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Numerical modeling plays an essential role in both identifying and assessing sub-surface reservoirs that 
might be suitable for future carbon capture and storage projects. Accuracy of flow simulations is tested 
by benchmarking against historic observations from on-going CO2 injection sites. At the Sleipner project 
located in the North Sea, a suite of time-lapse seismic reflection surveys enables the three-dimensional 
distribution of CO2 at the top of the reservoir to be determined as a function of time. Previous attempts 
have used Darcy flow simulators to model CO2 migration throughout this layer, given the volume of 
injection with time and the location of the injection point. Due primarily to computational limitations 
preventing adequate exploration of model parameter space, these simulations usually fail to match the 
observed distribution of CO2 as a function of space and time. To circumvent these limitations, we 
develop a vertically-integrated fluid flow simulator that is based upon the theory of topographically 
controlled, porous gravity currents. This computationally efficient scheme can be used to invert for the 
spatial distribution of reservoir permeability required to minimize differences between the observed and 
calculated CO2 distributions. When a uniform reservoir permeability is assumed, inverse modeling is 
unable to adequately match the migration of CO2 at the top of the reservoir. If, however, the width 
and permeability of a mapped channel deposit are allowed to independently vary, a satisfactory match 
between the observed and calculated CO2 distributions is obtained. Finally, the ability of this algorithm 
to forecast the flow of CO2 at the top of the reservoir is assessed. By dividing the complete set of seismic 
reflection surveys into training and validation subsets, we find that the spatial pattern of permeability 
required to match the training subset can successfully predict CO2 migration for the validation subset. 
This ability suggests that it might be feasible to forecast migration patterns into the future with a degree 
of confidence. Nevertheless, our analysis highlights the difficulty in estimating reservoir parameters away 
from the region swept by CO2 without additional observational constraints.

© 2018 Published by Elsevier B.V.
1. Introduction

Storage of carbon dioxide in sub-surface geological reservoirs 
is generally considered to be a key component of greenhouse gas 
emission reduction strategies (IPCC, 2014). For safe and effective 
storage results, CO2 should be stored securely in isolation from the 
atmosphere for thousands of years (Bickle, 2009). The largest avail-
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able reservoirs occur within sedimentary rocks and consist of ei-
ther depleted hydrocarbon fields or pristine saline aquifers (Bachu, 
2000). Here, we concentrate on the suitability of saline aquifers 
for safe storage. To determine the storage security of supercritical 
CO2 trapped at depth and to demonstrate conformance between 
observed and simulated CO2 migration, the flow of injected CO2

must be numerically modeled over appropriate time and length 
scales (Chadwick and Noy, 2015). Storage reservoirs generally have 
complex geometries and geological heterogeneities that directly af-
fect parameters such as permeability, which in turn influence fluid 
migration. To understand the relationship between reservoir struc-
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Fig. 1. (a) Cross-line (i.e. vertical slice) from 2010 seismic reflection survey. Red/blue = positive/negative amplitude reflections. (b) Geological interpretation. Numbered black 
layers = mappable reflections from CO2-filled sandstone horizons; orange layer = Sand Wedge unit; yellow layer = Utsira Formation; green layer = Hordaland Formation 
(solid/dashed line = mappable/extrapolated top/bottom of this formation); sub-vertical lines = minor normal faults. (c) Schematic cross-section showing configuration of 
CO2-filled horizons within saline reservoir (note vertical exaggeration). Dotted pattern = Utsira Formation; numbered black layers = nine CO2-filled sandstone horizons 
separated by thin mudstones; solid circle = locus of injection well; dashed vertical arrows = putative flow of CO2 between sandstone layers. Inset map shows general 
location of carbon capture and storage project at Sleipner Field. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
ture and fluid flow, it is important that observations from existing 
storage sites are exploited to test and improve both the accuracy 
and reliability of numerical simulations.

At the Sleipner carbon capture and storage project in the North 
Sea, seven post-injection seismic reflection surveys acquired over 
the CO2-filled reservoir provide insights into the migration of CO2
through complex porous media at field scale (Fig. 1a; Arts et al., 
2004; Bickle et al., 2007; Boait et al., 2012). At this site, ∼1 Mt yr−1

of CO2 is injected into a pristine sandstone reservoir at a depth of 
1000 m (Chadwick and Noy, 2015). Interpretation and analysis of 
time-lapse seismic surveys shows that CO2 is distributed within 
nine discrete layers (Fig. 1b). The CO2 ponds beneath a stacked se-
ries of 1 m thick, impermeable shale horizons that are vertically 
distributed at about 30 m intervals through the Utsira Formation 
(Zweigel et al., 2004). The shale horizon immediately below the 
uppermost CO2 accumulation is approximately 5 m thick and sep-
arates the uppermost section of the reservoir, known as the Sand 
Wedge, from the rest of the formation (Fig. 1c).

