King
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(2004), Pihler-Puzović et al. (2012, 2013, 2015), Al-Housseiny et al. (2013), Lister,
Peng & Neufeld (2013), Hewitt, Balmforth & De Bruyn (2015) and Peng et al. (2015).
These analyses have focused on the transient growth of a fluid-filled fracture and have
identified the need to regularise the evolution equation at the spreading tip. This tip
region is then matched to the interior, where fluid flow is driven by pressure gradients
associated with either gradients in the elastic stresses or the hydrostatic weight of the
fluid. In the absence of a pre-existing fluid film, Flitton & King (2004) showed that
the propagation of the current is only possible because of complex physical processes
at the front. Lister et al. (2013) regularised the problem by allowing for a pre-existing
thin fluid film between the walls of the fracture. An interesting possibility, suggested
by Hewitt et al. (2015), is that a vapour- or air-filled region develops at the tip of the
elastic sheet ahead of the advancing fluid region.

In this paper we explore the impact of the leakage of fluid through a permeable
lower boundary as the fluid spreads between the boundary and the elastic sheet. To
this end, we draw on the analysis of Acton, Huppert & Worster (2001), Pritchard,
Woods & Hogg (2001) and Spannuth et al. (2009), for the dynamics of a viscous or
porous gravity current flowing over a permeable boundary, but include the influence
of the elastic stress from the deformable sheet. We now expect the system to reach
an equilibrium state, in which the input flux matches the total drainage flux through
a finite region of the lower boundary. To simplify the analysis, we assume that the
drainage through the lower boundary has a constant flux per unit length ud so that
the lateral extent of the drainage zone ld is given by the ratio of the input flux Q and
ud according to the relation ld = Q/ud.

In order to determine the distribution of the fluid and the shape of the elastic
sheet, we solve the coupled fluid–elastic system of equations. One complexity that
arises is that, at some distance from the source, xF < ld, the fluid separates from the
elastic sheet, leading to an air- or ‘vapour’-filled zone, xF < x < xG, where the plate
is assumed to touch down at x = xG. Subsequently, in the region xF < x < ld, the fluid
spreads and drains as a pure viscous gravity current over the porous substrate (as
shown in figure 1). Our interest lies in determining the controls on the magnitude of
the upward displacement of the plate above the origin, the lateral extent of the fluid
separation point, xF, and the touchdown point, xG, and the shape of the deformation
of the elastic plate.

In order to identify the controlling dimensionless parameters, we consider simple
scalings for the three forces acting on the fluid: (i) the weight of the elastic sheet,
⇢sgd, where d is the thickness of the sheet and ⇢s the density of the sheet; (ii) the
hydrostatic pressure, ⇢gh, where h is the depth of the fluid and ⇢ the density of
the fluid; and (iii) the pressure associated with the elastic stress, Bh/l4

d, due to the
curvature of the elastic sheet over the draining distance ld, where h sets the scale
for the deformation of the elastic plate of bending stiffness B. In order to determine
the ratio of these forces acting on the fluid, we require a scaling for h. This may
be found by observing that the horizontal flow over the draining distance ld is given
by a balance of the viscous stress, µu/h2, and the gradient of either the hydrostatic
pressure or elastic stress, or both, over the draining distance ld. If we use the elastic
stress gradient, and recall that hu ⇠ ldud, then we obtain the scaling h = (µud/B)1/4l3/2

d .
In this case, the ratio of the weight of the elastic sheet per unit area and the elastic
stress is given by �= ⇢sgdl4

d/Bh, while the ratio of the hydrostatic pressure and the
elastic stress is given by P4 = l4

d(⇢g/B). These two dimensionless parameters control
the flow of the fluid and the deformation of the sheet. Note that when the hydrostatic
pressure drives the flow, the ratio of the weight of the sheet to the hydrostatic pressure
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is given by �/P5. Although these parameters control the flow and deformation of the
elastic sheet, the physical balances that determine the transitions from one limiting
regime to another are somewhat subtle and require analysis of the coupled system of
flow and elastic deformation. This is the focus of the present analysis.

Since the flow of the fluid along the sheet is driven by either the gravitational
pressure gradient or the elastic pressure gradient, then the dynamics of the flow
are controlled by one or other of these gradients, while the overall pressure in the
fluid is controlled by the weight of the plate compared to the elastic and hydrostatic
pressures. We can therefore infer some features of the general behaviour in different
limiting cases, as follows. If �⌧ 1, then the weight of the sheet is small, and the
dominant pressure will correspond to either the hydrostatic or elastic stress. In that
case, one can envisage that, for P ⌧ 1, there is an elastically driven flow in which
the plate is in contact with the fluid nearly all the way to the end of the fluid region,
x = ld, while for x > ld, the elevation of the plate gradually falls to zero over a
distance that is large compared to ld. One can also envisage that for, P � 1, there
is a gravitationally driven flow in which the fluid drains as a viscous gravity current.
Now, it may be that the fluid separates from the plate some distance upstream of
the point x = ld. Again, the elevation of the plate will then gradually fall to zero
over a length larger than ld. In contrast, if �� max(1, P5/2), then in principle the
weight of the sheet is relatively large and the dynamic pressure required to drive the
fluid under the sheet is small. The fluid region will therefore have a nearly uniform,
high pressure, which supports the plate. However, near the distal end of the flow,
just before the point where the fluid separates from the sheet, the fluid pressure will
decrease to much smaller values, leading to a small region across which there is a
large viscous resistance as the pressure below the sheet falls to zero and, just before
it touches down, the bending stress in the sheet supports its weight.

The purpose of the paper is to explore these different limiting cases in more detail,
by developing a series of approximate or asymptotic solutions for the coupled flow
and elastic deformation of the sheet. First, in § 2, we present a mathematical model
of the flow below the sheet and the associated elastic deformation. We then explore
the case P ⌧ 1 in § 3. We identify three regimes. First, we show that, in the case
P ⌧ �3/13 ⌧ 1, the hydrostatic pressure is negligible, and the point of separation of the
fluid from the elastic sheet is virtually coincident with the end of the draining region.
There is then a large region x > ld in which the elastic stress in the plate supports
the weight of the plate until it eventually touches down. For fixed P, as � decreases
through values such that P��3/13 = O(1), the point of separation of the fluid from
the plate gradually migrates backwards from the end of the draining zone towards
the source, while the touchdown point still occurs far beyond the end of the draining
zone. In contrast, for larger values of �� 1, corresponding to the case in which the
elastic plate is relatively heavy, the pressure beneath the plate is nearly constant. In
this case, since the hydrostatic pressures are very small, the fluid only separates from
the plate just upstream of the end of the draining zone. However, the pressure in the
fluid has to decrease just before this point of separation in order to adjust to the low
pressure of the air gap ahead of the fluid separation point. This is achieved through
a viscous boundary layer just upstream of the end of the draining zone in which the
fluid undergoes a significant drop in pressure. Owing to the weight of the sheet, the
point of touchdown is very close to the end of the fluid draining zone.

