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We investigate two-dimensional liquid bridges
trapped between pairs of identical horizontal
cylinders. The cylinders support forces owing to
surface tension and hydrostatic pressure that balance
the weight of the liquid. The shape of the liquid
bridge is determined by analytically solving the
nonlinear Laplace–Young equation. Parameters that
maximize the trapping capacity (defined as the
cross-sectional area of the liquid bridge) are then
determined. The results show that these parameters
can be approximated with simple relationships
when the radius of the cylinders is small compared
with the capillary length. For such small cylinders,
liquid bridges with the largest cross-sectional area
occur when the centre-to-centre distance between
the cylinders is approximately twice the capillary
length. The maximum trapping capacity for a pair
of cylinders at a given separation is linearly related
to the separation when it is small compared with
the capillary length. The meniscus slope angle of the
largest liquid bridge produced in this regime is also
a linear function of the separation. We additionally
derive approximate solutions for the profile of a
liquid bridge, using the linearized Laplace–Young
equation. These solutions analytically verify the
above-mentioned relationships obtained for the
maximization of the trapping capacity.
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1. Introduction
The trapping of a fluid in contact with a solid is a general problem with applications in biological,
engineering, industrial and geological processes. Generally, a volume of liquid trapped by two
or more solid surfaces and immersed in a different fluid is called a ‘liquid bridge’. The trapping
is achieved by balancing the weight of the liquid with the surface tension forces acting along the
three-phase contact lines and the forces of hydrostatic pressure exerted on the solid–liquid contact
surfaces. A detailed review of liquid bridges can be found in Butt & Kappl [1]. Liquid bridges are
a very common occurrence in granular matter and porous media. Examples include trapping of
water in sand, which acts as an adhesive in sand castles [2], and capillary trapping of supercritical
carbon dioxide in porous rocks [3] during carbon dioxide sequestration.

In this paper, we study two-dimensional liquid bridges produced between pairs of horizontal
cylinders. A study in this simplified geometry is a first step in the detailed understanding of
trapping in porous media. It can also give insights into the behaviour of a three-dimensional
liquid bridge trapped between cylindrical rods. Liquid absorption to textiles [4] and retention of
water droplets on spider webs are common examples of trapping in this geometry. Additionally,
it has recently been proposed as a method of handling and mixing small volumes of liquid
in analytical research [5]. Princen [6] and Lukas & Chaloupek [4] solved this problem in two
dimensions neglecting the effects of gravity. Such solutions lose their accuracy as the amount
of trapped liquid increases. Although three-dimensional profiles of trapped droplets have been
studied experimentally [7,8] and numerically [9,10], there is no straightforward method to
determine how much liquid a given geometry can trap.

Capillary trapping in other related geometries has been studied using a variety of methods.
Urso et al. [11] analysed trapping of a liquid in a two-dimensional porous medium comprised
of horizontal cylinders. They studied trapping in the limit of small liquid volumes, where
gravitational effects can be neglected and the liquid–fluid interfaces may be approximated by
circular arcs. Chen et al. [12] determined the shape of a three-dimensional liquid bridge trapped
between vertical plates using a perturbation method in which the weight of the liquid was
neglected, and calculated numerically, using a finite-element method, cases in which the weight
was incorporated. Haynes et al. [13] solved for the shape of a two-dimensional liquid bridge
trapped between a pair of vertical walls using an asymptotic method, in the limit of small liquid
weights, and determined the smallest volume of liquid with which a liquid bridge can form.
While a two-dimensional liquid bridge is approximately symmetric in the vertical if its weight
is close to zero, the shape becomes significantly asymmetric when more liquid is added. The
shape of the lower interface in this regime can be modelled as a pendant drop. Profiles of pendant
drops have been studied extensively for two-dimensional [14,15] and axially symmetric [16,17]
cases. Although the above-mentioned solutions take all the physical parameters into account,
they are either analytical solutions that give complicated expressions or numerical solutions and,
as a result, do not provide direct expressions to determine the trapping capacity.

The study in this paper starts with an exact solution for the profile of a two-dimensional liquid
bridge of arbitrary volume. Results obtained using this solution show very simple approximate
relationships governing the maximum trapping capacity: the maximum trapping capacity is
linearly related to the separation between the cylinders when the separation is small compared
with the capillary length; and the separation that produces the largest trapping capacity is
twice the capillary length. We then analytically verify these limiting relationships using several
approximate solutions for the shape of a liquid ridge.