The stratigraphically highest Layer 9 is of particular interest 
since the distribution of CO2 within this layer is complex and 
there is no evidence of vertical leakage from this layer. Previously, 
modeling of CO2 flow through Layer 9 has focused primarily on 
matching seismically observed areal planforms as a function of 
time (Chadwick and Noy, 2010; Cavanagh, 2013). This restriction is 
a consequence of the limited vertical resolution since the thickness 
of a thin layer is difficult to seismically image. Recently, an in-
verse modeling technique has been developed for determining the 
thickness of thin, CO2-filled, layers by combining measurements of 
the amplitude of a reflection with small changes in two-way travel 
time between time-lapse surveys (Cowton et al., 2016). These au-
thors applied this inverse method to each of the time-lapse seis-
mic reflection surveys in order to accurately map the thickness of 
CO2-saturated rock within Layer 9 as a function of time. The re-
sultant volumetric estimates can be used to address the important 
goal of understanding CO2 flow dynamics within Layer 9.

In this contribution, we develop a simple numerical reser-
voir simulator to model the flow of CO2 through an unconfined 
porous medium beneath a complex caprock topography. By using 
a vertically-integrated formulation of the governing equations, this 
simulator is computationally efficient. A significant benefit of this 
efficiency is that it enables the inverse problem to be addressed: 
namely, what spatial distribution of permeability can best account 
for the flow of CO2 within Layer 9? First, the optimal distribu-
tion of permeability is calculated using a training subset of seismic 
surveys. Secondly, our results are validated by exploiting a later 
sub-set of seismic surveys. In this way, a reliable forecasting strat-
egy to predict the future flow of CO2 within Layer 9 of the Sleipner 
reservoir is developed.

2. Previous research

Existing approaches for modeling CO2 migration at the Sleip-
ner Field exploit industry-standard reservoir simulators such as
GEM (Geomechanical Modeling; CMG, 2009), ECLIPSE (Explo-
ration Consultants Limited Implicit Program for Simulation En-
gineering; Schlumberger, 2011), and TOUGH2 (Transport Of Un-
saturated Groundwater and Heat; Pruess, 1991). These different 
methods solve Darcy’s law for flow through porous media on a 
three-dimensional grid. Such sophisticated Darcy flow simulators 
are capable of forecasting the flow of CO2 through complex ge-
ological reservoirs but they are computationally expensive for two 
reasons. First, four-dimensional simulations have a large number of 
adjustable parameter values. Secondly, simulations must be carried 
out on length scales of kilometers and on time scales of tens to 
hundreds of years. As a result, coarse grid sizes are used to reduce 
computation time which means that significant boundary condi-
tions, such as caprock topography, can be under-resolved (Olden-
burg et al., 2016). High performance computing can be used to 
carry out simulations with a finer grid spacing on large domains 
by employing a massively parallel simulator such as PFLOTRAN
(Lichtner et al., 2015). However, the use of such computing power 
is expensive and it is not always available or appropriate for regu-
lar use.

Matching the complex spatial distribution of CO2 within Layer 9 
and especially the rapid migration rate of CO2 along a prominent 
north-striking ridge has proved a particularly difficult challenge for 
typical reservoir simulators. For example, the TOUGH2 software 
package has been used to simulate CO2 flow in this layer with an 
isotropic permeability of 3 D (≈ 3 ×10−12 m2). The predicted plan-
forms are approximately radial even though the topography of the 
caprock is complex (Chadwick and Noy, 2010). The match between 
observed and calculated planforms can be improved by incorporat-
ing anisotropic permeability (i.e. 10 D and 3 D in north–south and 
east–west directions, respectively). Nevertheless, realistic migration 
rates along the north-striking topographic ridge are difficult to re-
produce. Using a simpler ‘black oil’ simulator that ignores changes 
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in composition, Cavanagh (2013) found that a better match be-
tween observed and calculated planforms is found by injecting the 
observed amount of CO2 over the appropriate timescale, and then 
halting CO2 injection into Layer 9 and running the simulation for 
a further ∼100 years. In this way, injection pressure is allowed to 
dissipate over tens of years and CO2 spreads as a result of buoy-
ancy alone. This predicted long-term behavior suggests that flow 
within Layer 9 could be driven primarily by buoyancy and not by 
injection pressure. One possible solution to this modeling issue 
is to include lower CO2-filled layers in the numerical simulation, 
which removes Layer 9 from the vicinity of the injection point 
(Lindeberg et al., 2001). However, computational limitations mean 
that grid sizes would have to be dramatically increased, which 
would decrease the resolution for modelling flow within Layer 9.

Zweigel et al. (2004) identified a possible high permeabil-
ity channel within Layer 9. Subsequently, Williams and Chadwick 
(2017) used the ECLIPSE 100 simulator with a channel permeabil-
ity of 8 D, and a bulk reservoir permeability of 3 D. This simulation 
yields a better match between the observed and calculated plan-
forms for most of Layer 9. However, it still does not match the 
observed rate of migration along the ridge.