In § 4 we explore the different regimes in which P � 1, so that the gradient in
hydrostatic pressure exceeds the gradient in elastic pressure driving the flow beneath
the elastic sheet. We find that, when �� P5/2, the pressure in the fluid is virtually
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constant below the elastic sheet except in a small region just before the point of
separation of the fluid from the sheet. Here the fluid pressure decreases rapidly to
match the low pressure of the air gap which develops below the sheet just before
it touches down. In this case, the point of separation of the fluid from the sheet
occurs very close to the end of the draining zone. However, in the limit �⌧ P5/2, the
hydrostatic pressure dominates both the weight of the sheet and the elastic stresses
in the sheet. As a result, the current resembles a classical gravity current, overlain
by an elastic sheet, except in the nose of the flow, where the elastic stresses become
comparable to the hydrostatic pressure as the sheet touches down. In § 5, we draw
some conclusions and discuss the relevance of the model to provide insight into the
related but distinct process of hydraulic fracturing.

2. Mathematical model

We consider the two-dimensional injection of a fluid between a deformable elastic
sheet and a rigid, permeable substrate through which the fluid leaks off. A schematic
diagram of the model system is shown in figure 1. The intrusion spreads laterally from
the source in both the +x and �x directions; however, we exploit the symmetry of
the system about the injection point and consider only the +x direction. We assume
that the horizontal extent of the flow is much greater than the vertical, and that the
characteristic flow velocity is large in comparison with the leakage velocity, so that
the flow is approximately parallel to the plate.

We assume that the point at which the fluid detaches from the elastic sheet, x = xF,
lags the position at which the elastic sheet touches down on the substrate, at x = xG,
and we define the size of the tip region L = xG � xF. We also assume that the fluid
detaches from the elastic sheet at x = xF < ld < xG. In the region xF < x < ld, the fluid
is driven forward as a conventional gravity current. The modelling of the three fluid
regions is outlined below.

2.1. Fluid region in contact with the elastic sheet, 0 < x < xF

We assume that the lateral extent of the fluid is much greater than the vertical
deformation of the sheet, so that the flow is mainly horizontal. We also assume that
the deflection of the sheet is small compared to the thickness of the sheet, such that
deformation-induced in-plane stresses in the sheet are negligible compared to bending
stresses, so that we can neglect the effect of any tension in the sheet. In the region
0 < x < xF, the pressure in the fluid is given by a combination of elastic bending
stresses and the hydrostatic pressure, so that (Lister et al. 2013)

p = p0 + ⇢sgd + ⇢g(h � z) + B
@4h
@x4

. (2.1)

Here, p0 is atmospheric pressure, ⇢s and d are the density and thickness of the sheet
respectively, B = Ed3/12(1 � ⌫2) is the bending stiffness of the sheet in terms of
Young’s modulus E and Poisson’s ratio ⌫, ⇢ is the fluid density, and h(x, t) is the
normal displacement of the sheet from its initial undeformed position.

Fluid flow beneath the elastic sheet, located at a height h(x, t) above the porous
substrate, is driven by horizontal gradients in the pressure and resisted by viscous drag
resulting from the no-slip condition on the surfaces of the sheet and porous substrate.
The local equation for the horizontal velocity u(x, z, t) is therefore given by

⇢g
@h
@x

+ B
@5h
@x5

= µ
@2u
@z2

. (2.2)
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Combining this with (2.1) leads to the expression for the volume flux per unit width,
q(x, t),

q(x, t) = �
h3

12µ

✓
⇢g

@h
@x

+ B
@5h
@x5

◆
. (2.3)

Local conservation of mass then requires that

@h
@t

+
@q
@x

= �ud, (2.4)

where the drainage velocity is denoted ud. In practice, the drainage results from
gravitational stresses associated with the weight of the sheet (⇢sgd), the weight of
the fluid in the porous substrate (⇢gb), where b is the depth of the porous substrate),
the depth of the injected fluid (⇢gh), the deformation-induced elastic stresses in the
overlying sheet (Bh(iv)) and the overall pressure jump from above the elastic sheet
to the region below the porous substrate. In the remainder of this paper, we assume
that the drainage velocity is a constant, so that the length over which drainage occurs
is simply given by ld = Q/ud, where Q is the source flux. The simplification of
a constant ud may apply, for example, in the case of a very heavy elastic sheet,
⇢sd � ⇢h, or in the case in which the weight of the fluid in the porous substrate
dominates leakage, as occurs with a very deep substrate, b � h. The time-dependent
deformation of the elastic sheet can therefore be written as

@h
@t

�
1

12µ

@

@x


h3 @

@x

✓
⇢gh + B

@4h
@x4

◆�
= �ud. (2.5)

In the case of ud = 0 this agrees with the previous models of Lister et al. (2013) and
Hewitt et al. (2015). Here the addition of porous drainage introduces the possibility
of a steady state. In this steady state, the height of the elastic plate above the porous
substrate is given by

1
12µ

@

@x


h3 @

@x

✓
⇢gh + B

@4h
@x4

◆�
= ud, (2.6)

subject to boundary conditions at the origin and point of separation of the fluid, x = xF.
At the origin, the elasticity of the sheet requires that

h0(0) = h000(0) = 0, (2.7a,b)

so there are no discontinuities or cusps in the sheet above the source, and that
the bending moment of the sheet at the origin is zero. The second condition is a
consequence of the assumption that the fluid spreads symmetrically from the source
in both the +x and �x directions.