2. Theoretical setting
We consider a two-dimensional, horizontally symmetric liquid bridge produced between a pair
of identical horizontal cylinders, as shown in figure 1. The weight of the liquid is balanced by
the forces of surface tension and the reaction to the hydrostatic pressure exerted by the cylinders.
Both liquid–fluid interfaces of the liquid bridge meet the cylinders at a fixed contact angle θ ,
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Figure 1. A liquid bridge formed between a pair of horizontal cylinders. θ is the contact angle,ω1 andω2 are the angles from
the vertical where the liquid meets the cylinder andψ1 andψ2 are the interfacial slope angles, which are positive if measured
anticlockwise. All the lengths are non-dimensionalized by dividing by the capillary length. The height y is proportional to the
pressure of the liquid at the liquid–fluid interface relative to the pressure of the fluid. At y = 0, the pressure difference between
the twophases and the interfacial curvature are 0.R is the radius of the cylinders and d is the half distance between their centres.

which is in practice locally determined by the fluid and solid surface energies. The interfacial
slope angles at the contacts are given by ψi, where the subscript i = 1 denotes the upper interface
and i = 2 denotes the lower interface, and ψi is positive if the interface slopes upwards leaving
the cylinder. The point of contact between a cylinder and an interface is denoted by the angle ωi
to the vertical. The following relationships between ψi, θ and ωi are obtained by consideration of
the geometry of the system

ψ1 = θ − ω1 (2.1)

and
ψ2 = π − θ − ω2. (2.2)

The shape of each liquid interface of the liquid bridge is governed by the nonlinear Laplace–
Young equation that relates the pressure difference across the interface to its curvature. If the
height Y of the interface is given as a function of the horizontal position X by Y = G(X), then the
Laplace–Young equation is written as

G = �2
cP(X)

GXX

[G2
X + 1]3/2

, (2.3)

where Y = 0 is chosen for simplicity in the following calculation as the vertical location where the
interfacial curvature (and hence the pressure difference across the interface) is zero. The subscripts
in (2.3) denote horizontal derivatives and �c is the capillary length,

�c ≡
√

γ

�ρg
, (2.4)

in which γ is the liquid–fluid interfacial tension, �ρ is the density difference between the liquid
and the fluid and g is the acceleration owing to gravity. P(X) = ±1 depending on whether the
liquid phase is below or above the fluid phase, and it is defined as

P(X) = sgn{D[X, G(X) − δ] − D[X, G(X) + δ]}, (2.5)

where D(X, Y) is the density at a location (X, Y) covered by a fluid, which is assumed to be constant
within each phase, and δ is a positive infinitesimal length.

Owing to the symmetry of the system, we need to solve only for a half of the bridge to
determine its full shape. (In the solution presented here, we consider the left-hand side only).
However, writing the Laplace–Young equation in the form of (2.3) has several drawbacks. First, it
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Figure 2. Shapes of two liquid bridges obtained, using exact and approximate solutions of the Laplace–Young equation. Some
values ofψ1 can produce two different liquid bridges, because (2.12) can have two solutions forψ2. Both liquid bridges shown
here are obtained using the same input parameters R= 0.2, d = 0.5, θ = 0 andψ1 = −π/6 and represent two solutions
forψ2, i.e. 0.44 in (a) and−1.17 in (b). The black solid curves are obtained from the solution to the nonlinear Laplace–Young
equation (3.10). The magenta dashed curves show an approximation (4.4) for the shapes of the upper interfaces of the liquid
bridges obtained by solving the linearized Laplace–Young equation. The blue dashed curve in (a) shows a similar approximation
(4.9) for the lower interfaces which is valid when the interfacial slopes are small. The red dashed curve in (b) is a composite
approximation for the shape of the lower interface, valid for distended liquid bridges, given by (4.30). The results show very
good agreement between the exact and approximate solutions.

cannot be solved by direct integration and, second, the shape of the lower interface can be
multivalued relative to X and also P(X) can change sign within a single fluid interface (for
example, consider the lower fluid interface of the liquid bridge shown in figure 2b). These
problems can be avoided by instead expressing the interfacial shape as a function of Y. It is also
convenient to non-dimensionalize all the lengths with respect to the capillary length and define
x = X/�c and y = Y/�c. The interfacial shape can then be written as

x = f (y), (2.6)

where x = 0 is the axis of symmetry and y = 0 represents the vertical coordinate at which
d2f/dy2 = 0, which is not known a priori and has to be determined as a part of the solution. The
non-dimensionalized Laplace–Young equation is

y = p(y)
fyy

(f 2
y + 1)3/2

, (2.7)
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with p(y) = ±1 according to the relative positions of the liquid and fluid. Because the interfacial
shape is defined as a function of the vertical coordinate, p(y) is now determined by whether the
liquid phase is located in the right-hand side or left-hand side of the fluid phase, so that

p(y) = sgn{Dn[f (y) − ε, y] − Dn[f (y) + ε, y]} (2.8)

as ε→ 0, from above, where Dn(x, y) is the fluid density at a location (x, y) which is specified
in terms of the non-dimensionalized coordinates. Because only a half of a liquid bridge is to be
solved, p is constant within each interfacial segment we consider and it depends only on the
direction of the meniscus slope at the contact point

p =
{

sgn(ψ1) for the upper meniscus

−sgn(ψ2) for the lower meniscus.
(2.9)

The liquid bridge shown in figure 1 is trapped between cylinders of (non-dimensionalized)
radius R and a centre-to-centre distance d. If the vertical coordinates of the contact point and
middle point of each interface of the liquid bridge are y = ui and y = vi, respectively, the interfacial
slope angle defines a boundary condition at each contact point

fy(ui) = − cot(ψi), (2.10)

and the requirement for symmetry provides a boundary condition at the centre line

lim
y→vi

fy = −sgn(ψi)∞. (2.11)

Finally, we impose that the free surfaces intersect the cylinder at the points

f (ui) = d − R sinωi, (2.12)

and are continuous across the centre line

f (vi) = 0. (2.13)

In the following section, we obtain a solution for the full shape of the liquid bridge given R, θ ,
d and ω1 (or ψ1) and predict ω2, ui and vi as part of the solution.