Computation time for modeling CO2 flow on physically appro-
priate length scales and time scales can be significantly reduced 
by employing a reservoir simulator with reduced complexity (e.g. 
Bandilla et al., 2014; Nilsen et al., 2016). Less complex simulators 
exploit analytical analysis of vertically-equilibrated models and ap-
ply it to geologically realistic settings. Since these simulators use 
a vertically-integrated formulation, fluid flow can be solved on a 
two-dimensional grid which significantly increases computational 
efficiency. For example, Bandilla et al. (2014) report running times 
of several minutes on a single core for their vertically equilibrated 
model when simulating CO2 flow in Layer 9 using the Interna-
tional Energy Agency Greenhouse Gas Research and Development 
Programme (IEAGHG) benchmark (50 × 50 m grid; Singh et al., 
2010). This value compares favorably with several hours on 100 
cores for a typical TOUGH2 simulation with identical input pa-
rameters. Comparative studies show that these different simulators 
yield broadly similar results (Nilsen et al., 2011; Bandilla et al., 
2014).

Finally, Nilsen et al. (2017) exploit the adjoint method to invert 
for caprock topography, permeability, CO2 density, porosity and in-
jection rates. This method yields an excellent match to estimated 
thickness measurements of Layer 9 for calendar years 2001, 2004, 
2006 and 2010 (Chadwick and Noy, 2010; Furre and Eiken, 2014). 
Their analysis shows that a generalized inverse model with many 
adjustable parameters can yield an accurate match to observations. 
However, the formulation used by Nilsen et al. (2017) yields a non-
unique set of parameters that are not necessarily constrained by 
additional observational constraints. For example, changes in any 
combination of permeability, density or caprock topography can re-
duce CO2 flux through a grid cell. If all parameters are allowed to 
vary, the likelihood of matching observations increases at the ex-
pense of insight gained. Consequently, the results of Nilsen et al. 
(2017) are only a partially satisfactory explanation of the spreading 
planform of CO2 within Layer 9.

In summary, the problem of matching observed spreading rates 
for Layer 9 is not necessarily resolved by employing a new formu-
lation of the governing equations. Nonetheless, the development of 
simulators with greatly reduced computational times opens up the 
possibility of investigating uncertainties in model space by facili-
tating an inverse modeling approach.

3. Modeling strategy

The reservoir model described here simulates the flow of CO2
through saturated porous media as a buoyancy-driven gravity cur-
rent. A key feature of these currents is that their lateral extent is 
about one hundred times greater than their thickness. This charac-
teristic aspect ratio is observed for all nine CO2-filled layers at the 
Sleipner Field. Laboratory studies also demonstrate that flow of a 
density-driven invading fluid through porous media can be accu-
rately described as a gravity current (Huppert and Woods, 1995; 
Golding et al., 2011). In its simplest form, the governing equa-
tion of a gravity current is vertically integrated, which means that 
vertical changes in reservoir properties are incorporated as depth-
averaged quantities.

A significant consideration when modeling CO2 flow through 
porous media is whether the reservoir is confined or unconfined. 
A reservoir is unconfined if the flow of ambient water can be ne-
glected. This assumption is valid when the thickness of the reser-
voir unit is much greater than the thickness of the intruding fluid. 
Pegler et al. (2014) found that confinement can be neglected pro-
vided that

h � μc

μa
Ha, (1)

where h is the thickness of the CO2-saturated layer, Ha is the 
thickness of the reservoir unit, μc is the viscosity of supercritical 
CO2, and μa is the viscosity of the ambient water.

At the Sleipner Field, the uppermost unit of the Utsira Forma-
tion that includes Layer 9 is known as the Sand Wedge (Fig. 2b). 
The top surface of this unit is bounded by the caprock of the Utsira 
Formation and its base is marked by a 5 m thick shale layer. This 
reservoir is estimated to be ∼20 m thick, increasing to 30 m where 
the CO2 layer is thickest (Williams and Chadwick, 2017). A viscos-
ity ratio of μc/μa � 0.1 implies that the CO2 layer behaves as an 
unconfined current wherever it is thinner than 2–3 m – a circum-
stance that probably holds during the early stages of flow and at 
the nose of the gravity current. We note that Equation (1) is an ap-
proximation that applies to a uniform, two-dimensional reservoir 
and does not include the effects of topographic gradients within 
the caprock. This caveat suggests that the unconfined approxima-
tion may be used for complex three-dimensional geometries with 
modest confinement. Here, we make the simplifying assumption 
that the current is unconfined at all times and explore the ability 
of such a simulator to explain the observed spreading patterns.