As h0(0) = 0, the gradient of hydrostatic pressure at the origin is zero, and so the
flux condition at x = 0 is

Q = �
Bh3

12µ

@5h
@x5

����
x=0

. (2.8)
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2.2. Air gap, xF < x < xG

We assume that, beyond the point of separation of the elastic sheet and the fluid,
x > xF, an air gap develops between the sheet and the porous substrate (cf. Hewitt
et al. 2015). In this region, we assume that the pressure of the air is atmospheric, p0,
so that the weight of the plate is supported by the elastic stress in the plate,

B
@4h
@x4

= �⇢sgd. (2.9)

The height of the sheet in the tip region is therefore

h(x) = �
⇢sgd
24B

(xG � x)3(xF � x) + h1
(xG � x)3

L3
, (2.10)

where xF is the position at which the fluid detaches from the sheet, xG is the point
where the sheet first touches the substrate, L = xG � xF is the length of the tip region,
and h1 = h(xF) is the height of the sheet at the point of separation. We note that the
quantities L and h1, in addition to the deflection of the plate at the origin, h0, are to
be found as part of the solution.

At the point of separation of the fluid from the plate, the deformation, gradient,
bending moment and shear stress in the sheet and the pressure in the fluid provide a
set of boundary conditions on the deformation of the sheet at the interface between
the fluid region and the tip region:

h(xF) = h1, (2.11a)

h0(xF) = �3
h1

L
+

⇢sgd
B

L3

24
, (2.11b)

h00(xF) = 6
h1

L2
�

⇢sgd
B

L2

4
, (2.11c)

h000(xF) = �6
h1

L3
+

⇢sgd
B

3L
4

, (2.11d)

h(iv)(xF) = �
⇢sgd

B
. (2.11e)

2.3. Gravitationally driven drainage, xF < x < ld

Finally, we note that there is a region of pure gravitationally driven flow beyond the
point where the fluid separates from the elastic sheet. In this region, xF < x < ld, the
depth of the fluid is described by a model of a draining gravity current,

⇢g
µ

@

@x


f (x)h3 @h

@x

�
= ud, (2.12)

where the function f (x) varies from f (x+

F ) ' 1/12 immediately downstream of the
detachment point, when the current resembles a no-slip current, to f (x ! ld) ! 1/3
further downstream once the current has adjusted to a free-slip pure gravity current.
The transition region involves the adjustment of the current over a region of length
lµ ⇠ h(xF)g(1⇢gh3/µ2), where 1⇢gh3/µ2 is a non-dimensional parameter describing
the relaxation of the current to a free-slip surface through viscous diffusion, the
determination of which is beyond the scope of the present paper. Depending on
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whether this length exceeds the distance between the point of separation and the end
of the draining zone, the flow may more accurately be described by the no-slip value
f ' 1/12 or the free-slip value f ' 1/3. It is worth noting that at the detachment point,
x = xF, there is a region in which the viscous flow transitions from one in which the
sheet exerts a significant traction on the top surface to a free-surface, gravitationally
driven flow. However, since for many solutions presented here ld � xF ⌧ h(xF) ' lµ
we take f = 1/12 in the analysis in the present paper, and this leads to a lower-bound
estimate for the length of the gravity draining flow. In this limit, the solution to
(2.12) is given by

h(x) =

✓
48µ

⇢g

◆1/4 nud

2
[(x � xF)2

� (ld � xF)2
] � qF(x � ld)

o1/4
, (2.13)

where

qF = �
h3

1

12µ


⇢g

@h
@x

+ B
@5h
@x5

�

x=xF

(2.14)

is the flux through the last point of fluid contact with the elastic sheet, x = xF.

2.4. Non-dimensionalisation
We scale the horizontal lengths with the length scale over which drainage occurs, x̂ =

x/ld, and vertical distances with the characteristic height of an elastically driven flow
ĥ = h/H, where

H ⌘

✓
12µud

B

◆1/4

l3/2
d . (2.15)

The steady-state non-dimensional deformation of the sheet in the region in which the
sheet is in contact with the fluid, 0 < x̂ < �, is governed by

@

@ x̂

 
P4ĥ3 @ ĥ

@ x̂
+ ĥ3 @5ĥ

@ x̂5

!
= 1, (2.16)

where
� ⌘

xF

ld
and P ⌘

ld

(B/⇢g)1/4
(2.17a,b)

are the non-dimensional length of the region of fluid–sheet contact, and the ratio of
the hydrostatic pressure gradient to the bending stress exerted by the elastic sheet,
respectively. The dimensionless flux condition at the origin takes the form

ĥ3ĥ(v)
|0 = �1, (2.18)

along with conditions (cf. (2.7))

ĥ0(0) = ĥ000(0) = 0. (2.19a,b)

It is convenient to note that we can take the first integral of (2.16) subject to
boundary conditions (2.18) and (2.19) to find

ĥ3

 
P4 @ ĥ

@ x̂
+

@5ĥ
@ x̂5

!
= x � 1, (2.20)
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which describes the variation of the fluid flux under the sheet under the influence of
buoyancy, an elastic sheet and distributed uniform drainage.

The dimensionless height of the sheet in the region in which the fluid is not in
contact with the sheet, � 6 x̂ 6 � + L̂, is given by

ĥ = �
�

24
(� + L̂ � x̂)3(� � x̂) + ĥ�

(� + L̂ � x̂)3

L̂3
, (2.21)

where

�⌘
⇢sgd

B
l4
d

H
(2.22)

is the ratio of the weight of the elastic sheet to the elastic stress in the fluid region,
and

L̂ =
L
ld

=
xG � xF

ld
(2.23)

is the dimensionless length of the tip region in which the fluid is not in contact with
the sheet, and ĥ� = h1/H. The boundary conditions at the interface between the fluid
region and the tip region therefore have the dimensionless forms:

ĥ(�) = ĥ�, (2.24a)

ĥ0(�) = �
3ĥ�

L̂
+

L̂3�

24
, (2.24b)

ĥ00(�) =
6ĥ�

L̂2
�

L̂2�

4
, (2.24c)

ĥ000(�) = �
6ĥ�

L̂3
+

3L̂�
4

, (2.24d)

ĥ(iv)(�) = ��. (2.24e)

The non-dimensional form of the fluid front for � < x̂ < 1 is

ĥ =
21/2

P

⇢
(x̂ � �)2

2
�

(1 � �)2

2
� (1 � �)(x̂ � 1)

�1/4

, (2.25)

where we have used (2.20) evaluated at x̂ = � to determine the non-dimensional flux
at the fluid–sheet detachment point. Evaluating this model of gravity slumping in the
fluid-free tip at x̂ = � further suggests that