3. Exact solution of the nonlinear Laplace–Young equation
The Laplace–Young equation given in (2.7) may be integrated and rearranged to obtain

fy = p′ (1/2)y2 − ai√
1 − ((1/2)y2 − ai)2

, (3.1)

where ai is a constant of the integration and p′ = ±1. To determine the value of p′, we differentiate
equation (3.1) to obtain

fyy = p′ y
[1 − ((1/2)y2 − ai)2]3/2 . (3.2)

Comparison of this result with (2.7) shows that

p′ = p. (3.3)

Substitution of fy given by (3.1) into (2.11), which denotes the meniscus slope at the mid-point
of each interface, yields

ai = 1
2v

2
i + q, (3.4)
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where

q = p sgn(ψi). (3.5)

The value of p in (2.9) is combined with (3.5) to produce

q =
{

1 for the upper meniscus

−1 for the lower meniscus.
(3.6)

We then combine (2.10), which gives the meniscus slope at a contact point, with (3.1) and (3.4)
to obtain

u2
i = v2

i + 2q(1 − cosψi). (3.7)

The general shape of an interface is determined by integration of (3.1). This integration is carried
out using the substitution

1
2 y2 − ai = cosα, (3.8)

which transforms (3.1) to

fα = −p
cosα

2
√

ai + cosα
. (3.9)

The interface may therefore be described completely by the expression

f (y) = p{−sgn(y)g(y) + [sgn(y) − sgn(vi)]g(0) + sgn(vi)g(vi)}, (3.10)

where the shape in y is given by

g(y) =
√

2(1 + q) + v2
i E

[
1
2

cos−1

(
y2 − v2

i
2

− q

)
,

4

2(1 + q) + v2
i

]

− 2q + v2
i√

2(1 + q) + v2
i

F

[
1
2

cos−1

(
y2 − v2

i
2

− q

)
,

4

2(1 + q) + v2
i

]
, (3.11)

written here in terms of incomplete elliptic integrals E(σ , k) and F(σ , k) [18]. Equation (3.11)
satisfies the boundary condition f (vi) = 0 and remains continuous at y = 0.

According to the Laplace–Young equation, the pressure in the liquid side of the interface is
higher than the pressure in the fluid side when a liquid surface is convex. As a result, a convex
liquid surface corresponds to a negative y and a concave liquid surface corresponds to a positive
y. If the lower interface of the liquid bridge slopes downwards at the contact point (i.e. ψ2 < 0),
then it has to be convex at the mid-point (x = 0) to satisfy the symmetry. This makes v2 negative.
If ψ2 is positive, then the interface is concave in the middle and v2 is therefore positive. Using a
similar argument also for the upper interface, one can obtain the following general relationship
for a liquid bridge,

sgn(vi) = −q sgn(ψi). (3.12)

Equation (3.12) can be used to eliminate sgn(vi) from (3.10) to obtain

f (y) = p{−sgn(y)g(y) + [sgn(y) + q sgn(ψi)]g(0) − q sgn(ψi)g(vi)}, (3.13)

and vi can be eliminated from (3.11) using (3.7) to produce

g(y) =
√

2(1 + q cosψi) + u2
i E

[
1
2

cos−1

(
y2 − u2

i
2

− q cosψi

)
,

4

2(1 + q cosψi) + u2
i

]

− 2q cosψ1 + u2
i√

2(1 + q cosψi) + u2
i

F

[
1
2

cos−1

(
y2 − u2

i
2

− q cosψi

)
,

4

2(1 + q cosψi) + u2
i

]
. (3.14)
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We now use the boundary condition that defines the horizontal position of the contact point of
each menisci given by (2.12) to obtain a relationship between ψi and ui. The geometry of the
cylinder gives the relationship between the vertical positions of the upper and lower contact
points of the menisci

u2 = u1 − R(cosω1 − cosω2), (3.15)

from which ωi can be replaced using (2.1) and (2.2) to obtain

u2 = u1 − R[cos(θ − ψ1) + cos(θ + ψ2)]. (3.16)

Equations (3.15) and (2.12) with i = 1, 2, then represent three equations for ψ1, ψ2, u1 and u2. If
any one of these four parameters is known, the other three can be determined and the shapes of
both the menisci can be found.

The following steps show the method used to determine the shapes of the liquid bridges in
this paper.

(i) Select the upper point of contact with the cylinder ω1 and determine ψ1 using (2.1), or
select ψ1 directly.