We have chosen to neglect capillary forces that give rise to 
partially saturated currents. The results of centrifuge experiments 
carried out on core material from the Utsira Formation yield verti-
cal CO2 saturation profiles which suggest that the capillary transi-
tion zone at the base of the CO2 layer is approximately 1 m thick 
(Chadwick et al., 2004). Other experimental and analytical results 
suggest that the rate of CO2 migration is not significantly impeded 
by capillary forces during the injection phase (Golding et al., 2011).

Our simple model describes the flow of a single-phase gravity 
current with a sharp interface along a slope within an unconfined 
saline aquifer. Fluid flow in porous media is governed by Darcy’s 
law,

φũ = u = − k

μc

(∇ P + ρgẑ
)
, (2)

where φ is the porosity, ũ is the interstitial fluid velocity, u =
(u, v, w) is the Darcy velocity or volumetric fluid flux, k is the 
permeability, μc the viscosity of CO2, ∇ P is the pressure gradient, 
ρ the density of the fluid, g is gravitational acceleration, and ẑ is 
a unit vector in the vertical direction (Fig. 3). We treat the flow of 
CO2 as incompressible so that

∇ · u = 0. (3)
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Fig. 2. (a) Topography of upper surface of Utsira Formation (meters below sea level). X–X ′ indicates location of seismic profile shown in Fig. 1a–b. (b) Thickness of Sand 
Wedge unit. Solid black box = extent of modeled domain described in text. (c) Sketch of idealized model used for flow simulations. Solid circle = locus of CO2 input; red 
line = outline of CO2-filled Layer 9 for year 2010; pair of dashed lines = locus of putative sedimentary channel where w is width of channel, k2 is permeability of channel, 
and k1 is background permeability.
Fig. 3. Sketch showing a two-dimensional section through the three-dimensional 
geometry of a gravity current along the sloping interface. Thick line with hatching 
= caprock interface; thin line = base of gravity current; symbols described in text.

For a long, thin gravity current flowing beneath an impermeable 
boundary with topography d(x, y), the vertical velocity is negligi-
ble and hence the pressure is hydrostatic,

P =
{

P H − ρa g[H − (d + h)] − ρc g[(d + h) − z], d < z < d + h,

P H − ρa g(H − z), d + h < z < H,

(4)

where P H is the pressure at a reference horizon beneath the grav-
ity current at depth z = H , ρc is the density of the injected buoy-
ant fluid, ρa is the density of the ambient water, and h(x, y, t) is 
the thickness of CO2-saturated rock (i.e. the gravity current). In 
contrast to the models of Huppert and Woods (1995) and Vella 
and Huppert (2006) that are formulated in a slope-parallel refer-
ence frame, this model uses a horizontal reference for which it is 
simpler to compute complex reservoir geometries (e.g. Fig. 2a).

From Darcy’s law, the horizontal Darcy velocity, uH = (u, v), is 
given by

uH = − k

μc
∇H P = −kg�ρ

μc
∇H (d + h), (5)

where ∇H is the horizontal gradient operator, �ρ = (ρa − ρc) is 
the density difference between the two fluids, and ub = kg�ρ/μ
is the characteristic buoyancy velocity.
For vertically uniform permeability, flow within the current is 
uniform as a function of depth. Integrating the divergence of the 
Darcy velocity over the depth of the current in combination with 
Equation (5) yields

φ
∂h

∂t
− ∇H ·

{
k�ρg

μc
h∇Hd

}
= ∇H ·

{
k�ρg

μc
h∇H h

}
. (6)

This formulation highlights that the change in thickness of the CO2
current with time is driven by advection of CO2 caused by topo-
graphic gradients within the caprock and by diffusion of CO2 away 
from regions where the gravity current is thickest.

The model described by Equation (6) is a simplified version 
of so-called vertical equilibrium models developed over the last 
decade (e.g. Golding et al., 2011; Guo et al., 2014; Andersen et 
al., 2015). Such models exploit the large aspect ratio of spread-
ing currents of CO2 to reduce the complexity of flow simulations 
in three dimensions by assuming that flow predominantly occurs 
in the horizontal, or along-slope, direction. The large aspect ra-
tio implies that pressure is, to leading order, hydrostatic which 
means that flow is driven by gradients in the depth of the current 
and by gravity acting along slope for topographically controlled, 
unconfined currents. Many of these models also treat partial sat-
uration within the CO2 plume. Here, given both the advantageous 
geometry and the pore structure of the Utsira sandstone, we can 
confidently neglect these complicating features and focus on using 
this simplified approach to understand what principally controls 
CO2 flow at the Sleipner Field. In this sense, the model presented 
here is a useful test of the efficacy of vertical equilibrium models 
when matching field observations.