� = 1 �
(ĥ�P)2

21/2
, (2.26)

which determines the detachment length �.
These conditions suggest that the height of the sheet at the point where the fluid

separates from the elastic sheet scales with the length of the tip region ahead of this
point, ĥ� ⇠ �L̂4. In the following analysis, we show that, in different regimes, the
conditions in the tip region play dominant or subdominant roles in determining the
deformation of the elastic sheet in the fluid-filled region. For clarity, we drop the hat
notation and assume all variables are dimensionless from here onwards.
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2.5. Numerical solution of the model equations
We determine the steady-state profile of the elastic sheet h(x) by mapping (2.20) onto
a domain for which x̃ ⌘ x/xF = [0, 1]. The resultant, nonlinear fifth-order ordinary
differential equation is solved with unknown �, h� and L subject to the eight boundary
conditions (2.19), (2.24) and (2.26). Since the equations become numerically stiff near
x̃ = 1, we match to asymptotic solutions at x̃ = 1 � " (" = 10�7 for all the numerical
solutions reported) and use continuation in the parameters P and � to obtain the full
range of numerical solutions. Numerical solutions were determined using the routine
bvp5c (in Matlab release R2016a, Mathworks, USA).

3. The limit of elastically driven flow, P ⌧ 1
If P ⌧ 1, the hydrostatic pressure is small, and the flow is driven by the elastic

stresses. We hypothesise that the separation of the sheet occurs close to the end of
the fluid draining zone, � ⇠ 1, and that the deformation of the sheet is independent
of hydrostatic pressure gradients. In the limit P ⌧ 1, equation (2.20) is approximately

h3h(v)
= x � 1, (3.1)

and the solutions become independent of P. The deformation of the sheet is now
primarily controlled by �, which represents the weight of the sheet compared to the
elastic stress associated with the curvature of the sheet in the fluid region. Profiles of
the height of the sheet h(x), normalised by the height of the sheet at the origin h0,
are shown in figure 2(a) for �= 1 and P = 0.1, 0.01 and 0.001. The profiles collapse
upon one another, corroborating the fact that, to leading order, in this regime the sheet
deformation is independent of P, and 1 � � ⌧ min(1, L).

Profiles of the normalised height, h(x)/h0, in the fluid region are shown in
figure 2(b) for P = 0.001 and various values of � in the range 0.001 6 �6 1000. For
�� 1, the pressure associated with the weight of the sheet far exceeds the change in
pressure required to drive the liquid forward under the sheet over the lateral extent
of the draining zone. As a result, the fluid pressure is nearly constant except in a
boundary layer at the separation point, where the narrowing geometry of the gap
leads to an increase in the viscous stress so that the fluid pressure adjusts from the
high interior value to the low pressure within the tip. In this case, the plate touches
down onto the substrate over a relatively short distance owing to the large weight of
the plate compared to the elastic stress. In contrast, for �⌧ 1, the sheet is relatively
light or stiff. As a result, the tip region is large compared to the fluid region and
the change in height of the sheet from the injection point to the fluid front is small
compared to the height of the sheet above the porous floor. This limit is analogous
to the relaxation of an elastic sheet, under gravity, subject to a localised force near
the origin. We now develop asymptotic solutions to describe these different regimes.

3.1. The light or stiff sheet: �⌧ 1
When elasticity dominates the flow and the sheet is either light or stiff, P ⌧ 1 and
�⌧ 1, we expect that the change in depth of the sheet across the fluid region is small,
1h = h0 � h� ⌧ 1. A profile of the sheet height is shown in figure 3(a) for P = 0.001
and �= 0.001. The length of the tip region is significantly greater than the length of
the fluid region, L � 1. In this limit, the fluid acts as a localised forcing that lifts the
sheet from the substrate. The sheet only deforms appreciably under its own weight in
the tip. In this limit we can linearise (3.1), subject to the boundary conditions at the
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FIGURE 2. (Colour online) (a) The normalised sheet height h/h0 as a function of distance
x in the fluid region (blue) and the tip region (black) as well as the gravity slumping front
(green) for �= 1 and P = 0.1, 0.01 and 0.001 for which 1 � � = 1.3 ⇥ 10�2, 1.3 ⇥ 10�3

and 1.8⇥10�7, respectively. The curves collapse on top of one another, suggesting that the
normalised profiles are independent of P. (b) Normalised sheet height h/h0 as a function
of distance x in the fluid region for P = 0.001 and various values of �, as indicated in
the legend, in the range �= [0.001, 1000].

origin, equation (2.19), and the bending stress at the point of separation of the fluid
from the sheet, h(iv)(�) = ��. In developing an approximate solution, we also note
that the detachment of the fluid from the sheet occurs at finite height h� . With these
conditions we find that the height of the elastic sheet in the fluid region 0 < x < 1 is
approximated by

h = h0 +
1

2h3
�

✓
x6

360
�

x5

60
+

x4

24

◆
�
�x4

24
+

x2

2

✓
2(h� � h0) �

1
36h3

�

+
�

12

◆
. (3.2)

This approximate solution for the height of the sheet in the fluid region is in good
agreement with the numerically determined profile, as can be seen in figure 3(a)
(inset) where the numerical and approximate solutions are almost indistinguishable.
Evaluating (3.2) at the fluid front, and matching the deflection of the sheet and its
first four derivatives, we find that

h0(�) = �21h +
1

45h3
�

�
�

12
= �

3h�

L
+

L3�

24
, (3.3a)

h00(�) = �21h +
7

72h3
�

�
5�
12

=
6h�

L2
�

L2�

4
, (3.3b)

h000(�) =
1

6h3
�

� �= �
6h�

L3
+

3L�
4

, (3.3c)

and hence, to leading order, that h0 = h� = �L4/72 for L � 1.
We now seek asymptotic expressions for L, h� , 1h and hence h0 in terms of powers

of � in order to describe the control exerted by elasticity in the tip. Substituting h� ⇠

�L4/72 into (3.3c), and neglecting lower-order terms in L (here the term ��), leads
to the asymptotic expansions