(ii) Substitute (3.12), (3.10) and (3.14) into (2.12) and solve for u1.
(iii) Express u2 as a function of ψ2 using (3.16).
(iv) Determine ψ2 by solving (2.12), into which (3.12), (3.10) and (3.14) are substituted.
(v) Determine ω2 using (2.2) and

(vi) Obtain the shapes of the menisci using (3.10).

For a given value of ψ1, (2.12) gives only one solution for u1. However, for some values of u2,
the solution is multivalued, and thus can give two solutions forψ2 resulting in two different liquid
bridges as shown in figure 2. The first solution produces a liquid bridge with approximate vertical
symmetry and the second solution produces a larger liquid bridge where the lower interface is
significantly distended, and as a result, contains a larger amount of liquid compared with the first.
Both these solutions are equally valid.

4. Approximate solutions for the shapes of the liquid interfaces

(a) Shape of the upper interface as |ψ1| → 0
The limit |ψ1| → 0 corresponds to nearly horizontal upper interfaces. Expressing the shape of the
upper meniscus by the function y = j(x) and assuming the interfacial slopes to be small (jx � 1),
we can write the linearized Laplace–Young equation as

j = jxx. (4.1)

Solution of this equation with the symmetry boundary condition jx(0) = 0 gives

j(x) = c0 cosh x, (4.2)

where c0 is a constant to be determined. Because the vertical component of the surface tension
force exerted by the cylinders at the contact points is equal to the weight of a liquid meniscus
with vertical edges [19,20], the force balance may be written as

∫ d−R sinω1

0
j dx = − sinψ1. (4.3)

This gives the correct value for c0, and so

j(x) = − sinψ1
cosh x

sinh[d − R sin(θ − ψ1)]
(4.4)

which is valid in the region where the meniscus slopes are small. If the absolute value of the
meniscus slope angle |ψ1| is small, then this solution is valid throughout the meniscus, and if |ψ1|
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is large, then the solution is valid far (compared with �c) away from the contact points. As a result,
the approximation for v1 obtained using (4.4) is in general more accurate than the approximation
for u1 obtained using the same equation. The height of the mid-point of the meniscus is therefore
obtained using (4.4) and is

v1 = − sinψ1cosech[d − R sin(θ − ψ1)], (4.5)

and u1 is to be determined using (3.7), which is a relationship between u2
1 and v2

1 derived from the
nonlinear Laplace–Young equation. The upper interface cannot pass through y = 0, because the
interface is convex to the fluid side when y< 0 and convex to the liquid side when y> 0 according
to the Laplace–Young equation. Therefore, we have

sgn(u1) = sgn(v1), (4.6)

where sgn(v1) is given by (3.12). Using (4.5), (4.6) and (3.6) on (3.7), we obtain

u1 = −sgn(ψ1)
√

sin2 ψ1cosech2[d − R sin(θ − ψ1)] + 2(1 − cosψ1) (4.7)

for the contact height of the meniscus.

(b) Shape of the lower interface
(i) Solution for small liquid volumes, |ψ2| → 0

In the limit of small liquid volumes, the upper and lower interfaces are nearly symmetric. If the
shape of the lower meniscus is given by y = k(x), then the linearized Laplace–Young equation is

k = −kxx. (4.8)

This is solved in a manner similar to the upper interface to obtain

k(x) = − sinψ2
cos x

sin[d − R sin(θ + ψ2)]
, (4.9)

which gives
v2 = − sinψ2 csc[d − R sin(θ + ψ2)]. (4.10)

For small values of |ψ2|, we have
sgn(u2) = sgn(v2). (4.11)

Substitution of equations (4.10) and (4.11) into (3.7) and (3.12) produces

u2 = sgn(ψ2)
√

sin2 ψ2 csc2[d − R sin(θ + ψ2)] − 2(1 − cosψ2). (4.12)

Equation (4.7) gives the value of u1 for a given ψ1. This is substituted into (3.16) to express u2
as a function of ψ2,

u2 = −sgn(ψ1)
√

sin2 ψ1 cosech2[d − R sin(θ − ψ1)] + 2(1 − cosψ1)

− R[cos(θ − ψ1) + cos(θ + ψ2)]. (4.13)

Equations (4.13) and (4.12) together provide an implicit equation for ψ2. With this result, (4.4)
and (4.9) give the shapes of the upper and lower interfaces for any given ψ1 in the limit of small
interfacial slopes. The shape of a liquid bridge determined using this method is shown in figure 2a
as the magenta and blue dashed curves. It is a very good approximation for the solution obtained
using the nonlinear Laplace–Young equation.