We solve Equation (6) using a Crank–Nicholson finite difference 
scheme that is centered in time and space (Press et al., 2007). Sub-
sequent time steps are solved efficiently by using tridiagonal elimi-
nation. A predictor–corrector scheme is used to evaluate non-linear 
diffusive buoyancy (Press et al., 2007). To improve the stability of 
this numerical solution in regions that are susceptible to numeri-
cal instability (e.g. sharp changes in topographic gradient), the Il’in 
three-point differencing scheme is applied (Il’in, 1969; Clauser and 
Kiesner, 1987). This scheme automatically determines the amount 
of ‘upwinding’ required to keep the model stable for high Peclet 
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numbers. An alternating direction implicit (ADI) scheme is adapted 
to propagate the gravity current in three dimensions (Peaceman 
and Rachford, 1955; Press et al., 2007). This numerical scheme has 
been carefully benchmarked against analytical solutions for simpli-
fied gravity currents in both two- and three-dimensions presented 
by Huppert and Woods (1995) and Vella and Huppert (2006), re-
spectively.

4. Application

Solutions of Equation (6) yield predicted distributions of CO2, 
h(x, y, t), that can be directly compared with the observed distri-
bution obtained by analyzing seismic reflection surveys (Cowton 
et al., 2016). The geometry of the reservoir and its physical prop-
erties, for example the shape of the impermeable boundary along 
which CO2 fluid is spreading, d(x, y), and the permeability, k(x, y), 
and porosity, φ(x, y), must be determined. In addition, the volu-
metric flux of CO2 into Layer 9 at the top of the reservoir, V (t), to-
gether with the location of the injection point are required. Finally, 
the density and viscosity of supercritical CO2 must be estimated.

4.1. Reservoir geometry and properties

The reservoir geometry is constrained by picking the bright re-
flection that marks the top of the Utsira Formation on the 1994 
baseline seismic reflection survey. This survey was binned into 
12.5 × 12.5 m blocks before signal processing. The dominant fre-
quency of the stacked seismic volume is 30 Hz which means that 
the vertical and horizontal resolution is about 16 m. This value 
limits the scale of topographic features that can be resolved. A re-
flection at the top of the Utsira Formation can also be easily 
picked on subsequent seismic surveys. Differences between two-
way travel time maps of this reflection are as small as ±1 ms 
which suggests that estimates of reservoir topography are robust 
but affected by noise of order ±1 m (Cowton et al., 2016). To miti-
gate short wavelength noise, a median filter with 50 m block sizes 
is applied to the picked surface on each time-lapse survey (Hall, 
2007). Each filtered surface is then interpolated using a continuous 
curvature spline with a tension factor of 0.1 (Smith and Wessel, 
1990). By smoothing picked surfaces in this way, spikes, sinks and 
other unphysically sharp gradients that could affect the stability of 
numerical flow simulations are removed. The top of the Utsira For-
mation is not affected by faulting in the vicinity of the injection 
site.

The topographic surface of the caprock is picked in two-way 
travel time and converted into meters below sea-level using

d =
(

trc

2

)
V sed − c, (7)

where d is the relative depth to the reservoir–caprock boundary 
in meters, trc is the two-way travel time down to this boundary, 
V sed = 2150 m s−1 is the acoustic velocity of the Nordland Shale 
Formation (i.e. the overlying stratigraphic unit), and c = 115 m is 
a constant obtained from sonic log measurements that enables rel-
ative depth to be synchronized to true depth (Fig. 2a). Chadwick 
et al. (2016) report that, although there is no systematic spatial 
variation in stacking velocities determined during seismic process-
ing, the uncertainty in the value of V sed is ±46 m s−1. Values of 
V sed calculated using sonic log measurements from nearby wells 
fall within the range of 2133–2159 m s−1. Uncertainties in the 
regional velocity of the Nordland Shale Formation contribute to 
uncertainty in the magnitude of topographic gradients, whereas lo-
cal variability of velocity affects the detailed pattern of topographic 
relief.

Pre-existing gas-rich pockets within the Nordland Formation 
demonstrate that the assumption of a uniform velocity within the 
overburden does not hold across the survey region. These pock-
ets have lower acoustic velocities than those of the surround-
ing brine-saturated rock. Consequently, their presence systemati-
cally increases the calculated depth down to the reservoir–caprock 
boundary in these regions and disrupts the coherency of underly-
ing reflections. In these circumstances, topographic measurements 
are interpolated and filled across any gaps in mapping (Smith and 
Wessel, 1990).

The porosity and permeability of the Utsira Formation are es-
timated using core material from a well located ∼1 km from the 
injection point (Zweigel et al., 2004). This formation is composed 
of largely unconsolidated sand grains with a bimodal grain size 
distribution showing peaks at 3 μm and at 0.2 mm. In core sam-
ples, its porosity is φ = 0.37 ± 0.03 which agrees with estimates 
from wireline logs. Measured permeabilities of the Utsira Forma-
tion are k = 2–5 D (Lindeberg et al., 2001; Zweigel et al., 2004). 
Well tests from the nearby Grane and Oseberg areas suggest that 
permeability could have a bigger range of 1–8 D (Zweigel et al., 
2004).