L ⇠ 93 3121/13��4/13, (3.4a)
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FIGURE 3. (Colour online) (a) The height h of the sheet as a function of distance x for
P = 0.001 and � = 0.001. In the fluid region, the analytic solution (3.2) is depicted by
the red dashed line and the numerically calculated height profile is depicted by the blue
line. The analytic solutions (2.21) and (2.25) are plotted for the sheet deformation in the
tip region (black line) and the gravity slumping fluid front (green line), respectively. Inset:
focusing in on the fluid region, 0 6 x 6 1. (b) The height of the sheet at the origin, h0,
and above the fluid front, h� , the length of the tip region, L, and the length of the gravity
slumping nose, 1 � � (as indicated in the legend), calculated numerically as functions of
�, for P = 0.001 and �< 1. Also shown are scalings for h� , L and 1 � �, given by (3.4)
and represented by the green, blue and black dashed lines, respectively; to leading order,
h0 ⇠ h� (3.6).

h� ⇠
93 3124/13

72 ��3/13, (3.4b)

1 � � ⇠
93 3128/13

722
p

2
P2��6/13. (3.4c)

By considering 1h ⇠ 6h�/L2 in (3.3b) we find that

1h ⇠
93 3122/13

12 �5/13, (3.5)

which confirms that to leading order the deflection of the sheet above the injection
point scales as

h0 ⇠ h� ⇠
93 3124/13

72 ��3/13. (3.6)
The agreement between these scalings and the numerical calculations is shown in
figure 3(b), and is surprisingly accurate, even for P = 1.

In the above analysis, we assumed that � ' 1 and so the interface between the fluid
and the tip is vertical. The fluid will in fact separate from the elastic sheet at the point,
� < 1, before reaching the fluid front (see § 2). In the region � < x < 1, the fluid will
advance forward under gravity so that it reaches the point x=1 on the permeable plate.
An estimate of the distance between the point of detachment of fluid from the elastic
sheet and the fluid front, 1 � �, is found by considering the drainage in a region of
size 1 �� driven by hydrostatic pressure, (h3hx)x = P�4, as given by (2.12). This leads
to the relation 1 � � ⇠ 2�1/2(Ph�)

2 and the prefactor can be found from recourse to
(2.26) as given by (3.4c) and shown in figure 3(b). Our assumption of a vertical fluid
front is valid if the length scale of this gravitationally driven flow, 1 ��, is much less
than the length of the drainage region, 1 � � ⌧ 1, and the length of the tip region,
1 � � ⌧ L. Since L � 1 in this case, we only require that 1 � � ⌧ 1 so that P ⌧ h�1

� .
Substituting in the scalings (3.4) for h� and L, we find that this applies provided that
P ⌧ 72�3/13/93 3124/13.
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3.2. Separation of the fluid front from the touchdown position, 1 � P & �3/13

In the limit that P > 72�3/13/93 3124/13, while P ⌧ 1 and �⌧ 1, then 1 � � is no
longer small, and the point of separation of the fluid from the elastic sheet migrates
back from the end of the draining zone to the point x = � < 1. Now, generalising
the previous solution, it follows that the height of the elastic sheet in the fluid region
0 < x < � is approximated by

h = h0 +
1

2h3
�

✓
x6

360
� �

x5

60
+ �2 x4

24

◆
�
�x4

24
+

x2

2�2

✓
2(h� � h0) �

�6

36h3
�

+
��4

12

◆
.

(3.7)
Using this solution in the boundary conditions at x = �, we find that

h0(�) = �
21h
�

+
�5

45h3
�

�
��3

12
= �

3h�

L
+

L3�

24
, (3.8a)

h00(�) = �
21h
�2

+
7�4

72h3
1

�
5��2

12
=

6h�

L2
�

L2�

4
, (3.8b)

h000(�) =
�3

6h3
�

� �= �
6h�

L3
+

3L�
4

. (3.8c)

Matching the largest terms in these equations, as above, leads to the relations

h� =
L4�

72
, (3.9a)

L ⇠ 93 3121/13��4/13�3/13, (3.9b)
1h = h0 � h� ⇠

93 3122/13

12 �5/13�2. (3.9c)

Finally, we can constrain the relationship between � and h� using the solution for
the gravitationally driven flow in the region � < x < 1 given by (2.25) and recalling
the relationship (2.26) between h� and �. Combining (2.26) with (3.9a,b) leads to the
implicit relation for � in terms of P and � as given by

(1 � �)1/2

�12/13
=

93 3124/13

72 ⇥ 21/4
P��3/13. (3.10)

This relation illustrates how the separation point of the fluid migrates back towards the
source as P��3/13 progressively increases and the gravity slumping of the fluid ahead
of the point of separation becomes more significant, as shown in figure 4.

As � increases for a given P(⌧1) and the weight of the elastic plate increases, the
point of touchdown of the plate migrates back towards the distal end of the draining
zone, x = 1, and eventually the tip region, of length L, becomes small relative to the
draining zone, L ⌧ 1. This leads to the next series of cases in which we explore the
behaviour of a relatively heavy plate, �� 1, for various values of P.

3.3. The heavy or flexible sheet: �� 1
When �� 1, the weight of the sheet is much greater than the elastic stress associated
with the pressure gradient required to drive the fluid under the sheet. Now the
sheet deforms readily under its own weight, and so the length of the tip region,
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10010–110–2 103102101

100

10–1

FIGURE 4. (Colour online) The separation point as a function of P��3/13 from the
solution of (3.10), and where the red dashed line indicates the asymptotic limit � '

(2.5315/P��3/13)13/12.

� < x < � + L, is expected to be much smaller than the length of the fluid region,
L ⌧ 1. The pressure gradients needed to drive fluid from the source over the porous
substrate are small compared to the background pressure associated with supporting
the weight of the sheet. The pressure is therefore nearly constant within the main
interior of the fluid. In contrast, near the point of separation of the fluid from the
sheet, the viscous stresses become significant since a large pressure gradient is needed
to drive the viscous fluid into the narrowing confines of the gap and thus match the
low pressure in the air tip. In considering the asymptotic behaviour for �� 1, we
match the nearly uniform pressure of the fluid below the sheet to a viscous boundary
layer near the point of separation. As in the earlier solutions, since P ⌧ 1, we expect
that the distance between the separation point and the end of the draining zone is
small, so we make the simplification � ⇡ 1; again, we check the validity of this
approximation by checking that (1 � �) ⌧ min(1, L) once we have developed the
asymptotic solutions.