(ii) Approximation of the elliptic integrals

The solution to the nonlinear Laplace–Young equation was given as a function of elliptic integrals
in (3.10). Here, we introduce an approximation to these integrals for the lower meniscus in order
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to obtain simpler relationships that can describe the meniscus shapes and the trapping behaviour.
Because g2(v2) = 0 according to (3.11), the relationship (3.10) reduces, for the lower meniscus, to

f2(y) = −sgn(y)g(y) + [sgn(y) − sgn(v2)]g(0). (4.14)

We now use the values of p and q for the lower meniscus, (2.9) and (3.6), on (3.11) to obtain

g2(y) = |v2|E
[

1
2

cos−1

(
1 + y2 − v2

2
2

)
,
(

2
v2

)2
]

−
(

|v2| − 2
|v2|

)
F

[
1
2

cos−1

(
1 + y2 − v2

2
2

)
,
(

2
v2

)2
]

. (4.15)

The elliptic integrals in equation (4.15) can be replaced using the following transformation
formulae [18]

F(σ , k) = 1√
k

F
(
β,

1
k

)
(4.16)

and

E(σ , k) =
√

k
[

E
(
β,

1
k

)
−
(

1 − 1
k

)
F
(
β,

1
k

)]
, (4.17)

where

β = sin−1(
√

k sin σ ). (4.18)

This produces

g2(y) = 2E

[
sin−1

√
1 − y2

v2
2

,
(v2

2

)2
]

− F

[
sin−1

√
1 − y2

v2
2

,
(v2

2

)2
]

. (4.19)

Substitution of y = 0 gives

g2(0) = 2E
[(v2

2

)2
]

− K
[(v2

2

)2
]

, (4.20)

where E(k) and K(k) are complete elliptic integrals. Byrd & Friedman [18] give series
approximations for these functions. Using the first term of each series, we obtain

g(y) ≈ 2

√
1 − y2

v2
2

− ln

⎡
⎣ |v2| −

√
v2

2 − y2

|y|

⎤
⎦ (4.21)

and

g(0) ≈ π

4

(
2 +

√
4 − v2

2

)
− 2π

2 +
√

4 − v2
2

. (4.22)

Expression (4.22) for g(0) is then used in the next section to determine an approximate solution
for the shape of the lower meniscus.

(iii) Solution for large liquid volumes, |ψ2| → π/2

The solution given in §4b(i) is applicable for small |ψ2| and therefore represents liquid bridges
that contain only a small liquid volume. We now introduce a solution for liquid bridges where ψ2
is close to π/2, and where the trapped volume is large and hence, to counterbalance the weight of
the liquid, the vertical component of the surface tension force is high. In this regime, we focus on
the largest liquid bridges, for which v2 < 0 and u2 > 0.
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The shape of the upper part of the lower meniscus, near the contact points, may most readily
be described by x = h(y) with hy � 1. The linearized Laplace–Young equation for this regime is
therefore

y = hyy, (4.23)

which we may solve to obtain
x = h(y) = 1

6 y3 + c1y + c2, (4.24)

where c1 and c2 are constants. These constants can now be constrained by our solutions to the
nonlinear Laplace–Young equation. We first recall the constrains (3.4) and (3.1), obtained in the
solution of the nonlinear Laplace–Young equation, which gives

fy(0) = 1 − (1/2)v2
2

|v2|
√

1 − (1/4)v2
. (4.25)

We use the conditions hy(0) = fy(0) and h(0) = f (0), where f (0) is given by the approximation (4.22),
to determine c1 and c2. Thus, we have

h(y) = 1
6

y3 + 1 − (1/2)v2
2

|v2|
√

1 − (1/4)v2
2

y + π

4

(
2 +

√
4 − v2

2

)
− 2π

2 +
√

4 − v2
2

, (4.26)

which we may combine with the approximation for the upper meniscus determined for |ψ1| → 0
in §4a. This approximation along with (3.16) produces an expression for u2, (4.13). Combination
of this expression with (3.7) gives

v2
2 = {sgn(ψ1)

√
sin2 ψ1cosech2[d − R sin(θ − ψ1)] + 2(1 − cosψ1)

− R[cos(θ − ψ1) + cos(θ + ψ2)]}2 + 2(1 − cosψ2). (4.27)

We then use the boundary condition given in (2.12), that the fluid intersects the cylinder

h(u2) = d − R sin(θ + ψ2), (4.28)

along with u2 given by (4.13) and v2 given by (4.27), to get an equation that may be solved to
determine ψ2. We note that h(y) is a good approximation for the upper part of the lower meniscus,
as demonstrated in figure 3.

Once ψ2, and hence v2, are determined, the shape of the lower part of the lower meniscus can
be obtained approximately. The meniscus slopes in this regime are small relative to the x-axis, and
therefore, the linearized Laplace–Young equation, (4.8), is applicable. Solution with the boundary
condition k(0) = v2 gives y = v2 cos x, or

x = cos−1
(

y
v2

)
. (4.29)

We combine the solutions for the upper part of the lower meniscus (4.26) and lower part of the
lower meniscus (4.29) to produce the following empirical expression for the meniscus shape

x = tanh
[

7
4

(y − v2)
]

h(y) + {
1 − tanh[2(y − v2)]

}
cos−1

(
y
v2

)
, (4.30)

which is valid for the entirety of the lower meniscus as shown in figures 2 and 3.