The thickness of the Sand Wedge unit is shown in Fig. 2b. A 
pronounced linear feature that runs approximately north–south 
has been previously interpreted as a submarine channel deposit 
(Zweigel et al., 2004). Such channels are characteristic of the Ut-
sira Formation (Gregersen, 1998). In this case, the mapped channel 
has a similar scale and sinuosity compared with low sinuosity sub-
marine channels described elsewhere (Clark and Pickering, 1996). 
Sediments deposited within channels are often coarser grained as 
a result of faster flow velocities within the channel and are likely 
to have higher permeabilities (Beard and Weyl, 1973). These high 
permeability channels can play an significant role in fluid migra-
tion.

4.2. Fluid properties and injection rates

Layer 9 sits at the top of the reservoir where the hydrostatic 
pressure is 8.2–8.9 MPa and temperature is 28.4–30.7 ◦C (Alnes et 
al., 2011). These estimates are close to the critical point on the 
phase diagram which means that estimates of the density and 
viscosity of CO2 within Layer 9 are sensitive to small changes in 
temperature within the saline reservoir. Alnes et al. (2011) cal-
culated that the average density of CO2 within the reservoir is 
675 ± 20 kg m−3 by modeling time-lapse micro-gravity measure-
ments. This estimate agrees with that determined by modeling the 
temperature history of the CO2 plume for the entire reservoir with 
the PFLOTRAN software package that solves for multi-phase re-
active flow and transport within a porous medium (Lichtner et 
al., 2015; Williams and Chadwick, 2017). Here, we use a slightly 
higher value of 690 ± 30 kg m−3 to account for cooling of CO2
away from the injection point. Finally, the dynamic viscosity of 
CO2 at pressures and temperatures that are characteristic of the 
top part of the reservoir is μc = 5 ± 1 × 10−5 Pa s (Bickle et al., 
2007; Williams and Chadwick, 2017).

The existence of sub-vertical seismic chimneys described by 
Chadwick et al. (2004) and by Cowton et al. (2016) is consistent 
with vertical migration of CO2 through the reservoir rocks. One 
major chimney correlates closely with the first observed accumu-
lation of CO2 in different layers. Therefore, it is reasonable to infer 
that the location of this chimney is likely to be the most significant 
injection point for Layer 9 (Fig. 2c and Fig. 4g, n). On Fig. 4f, a small 
disconnected patch of CO2 exists south of the significant CO2-filled 
layer on the seismic survey for calendar year 2008. This outlying 
patch connects with the rest of the CO2-filled distribution on the 
2010 survey. Its existence suggests that there may be at least one 
other, albeit considerably smaller, injection point for Layer 9. For 
simplicity, we assume that its contribution is negligible and that 
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Fig. 4. (a)–(g) Temporal sequence showing measured distributions of CO2 thickness for years 1999–2010 determined from analysis of seismic reflection datasets (Cowton et 
al., 2016). Cross-hatched polygons = regions where reflections are incoherent due to pockets of natural gas within sedimentary overburden; solid circle in panel (g) indicates 
locus of inferred CO2 input for 2010. (h)–(n) Temporal sequence showing predicted distributions of CO2 thickness using k = 12 D. Solid circle as before. (o)–(u) Gray polygons 
= temporal sequence of measured distributions from panels (a)–(g); polygons outlined in red/green/blue = temporal sequence of predicted distributions for k = 2, 5 and 
12 D, respectively.
most CO2 is injected through the largest central chimney (Cowton 
et al., 2016).

Finally, the flux of CO2 fluid into Layer 9 is estimated from the 
detailed volume calculations of Cowton et al. (2016). Re-evaluation 
of their calculations suggest that the volumetric injection rate is 
given by

q = dV (t)

dt
= nC (t − t0)

n−1 , (8)

where C = 9500 ± 5700 m3 yr−n , t0 = 1998.1 ± 0.5 and n =
2.1 ± 0.2. The uncertainty of this injection rate is estimated from 
CO2 thickness measurements which includes the uncertainty of 
the acoustic velocity of CO2-saturated sandstone (Cowton et al., 
2016).
5. Results of inverse modeling

By adopting a vertically-integrated formulation, the flow model 
presented here is considerably more efficient than conventional 
Darcy flow simulators. Each of our simulations takes less than 
∼10 min to run on a single core. This short calculation time means 
that the best-fitting value of permeability that minimizes the dif-
ference between the observed and calculated CO2 distributions 
can be determined by inverse modeling. At each stage, a start-
ing model is computed using permeability values measured from 
nearby boreholes. The influence of uniform and spatially variable 
permeabilities is investigated by grid search.