In the interior, the variation of the height of the plate follows the approximate
relation h(v) ⇠ h�3

0 and so, for �� 1, we find that the fluid pressure is nearly constant,
h(iv)

p = K, where K depends on the details of the flow and elastic deformation near the
point of separation of the fluid from the plate. Since the height and gradient of the
sheet h(�) = h0(�) = O(h�) at x = �, an approximate solution for the sheet is

h =
K
24

(� � x2)2. (3.11)

Near the point of separation of the fluid from the plate (near x = �), the height
of the sheet is O(h�), and the viscous stresses dominate over an adjustment region
with length scale Lt. In this boundary layer, we expect solutions of the form, h =

h� f (⇣ = (x � �)/Lt) such that (3.1) becomes

f 3f (v)
= ⇣ , (3.12)

and the tip length scale is related to the height at the point of separation of the fluid,
Lt = h2/3

� , by a scaling of (3.1). In the case P ⌧ 1, for which gravity is small, we
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expect that � ⇠ 1 and hence solve (3.12) subject to rescaled boundary equations at
the fluid front, ⇣ = 0, to find that

f (0) = 1, (3.13a)

f 0(0) = a
✓

�3 +
b

24

◆
, (3.13b)

f 00(0) = a2
✓

6 �
b
4

◆
, (3.13c)

f 000(0) = a3
✓

�6 +
3b
4

◆
, (3.13d)

f (iv)(0) = �a4b, (3.13e)

where for convenience we have defined the ratio of the length scale of the viscous
dissipation to the tip length, a = Lt/L, and tip pressure has been scaled to give b =

�L4/h� . In order for this boundary layer solution to match onto the interior solution,
we require that the curvature tends to a constant, and so we set

f 000, f (iv)
! 0 as ⇣ ! �1. (3.14a,b)

Solution of the boundary layer problem for f (⇣ ) thus yields a value for K, the interior
fluid pressure. Using Matlab’s bvp5c function, we solved this boundary layer problem
taking � = 1 and in this case we find that a = 0.4058, b = 5.1325 and f 00(⇣ ! �1) =

0.9311. This leads to the solution for the interior pressure,

K = 3(ba4)�1/5f 00(�1)�1/5, (3.15)

and hence that

h� = (ba4)3/5��3/5
= 0.3063��3/5, (3.16a)

L = b2/5a3/5��2/5
= 1.1197��2/5, (3.16b)

h0 =
(ba4)�1/5

8
f 00(�1)�1/5

= 0.1727�1/5, (3.16c)

1 � � =
(0.3063��3/5P)2

p
2

, (3.16d)

where again the last relationship is a direct consequence of (3.16a) and (2.26). The
analytic solution for the height of the elastic sheet that results from the assumption
of a constant fluid pressure is compared to the numerical solution for the height of
the sheet in figure 5(a), for P = 0.001 and �= 1000.

These scalings and numerical values for the height of the sheet above the origin,
h0, and at the fluid front, h� , the length of the tip region, L, and the gravity slumping
nose, 1 � �, calculated as functions of �, are shown in figure 5(b) for � > 1. The
length of this gravity current scales as 1 � � ⇠ (Ph�)

2/2 and so, in order that the
solution is self-consistent, we require 1 �� ⌧ min(1, L). From our scalings for h� and
L, equations (3.16a)–(3.16b), we find that the condition 1 � � ⌧ 1 requires P ⌧ �3/5.
Also, the condition that 1 � � ⌧ L requires P ⌧ �2/5. These are always satisfied in
the case P ⌧ 1 while �� 1, and so the approximation � ⇡ 1 is self-consistent, as
demonstrated by the numerical solutions in figure 5(b).
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FIGURE 5. (Colour online) (a) The height h of the sheet as a function of distance x for
P = 0.001 and �= 1000. In the fluid region, the approximate solution (3.11) for a constant
pressure interior is depicted by the red dashed line and the numerically calculated height
profile is depicted by the blue line. (b) The height of the sheet at the origin, h0, and
above the fluid front, h� , the length of the tip region, L, and the length of the gravity
slumping nose, 1 � � (as indicated in the legend), calculated numerically as functions of
�, for P = 0.001 and �> 1. Also shown are scalings for h0 (red), h� (green), L (blue) and
1 � � (black) given by (3.16a)–(3.16d).

4. Gravitationally driven flows: P � 1
When P � 1, the hydrostatic pressure dominates the elastic stress over the length

scale across which the fluid drains. There are then two limits, which we explore below.
When the hydrostatic pressure is moderate compared to the weight of the elastic plate,
�� 1, we anticipate that, as in § 3.3, the pressure within the main body of fluid will
be nearly constant, but that now there is a region of length 1/P in which elastic
stresses become significant, upstream of the point of separation of the fluid from
the sheet. In this boundary layer the curvature becomes large and the elastic stresses
dominate the hydrostatic pressure, in an analogous fashion to § 3.3. We develop a
model for this regime, and then find that ��P5/2 for this solution to be self-consistent.
In contrast, with a lighter elastic sheet, for which �⌧ P5/2, the hydrostatic pressure
dominates within the current, and the flow then behaves in a similar fashion to a
classical gravity current with the elastic sheet following the profile of a gravity current.
In this limit, flow is driven by hydrostatic pressure gradients through to the detachment
point, and the effects of elasticity are only important in determining the structure of
the sheet in the tip region.

4.1. Elasticity dominates at the point of fluid separation: 1 ⌧ P ⌧ �2/5

For intermediate values of P, both gravity and elasticity play a role in determining the
profile of the sheet. As in the elastic case, the pressure gradients needed to drive fluid
towards the fluid front are small compared with the pressure that lifts the sheet off
the permeable substrate. In this limit the pressure within the fluid is nearly constant,
as given by h(iv) + P4h = K where, as in § 3.3, K is to be found from the conditions
at the front of the flow. Since the height and deflection of the sheet are small at the
point where the fluid separates from the sheet (x = �), then h(�) = h0(�) = O(h�), and
the leading-order solution for the deflection of the sheet is

h = h0[1 + a cos ⇠ cosh ⇠ + b sin ⇠ sinh ⇠ ], (4.1)
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FIGURE 6. (Colour online) (a) The normalised height profile of the sheet h/h0 for P = 10
and for various values of � (as indicated in the legend), along with the asymptotic solution
(dashed) given by (4.4). The coloured lines indicate the fluid region and the corresponding
black lines represent the tip region. (b) Plot showing h0, h� , L and 1 � � as functions of
� for P = 10. Markers represent the numerical computations (as indicated in the legend)
and the scalings for h0 (red), h� (green), L (blue) and 1 �� (black) given by (4.7a)–(4.7d)
are also included for comparison.

where
⇠ =

⇣
p

2/P
(4.2)

and

a = �
cosh � sin � + cos � sinh �

cos � sin � + cosh � sinh �
, b =

csc � csch � (cot � � coth � )

coth � csc � 2 + cot � csch � 2
, (4.3a,b)

and where � = �P/
p

2. In the limit P � 1 this takes the far simpler expression

h = h0{1 � e⇠��
[cos(� � ⇠) + sin(� � ⇠)]}, (4.4)

in which we have taken h0(0) = h000(0) ! 0 in the asymptotic limit P�1 ! 0. This
asymptotic solution is shown alongside numerical profiles of the height of the sheet
in figure 6(a), calculated for various values of �, and corroborates that h/h0 becomes
non-monotonic for intermediate values of P and large �.