5. The maximal trapping capacity
A quantity of significant interest in a variety of physical settings is the volume of fluid that may
be trapped as a function of the imposed geometry and material properties through the apparent
contact angle. Here, we calculate the trapping capacity, which in our two-dimensional geometry
is equivalent to the cross-sectional area. We then determine the maximum achievable trapping
capacity at a given separation between the cylinders and the separation at which the largest liquid
bridge can be produced.
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Figure 3. Panels (a) and (b) show two liquid bridges carrying the same amount of liquid (A= 3.0) between a pair of horizontal
cylinderswith R= 0.2 andθ = 0 located at two different separations. The separation d in (a) is 0.4, which givesψ1 = −π/9
and ψ2 = −1.40. Parameters in (b) are d = 2.0, ψ1 = −1.01 and ψ2 = −0.48. Panels (c) and (d) show shapes of liquid
bridges corresponding to themaximumtrapping capacities for a pair of cylinderswithR= 0.063 andθ = π/2 at twodifferent
separations. The parameters are d = 0.16, Amax = 2.31,ψ1,Amax = −0.10 andψ2 = −1.50 in (c) and d = 1.0, Amax = 3.24,
ψ1,Amax = −0.88 andψ2 = −1.00 in (d). The figures show results obtained using both exact and approximate solutions to
the Laplace–Young equation. The black solid curves are the solutions to the nonlinear Laplace–Young equation given by (3.13).
The magenta dashed curve is the approximation for the shape of the upper interface (4.4) obtained by solving the linearized
Laplace–Young equation. The cyan dashed curve and the green dashed curve are the approximations for the shapes of the upper
part and the lower part of the lower interface given by (4.26) and (4.29), respectively. The red dashed curve is the composite
approximation for the shape of the lower interface (4.30) obtained by combining (4.26) and (4.29). There is excellent agreement
between the approximate and exact solutions whenψ1 → 0 and |ψ2| → π/2. The composite approximation (4.30) covers
both (4.26) and (4.29) very well.

(a) The maximum trapping capacity at a given separation
The solution of the nonlinear Laplace–Young equation automatically satisfies a local force balance
along the liquid bridge. A simple way to determine the bridge cross-sectional area A is therefore
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through a vertical force balance considering the liquid weight and the forces of surface tension
and hydrostatic pressure.

A = −2(sinψ1 + sinψ2) − R
∫ω2

ω1

cosω(u1 − R cosω1 + R cosω) dω. (5.1)

Integration and the use of (2.1) and (2.2) to replace ωi with ψi produces

A = −2(sinψ1 + sinψ2) + 2Ru1[sin(θ − ψ1) − sin(θ + ψ2)]

+ R2
[
ψ2 − ψ1 + 2θ − π + 2 cos(θ − ψ1) sin(θ + ψ2) − sin 2(θ − ψ1) − sin 2(θ + ψ2)

2

]
. (5.2)

The quantities ψ2 and u1 in equation (5.2) can be determined as functions of ψ1 using the solution
of the nonlinear Laplace–Young equation described in §3. By numerical maximization of A with
respect to ψ1, the maximum trapping capacity (Amax) and ψ1 that produces this trapping capacity
(ψ1,Amax ) can be determined for a given combination of R, θ and d. Two representative liquid
bridges, corresponding to Amax for different values of d, are shown in figure 3c,d. This solution
process was repeated for a range of R, θ and d, and the behaviour of Amax and ψ1,Amax were
analysed. The results are shown by symbols in figure 4a,b.

Figure 4a shows that the maximal trapping capacity, Amax is linearly proportional to the
separation, d, when R � 1 and d � 1. This relationship can be explained using the approximate
solution derived in §4. We define 2si as the distance between the contact points of a meniscus,
that is,

si = d − R sinωi, (5.3)

so that when d, R � 1, si � 1 for all ωi. In this regime, the shape of the upper meniscus has a nearly
constant radius of curvature −s/ sinψ1. As a result, we have

|u1 − v1| ≤ s1. (5.4)

Because s1 � 1, the amount of liquid trapped above the y = v1 is negligible and because R � 1,
almost all the liquid is trapped as a droplet hanging below y = u2. The cross-sectional area of the
part of the liquid bridge below y = u2 is determined by balancing the non-dimensionalized weight
of the liquid A with the force of surface tension given by −2 sinψ2 and the force of hydrostatic
pressure given by 2u2s2,

A = 2(− sinψ2 + u2s2). (5.5)

The surface tension force acting on the liquid bridge is more significant compared with the force
of hydrostatic pressure, because s2 � 1. A is therefore maximized when

ψ2 ≈ −π
2

, (5.6)

which is the meniscus slope angle that maximizes the vertical component of the force of surface
tension. Using (5.6) and d − R sin(θ + ψ2) = s2 on (4.28) and replacing q2 and v2 using (3.6) and
(3.7), respectively, we obtain an equation for u2⎛

⎝1
6

− 1√
4 − u4

2

⎞
⎠u3

2 + π

4

(
2 +

√
2 − u2

2

)
− 2π

2 +
√

2 − u2
2

= s2. (5.7)