Simulated CO2 flow throughout Layer 9 for a uniform perme-
ability of k = 2 D is compared with the observed CO2 distribution 
(Fig. 4a–g, o–u; Cowton et al., 2016). In this simulation, it is clear 
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Fig. 5. (a) Uncertainty of observed thickness measurement, σ o , obtained using method of Cowton et al. (2016), as function of observed CO2 thickness, ho . Black line = values 
of σ o gauged from synthetic modeling of CO2 thickness (Cowton et al., 2016). Red dashed line = relationship between uncertainty and thickness used here for minimizing 
misfit function which ensures that uncertainty values for ho < 5 are not unrealistically small but set as σ o = 0.5. (b) Misfit as function of permeability for simulations that 
assume uniform permeability. Vertical arrow = position of global minimum at 12 D (see Fig. 4o–u for end-members).
that the northerly extension of the plume along the topographic 
ridge at the top of the reservoir does not move rapidly enough to 
reach the northern topographic dome. Instead, the sluggish spread-
ing rate causes CO2 to accumulate adjacent to the injection point 
where it reaches a thickness of 12 m by 2010 which is consider-
ably greater than observed.

The principal result of constant permeability simulations is that 
using different combinations of input parameters does not yield an 
adequate matche between observed and calculated CO2 distribu-
tions. For example, uncertainties in the detailed shape of caprock 
topography could potentially account for significant discrepancies 
(Chadwick et al., 2016). However, to significantly improve the 
match between observed and calculated planforms at the north-
ern end of survey, the topographic gradient would need to be 
increased by as much as 50 m. This value is substantially greater 
than consistent with uncertainties in the acoustic velocity of the 
Nordland Shale Formation. Alternatively, the physical properties 
of supercritical CO2 may vary within Layer 9 since the estimated 
pressure and temperature are close to the critical point. Changes 
in these properties directly affect the value of the buoyancy veloc-
ity, ub . Here, we note that quoted uncertainties in �ρ and μ for 
k = 2 D yields ub = 1.4+0.5

−0.3 × 10−4 m s−1. This range is equivalent 
to changes in permeability of k = 2+0.7

−0.5 D.

5.1. Uniform permeability

The mismatch between observed and simulated CO2 distribu-
tions is substantial, which suggest that the assumption of a uni-
form permeability of k = 2 D is incorrect notwithstanding uncer-
tainties in the fluid properties injected CO2 fluid within Layer 9. 
Here, we first explore simulations where different but constant val-
ues of k are assumed. A parameter sweep is performed to find the 
optimal permeability for Layer 9. For each value of k, the calculated 
distribution of CO2 is compared with the observed distribution us-
ing a misfit function

M = 1

Ns

Ns∑
j=1999

⎡
⎣ 1

N

N∑
i=1

(
hc

i j − ho
ij

σi j

)2
⎤
⎦

1/2

, (9)

where hc
i j is the calculated thickness of the CO2 layer, ho

ij is the ob-
served thickness, and σi j is the standard deviation of the observed 
thickness (Fig. 5a; Cowton et al., 2016). Here, i refers to a partic-
ular thickness value out of a total of N values from each survey 
where the observed CO2-filled layer is >0.5 m thick, and j refers 
to a given seismic reflection survey between calendar years 1999 
and 2010 where Ns is the total number of surveys.

Our estimates of standard deviation are deliberately conserva-
tive. Thus for ho

ij > 5 m, σ is determined from synthetic tests but 
for ho

ij < 5 m we apply a large uniform uncertainty of σ = 0.5 m. 
This uniform uncertainty account for errors in caprock topogra-
phy that can cause discrepancies between observed and calculated 
CO2 thicknesses, particularly in regions where Layer 9 is very thin. 
A threshold of 0.5 m is chosen based on the uncertainty in reli-
ably resolving the thickness of a thin layer on a seismic reflection 
survey with a given frequency content (Fig. 5a).

A parameter sweep of k shows that a broad global minimum of 
residual misfit between observed and calculated CO2 thicknesses 
occurs for k = 5–12 D (Fig. 5b). Despite this success, the spatial 
distribution of CO2 and its observed rate of northward migration 
cannot be matched, even when k = 12 D (Fig. 4h–n and o–u). At 
the southern end of the planform, there is also significant misfit 
between observed and calculated distributions. Therefore although 
high values of permeability can generally account for a rapid rate 
toward the north, the southward spread of CO2 requires a lower 
permeability to allow ponding of CO2 close to the injection point. 
These remaining discrepancies suggest that a more complex spatial 
pattern of permeability is required.