At the point of separation of the fluid from the sheet, where the deflection of the
sheet matches onto the tip region, the elastic stresses dominate as described by the
boundary layer solutions described in § 3.3. Here, as before, the relationship between
the boundary layer length scale and the fluid height has the form Lt = h3/2

� and we
expect that � ⇡ 1. Following the analysis of § 3.3, we define a = Lt/L and b = �L4/h�

and find that a = 0.4058, b = 5.1325 and f 00(⇣ ! �1) = 0.9311. Now matching the
curvature of the elastically dominated fluid front to the interior solution we find that

h⇠⇠ |⇠!� =
P2h0

2


�2 + cos 4� + cosh 4�

(sin 2� + sinh 2� )2

�
=

h�

L2
t

f 00(�1). (4.5)

In the limit P � 1, this simplifies to

h⇠⇠ |⇠!� = P2h0 =
h�

L2
t

f 00(�1), (4.6)
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and hence we find, with 1 ⌧ P ⌧ �2/5, that

h1 = (ba4)3/5��3/5
= 0.3063 ��3/5, (4.7a)

L = b2/5a3/5��2/5
= 1.1197 ��2/5, (4.7b)

h(0) = b�1/5a�4/5f 00(�1)P�2�1/5
= 1.3813 P�2�1/5, (4.7c)

1 � � =
(0.3063��3/5P)2

p
2

. (4.7d)

These scalings are compared to numerically computed values of h0, h� , L and 1 � �
as functions of � for P = 10 in figure 6(b).

However, in the limit P��2/5 ⇠ 1, flow near the fluid detachment point is driven by
both elastic and hydrostatic pressure gradients. The ratio P��2/5 gradually increases,
hydrostatic pressure gradients become progressively more important within the tip
until eventually they dominant, and only a small elastic region determines the
touchdown point of the sheet in advance of the fluid detachment point, as considered
in the next section.

4.2. Gravity dominates at the point of fluid separation: P � �2/5

For P � �2/5, with P � 1, the hydrostatic pressure dominates over the elastic stress
and the weight of the plate, so the solution is analogous to a classical gravity current.
However, at the end of the draining zone, the plate also touches down, and so there
is a region near the nose where the elastic stress becomes important and hence affects
this touchdown. Upstream of the nose of the flow, the solution is given by the gravity
current solution of the equation

P4h3h0
= x � 1, (4.8)

as given by

h = 21/4 (1 � x)1/2

P
, (4.9)

where, since the flow is at all times predominantly driven by gravity, we impose
h(x ! 1) = 0. A comparison of this asymptotic solution with the full numerical
solution for the deflection of the sheet is shown in figure 7(a) for P = 1000 and
� = 1. The figure demonstrates the excellent agreement between the asymptotic and
full numerical solutions.

Furthermore, we see that, because hydrostatic pressure gradients dominate through
to the fluid detachment point, the solution (4.9) remains an excellent approximation
throughout. This implies that

h� =
21/4

P
(1 � �)1/2, (4.10)

and hence, from boundary condition (2.24e), that the detachment point

1 � � =

✓
16
15
�P
21/4

◆�2/7

. (4.11)

We may similarly write an expression for the fluid height at the detachment point,

h� =
21/4

P

✓
16
15
�P
21/4

◆�1/7

. (4.12)
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FIGURE 7. (Colour online) The height h of the elastic sheet as a function of distance
x for P = 1000 and �= 1. In the fluid region x = [0, 1], both the numerically calculated
(blue line) height and the analytic solution (red dashed line) for a gravity current, equation
(4.9), are depicted (taking h1 ! 0) along with the analytic solution (2.21) for the sheet in
the vapour tip x =[1, 1 + L] (black line). (b) The height of the sheet at the origin, h0, and
the fluid at detachment, h� , and the length of the tip region, L, and gravity nose, 1 � �,
as functions of P for �= 1. Numerical findings are denoted by the markers, as indicated
in the legend, and compared with scaling relationships for h0 (red), h� (green), L (blue)
and 1 � � (black) given by (4.9) evaluated at x = 0, and (4.12), (4.14) and (4.11).

Finally, we note that from (4.9) and (2.24b) the following quartic polynomial for the
length of the vapour tip is suggested:

L = 6
� 16

15
1

21/4

��2/7
(�P)�2/7

�
23/4

24

� 16
15

1
21/4

��1/7
(�P)6/7L4, (4.13)

which depends solely on �P. We note that, in the two asymptotic limits,

L '

8
<

:
6
� 16

15
1

21/4

��2/7
(�P)�2/7 = 6.1894(�P)�2/7, �P < 1,

h
144
23/4

� 16
15

1
21/4

��1/7
i1/4

(�P)�2/7 = 3.0538(�P)�2/7, �P > 1.
(4.14a,b)

We compare these asymptotic solutions (dashed lines) against the full numerical
solutions (symbols) in figure 7(b) for � = 1 and P � 1 corresponding to the limit
�P > 1 in (4.14).

5. Discussion and conclusions

We have examined the injection of liquid from a point source into the gap
between an elastic sheet and a permeable horizontal base in a planar geometry.
We have found that a family of steady-state draining solutions arise as anticipated
by balances between elastically or gravitationally driven flow and leakage. The flow
from the source to the region over the permeable base in which there is drainage is
controlled by either (i) the horizontal gravitational pressure gradient associated with
the decreasing thickness of the fluid layer with distance from the source or (ii) the
elastic stress associated with the deformation of the elastic sheet. We have also found
that, beyond the draining region, there is a transition region in which the elastic
sheet touches down onto the permeable base. This transition region is controlled by
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a balance between the weight of the elastic sheet and its bending moment, with the
boundary condition that the elastic stress in the sheet is continuous at the point that
the fluid separates from the sheet.