As s → 0,
u2 ≈ 1 (5.8)

is an approximate solution for (5.7). Substitution of (5.6) into (2.2) gives sinω2 = − cos θ , which in
combination with (5.3) produces

s2 = d + R cos θ . (5.9)

Substitution of (5.6), (5.9) and (5.8) into (5.5) produces

Amax ≈ 2(1 + d + R cos θ ). (5.10)
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Figure 4. (a) The maximum trapping capacity (the cross-sectional area of the largest liquid bridge, Amax) between pairs of
horizontal cylinders. (b) The value ofψ1 for the largest liquid bridges. Symbols show results obtained for different values of
R, θ and d by numerically maximizing A (5.2), determined using the solution of the nonlinear Laplace–Young equation, with
respect toψ1. Each marker represents a cylinder radius. Triangles denote R= 0.01, squares denote R= 0.1 and circles denote
R= 0.4. Colours represent different contact angles. Red symbols (triangle, square, circle) represent θ = 0, green symbols
(triangle, square, circle) represent θ = π/6 and blue symbols (triangle, square, circle) represent θ = π/2. The black curves
are approximations for the maximal trapping parameters. In (a), the black solid line denotes (5.10), which is valid for small d,
and the black dashed curve denotes (5.28), which is valid when d is close to 1. The black solid line in (b) is the equation (5.16).
The approximate solutions describe the maximal trapping behaviour very well for small R (R� 1). Both Amax andω1,Amax are
linearly related to d when d � 1.

This is plotted by the black line shown in figure 4a. It is a good approximation for small cylinders
at close range.

We also observe a linear relationship between d and ψ1,Amax for small R and d in figure 4b. This
relationship can also be verified using the approximate solutions to the Laplace–Young equation.
If |ψ1| is small, (4.4) is valid throughout the upper meniscus, which gives

u1 = − sinψ1 coth(d − R sinω1). (5.11)
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Figure 5. For small cylinders, the maximum trapping capacity Amax maximizes at d ≈ 1. Figure shows the value of d at which
the maximum trapping capacity occurs, obtained using the nonlinear Laplace–Young equation. Red squares are for θ = 0,
green diamonds are for θ = π/6 and blue stars are for θ = π/2.

Because R � 1, we have
u1 ≈ u2, (5.12)

which gives u1 ≈ 1 owing to (5.8). Using this result on (5.11), we obtain

− sinψ1,Amax = tanh(d − R sinω1,Amax ). (5.13)

Because d − R sinω1,Amax = s1 � 1, equation (5.13) gives

− ψ1,Amax ≈ d − R sinω1,Amax , (5.14)

where ψ1 and ω1 are related by (2.1), which gives

ω1 ≈ θ (5.15)

for small ψ1. Substitution of (5.15) to (5.14) gives the relationship

− ψ1,Amax ≈ d − R sin θ , (5.16)

which is plotted by the black line in figure 4b. This result approximates the exact solution very
well when the cylinder radius and inter-cylinder radius are small compared with the capillary
length.

(b) The separation that maximizes the trapping capacity
Figure 4a shows that the maximum trapping capacity Amax as a function of d is increasing when
d � 1 and decreasing for large d. Figure 5 plots the value of d in which Amax reaches a maximum
(d(Amax)max) as a function of R for different values of θ . Interestingly, it shows that d(Amax)max = 1
when R � 1 for all θ . In this section, we analytically explain this result based on the approximate
solutions obtained earlier for the liquid bridge geometry.

We assume that (4.4) gives a sufficiently good approximation for u1

u1 = − sinψ1 coth s, (5.17)

where s = si ≈ d which is valid when R → 0 according to (5.3). For small R, we also have u2 ≈ u1
which gives

u2 ≈ − sinψ1 coth s, (5.18)

and (3.7) then gives
v2

2 ≈ coth2 s sin2 ψ1 − 2 cosψ2 + 2. (5.19)
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Figure 6. The expression forψ given in (5.25) (solid curve) is compared withψ obtained using a numerical solution of (5.20)
(red symbols). The figure shows that the analytical expression is an accurate solution for (5.20).

Substitution of the expressions (5.18) and (5.19) obtained for u2 and v2 into (4.28) yields

m(ψ1,ψ2, s) = 0, (5.20)

where

m(ψ1,ψ2, s) = −1
6

coth3 s sin3 ψ1

− coth s sinψ1(2 cosψ2 − coth2 s sin2 ψ1)√
4 − (coth2 s sin2 ψ1 − 2 cosψ2)2

+ 1
4
π (2 +

√
2 cosψ2 − coth2 s sin2 ψ1 + 2)

− 2π

2 +
√

2 cosψ2 − coth2 s sin2 ψ1 + 2

− s. (5.21)

Because the contact points of the upper and lower menisci are very close to each other (u1 ≈ u2),
we need ψ1 ≥ψ2 to avoid the two menisci intersecting each other. We now consider the limit
ψ1 =ψ2 =ψ , where (5.20) is written as

m(ψ , s) = 0. (5.22)