In the case that the gravitational pressure gradient in the fluid drives the flow and
the sheet is relatively light compared to the fluid, the depth of the flow reduces rapidly
to zero near the front of the flow and the sheet is drawn down close to the horizontal
plane (figure 8a). If, instead, the sheet is denser than the fluid, then elastic effects
become important in the fluid region before the fluid has detached from the sheet
and dramatically alter the shape of the sheet from one similar to the profile of a
gravity current (figure 8b). Both of these cases lead to a very short transition zone
relative to the draining length of the flow as, in one, the sheet is drawn close to the
horizontal plane and, in the other, the sheet readily deforms under its own weight.
However, in the case that the flow is driven by the elastic stresses, the gravitational
stress associated with the fluid acts over a much larger scale than the elastic stress
and so, if the sheet is relatively light, then the touchdown distance is relatively large
compared to the drainage length (figure 8c), and the touchdown problem resembles
one in which a sheet is propped up near the origin and drapes down to the plane. In
contrast, if the elastic sheet is much denser than the fluid, then the touchdown length
becomes smaller than the drainage scale (figure 8d).

In the analysis included in §§ 3 and 4, we have developed asymptotic expressions
for the shape of the elastic sheet and for the lateral extent of the touchdown distance
in each of these cases. We note that the model has some similarities to the work of
Lister et al. (2013) and Hewitt et al. (2015), in that they predicted a transition from
an elastically dominated flow at early times, when the deformation and fluid region
are small, to a gravitationally dominated flow at long times, when the deformation and
fluid region are large. In the present problem, with a steady-state flow and drainage
through the lower boundary, the parameter P has a similar influence in determining
the flow regime, in that, with a large drainage region, P is large and the system is
controlled by the gravitational stress, whereas, with small P, the drainage region is
relatively small and the flow is controlled by the elastic stresses.

An important simplification in our analysis was the neglect of the tension in the
elastic sheet, which is valid provided that the stress associated with the tension
in the sheet is small compared to the stress associated with the bending moment
of the sheet, and this requires that h2/d2 ⌧ 1, where d is the thickness of the
sheet. The above results predict the following in the various regimes for P and
�: (i) P ⌧ 1 and � ⌧ 1, the maximum deflection of the light/stiff sheet from the
initial undeformed position occurs above the injection point and follows the scaling
h0 ⇠ 93 3124/13��3/13/72, requiring that the thickness d � 93 3124/13��3/13/72 for
tensional effects to be negligible; (ii) P ⌧ 1 and � � 1, the maximum deflection
of the heavy/flexible sheet follows the scaling h0 ⇠ �1/5/(4

p
2), which requires that

d � �1/5/(4
p

2); (iii) 1 ⌧ P ⌧ �5/2, the central deflection of the sheet scales as
h0 ⇠ �1/5, which requires that d � �1/5; and (iv) P � 1 and �⌧ P5/2, the maximum
deflection of the sheet scales as h ⇠ 21/4P�1, which requires that d � 21/4P�1.

Another simplification in our model is the assumption of a constant draining flux,
independent of position; this may correspond to the case in which the draining is
controlled by a deep porous layer below the porous plate (cf. Pritchard et al. 2001);
with a thinner plate, the draining flux may be proportional to the excess pressure
above the plate relative to that below the plate. A further simplification is the choice
f = 1/12 for the free gravity current (§ 2). In the case that the free gravity current
extends a distance downstream of the separation point that is comparable to or greater
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FIGURE 8. (Colour online) Illustrative profiles of the sheet deformation regions for the
various limits of P = ld(⇢g/B)1/4, where ld is the extent of the fluid film, B the bending
stiffness of the sheet, ⇢ the density of the fluid, and �= (⇢sgd/B)(l4

d/H), where ⇢s is the
density of the sheet, H = (12µud/B)1/4l3/2

d , µ is the dynamic viscosity of the fluid and
ud is the drainage velocity through the permeable substrate. In each of (a)–(d) the solid
black line represents the sheet while the shaded blue area and the unshaded area beneath
the sheet indicate the fluid region and the tip region, respectively. Note that the formal
limits distinguishing the different regimes are described in the main text.

than the length required for the current to adjust from the no-slip solution ( f = 1/12)
to the free-slip solution ( f = 1/3), then the adjustment zone should be included in
the analysis: this requires numerical solution of the two-dimensional Stokes flow in
the adjustment region, which is beyond the scope of the present work.

We proposed in the introduction that this analogue model of a fracture may
provide a route to develop a laboratory experiment. We are presently developing such
an experimental model of the system. A laboratory system may be designed, for
example, with a linear source of dimension ls ⌧ ld, supplying flow beneath an elastic
sheet, as a one-dimensional flow drains over a length scale ld. Using a drainage length
ld = 0.1 m and an injection rate of 10–100 cm3 s�1 per unit length of the source
would lead to leakage through the permeable substrate at a characteristic drainage
velocity 3.2 ⇥ 10�4 to 3.2 ⇥ 10�3 m s�1, respectively. One could use fluid, such as
silicone oil, with viscosity in the range 0.001–0.1 Pa s and a density of 970 kg m�3,
and an elastic plate composed of polydimethylsiloxane, with a Young’s modulus of
E = 5 MPa, Poisson’s ratio of 0.5, density 930 kg m�3 and thickness in the range
1–50 mm. This would lead to a range of values of P ' 0.3–6.4 and a range of values
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of � ' 10�2–102, which shows that both the elastic and gravitational flow regimes
may develop in the laboratory. Such a system could be used to explore how particles
migrate with the fluid and become trapped on the lower permeable boundary. As the
fluid drains through the permeable openings in this boundary, we expect that this will
reduce the drainage rate and may increase the lateral extent of the fluid region.

In comparing our analysis to the case of a fracture propagating into an elastic solid,
there may be some additional effects. First, there is typically a fracture toughness,
which changes the detail of the model for the touchdown point, since the fracture
can sustain an overpressure without fracturing. Second, the pressure in the fracture
near the touchdown point may be different from the background pressure, as the fluid
drains into the formation and the pressure gradually builds up. Both of these effects
may be built into the present model, with the latter also requiring a reinterpretation
of the boundary condition (2.6).
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