To solve for ψ , m(ψ , s) is expanded in a first-order power series

m(ψ , s) = m(ψ0, s) + (ψ − ψ0)mψ (ψ0, s). (5.23)

A numerical solution of (5.22) shows that ψ ≈ − 7
4 s as s → 0 and ψ ≈ −1 as s → 1. We therefore

select ψ0 in (5.23) as

ψ0(s) = −7
4

s(1 − s) − s2

= 1
4

(3s2 − 7s), (5.24)

which gives the solution

ψ(s) = 1
4

(3s2 − 7s) − m[(1/4)(3s2 − 7s), s]
mψ [(1/4)(3s2 − 7s), s]

. (5.25)

To test the accuracy of the solution for ψ given by (5.25), it is compared with the numerical
solution of (5.22). As shown in figure 6, the accuracy of the analytical approximation is very good
for a wide range of s.
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Figure 7. Panel (a) shows dA/dψ1 calculated using (5.27) at ψ1 =ψ2 =ψ . The derivative is negative around s= 1
and beyond. Because u1 ≈ u2 and the two menisci should not intersect, the minimum possible value of ψ1 is ψ . The
negative derivative means that A maximizes when ψ1 =ψ2 =ψ . Panel (b) shows the derivative of dV/ds calculated at
ψ1 =ψ2 =ψ . Amaximizes at s= 1.

The force of hydrostatic pressure exerted by small cylinders on a liquid bridge is negligible
compared with the force of surface tension, because the solid–liquid contact area is small. The
cross-sectional area of the liquid bridge can therefore be calculated by balancing the surface
tension force with the weight

A = −2(sinψ1 + sinψ2). (5.26)

When ψ1 =ψ2 =ψ for a given s, we have

dA
dψ1

[ψ(s)] = −2 cosψ
(

1 + ∂ψ2

∂ψ1
[ψ(s), s]

)
, (5.27)

where ∂ψ2/∂ψ1 is obtained as a function of ψ1,ψ2 and s by differentiating (5.20) with respect
to ψ1.

Figure 7a shows that ∂ψ2/∂ψ1[ψ(s)] is negative around s = 1, which means the trapping
capacity for a given separation of around 1 is maximized when ψ1 =ψ2 =ψ(s). The maximum
trapping capacity is therefore given by

Amax = −4 sinψ(s). (5.28)

For small cylinders, (5.28) gives the value of Amax at far range, whereas (5.10) explains the
behaviour at short range as shown in figure 4a.

Differentiation of (5.28) gives
dAmax

ds
= −4 cosψ

dψ
ds

, (5.29)

whereas ψ and dψ/ds can be obtained from (5.25). According to figure 7b, Amax is a maximum
when s = 1. According to the results in figure 5, which are obtained by solving the nonlinear
Laplace–Young equation, Amax maximizes at d ≈ 1 when R � 1. Both these results are similar,
because d ≈ s for small R.

6. Conclusion
We present exact solutions to the nonlinear Laplace–Young equation to determine the equilibrium
shape of a liquid bridge trapped between a pair of infinitely long horizontal cylinders. We also
introduce several simpler solutions that approximate the exact solutions very well.

Both the exact and approximate solutions show that the maximum amount of liquid that can be
trapped in a given system and the conditions of this maximization can be approximated by a few
simple relationships when the cylinder radius is small compared with the capillary length (�c).
Regardless of the contact angle, the largest liquid bridges form when the inter-cylinder distance
is approximately 2�c. If the inter-cylinder distance is small compared with �c, the maximum
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amount of liquid held by a pair of cylinders is given by the equation amax ≈ 2�c (1 + D + r cos θ ),
in which a is the cross-sectional area of the liquid bridge, 2D is the inter-cylinder distance, r is
the cylinder radius and θ is the contact angle. At this maximum trapping, the meniscus slope
angle of the upper interface of the liquid bridge can be approximated by the linear relationship
ψ1,amax ≈ (r sin θ − D)/�c.

The solutions we present here can be extended to determine the equilibrium of fluid ganglia
or stringers trapped in a solid matrix, enclosed by a different non-mixing fluid. Although such
systems have been studied neglecting gravitational effects [21], an analysis considering the weight
of the fluid can help determine the residual trapping capacity of a porous medium. It can also be
used to characterize deformations of the solid support induced by the surface tension forces from
fluid ganglia and any fluid movement that result from this. This is a significant factor in trapping
by a flexible solid support, as shown by Duprat et al. [8] for the case of small liquid bridges
between cylinders.

The stability of a trapped liquid is another interesting parameter in capillary trapping. This has
been investigated, in the absence of gravity, for the trapping between pairs of vertical plates [22,
23], spheres [24] and solid objects with other geometries [25]. The work by Slobozhanin et al. [26]
on the stability of a liquid trapped inside a solid cylinder is an example of an analysis taking
gravity into account. The stability analysis was not a focus of this paper and a comprehensive
account of this subject can be found in reference [27].
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