5.2. Spatially variable permeability

Our justification for investigating the consequences of a more 
complex pattern of permeability is centered on the existence of 
a notable, 25–30 m thick, linear channel that curves and widens 
northward (Fig. 2b). A series of small crevasse splays can be in-
terpreted along the left-hand bank of this feature which suggests 
that it is a channelized submarine fan deposit. It is well known 
that these channel deposits can have high values of porosity and 
permeability which make them favorable hydrocarbon exploration 
targets. Eldrett et al. (2015) observe that in the Paleocene Sele For-
mation, North Sea, the permeability contrast between high-quality 
sands deposited within channels and the overbank and levee facies 
is typically several orders of magnitude.

Here, we test the influence that this linear permeability fea-
ture has upon flow prediction by using a simple parametrization of 
spatially varying permeability (Fig. 2b). The region under consider-
ation is divided into two parts comprising the linear channel and 
the rest of the reservoir by using three independent parameters: 
w , the width of the channel; k1, the permeability of the reservoir; 
and k2, the permeability of the channel (Fig. 2c). Our goal is to 
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Fig. 6. Orthogonal slices through w–k1–k2 misfit function for channel permeability model. (a) w–k1 slice at k2 = 20 D. Red cross = locus of global minimum. (b) w–k2 slice 
at k1 = 3.5 D. (c) k2–k1 slice at w = 700 m.

Fig. 7. (a) Migration distance of CO2 along channel as function of calendar year for different values of permeability. In each case, distance from estimated entry point is chosen 
using northernmost grid square where CO2 thickness is greater than 0.5 m. Crosses = observed migration distances along channel for each calendar year. Green/red/blue 
lines = simulated migration distances as function of calendar year for k2 = 20 D, 30 D and 40 D, respectively (in each case, k1 = 3.5 D and w = 700 m). (b) Misfit between 
observed and simulated migration rates for all calendar years as function of permeability. Vertical arrow = locus of global minimum at k2 = 30 D.
minimize the misfit between the observed and calculated distribu-
tions of CO2 by varying these three parameters using a simple grid 
search.

Fig. 6 shows how misfit varies as a function of w , k1 and 
k2. A shallow global minimum occurs at w = 700 ± 125 m, k1 =
3.5 ± 1 D, and k2 = 20 ± 8 D. The shape of this misfit function 
makes calculating formal uncertainties challenging. Our quoted un-
certainties are estimated from that misfit contour which shows a 
1% increase above the global minimum. These uncertainties clearly 
show that k1 is well constrained with a value that is satisfyingly 
close to that estimated independently from reservoir core material 
(Zweigel et al., 2004). There is little trade-off between k1 and the 
other two parameters. The values of k2 and w are less well con-
strained and exhibit the expected degree of negative trade-off (i.e. 
a narrower channel with a higher permeability yields as good a fit 
as a wider channel with lower permeability).

The optimal permeability of this channel is regarded as phys-
ically plausible when compared to experimental permeability 
measurements carried out on unconsolidated sand (Beard and 
Weyl, 1973). An empirical relationship between permeability and 
porosity based on measurements from the clean and well sorted 
Fontainebleau sandstone shows that k � 3.03 × 10−4(φ)3.05, which 
suggests that rocks with a porosity of φ = 0.37 can have a perme-
ability as great as ∼20 D (Bourbie and Zinszner, 1985). Similarly 
clear correlations between porosity and permeability are also ob-
served for Paleocene North Sea hydrocarbon reservoirs, such as 
the Ormen Lange field, the Maureen formation, and the Forties 
Sandstone member. In each case, permeabilities of ∼20 D are rea-
sonable for sandstones with φ = 0.37 (Grecula et al., 2015; Kilhams 
et al., 2015; Jones et al., 2015). These estimates are in line with a 
permeability calculated using the Carman–Kozeny relationship for 
clean sand with a mean grain size of 200 μm. Fig. 7 confirms that, 
in order to accurately match the observed rate of migration along 
the length of the channel, a permeability of up to 30 D is required. 
We note that the predicted buoyancy velocity within this channel 
is too great to have been generated by reasonable variations in the 
density and viscosity of CO2.

Fig. 8h–n shows that the combination of lower permeability 
near the injection point and higher permeability within the chan-
nel provides the required heterogeneity of reservoir properties to 
yield an improved match to both the southward and northward 
migration of fluid. The largest residual misfit occurs along the east-
ern side where migration of CO2 into part of the north-running 
ridge occurs much earlier than observed on the seismic reflection 
surveys. One possible explanation is that a low permeability re-
gion exists between two distinct and parallel channels, reducing 
the flux of CO2 into the eastern channel. Alternatively, the topo-
graphic smoothing applied to mitigate the effects of noise may 
have reduced the spill-point depth in this area.

The results of running flow simulations that include spatially 
variable permeability suggest that vertical equilibrium algorithms 
can be exploited in combination with seismically derived observa-
tions to build reservoir models that predict good matches between 
observed and calculated CO2 distributions throughout Layer 9. 
Here, we have been able to match observed migration rates by 
considering buoyancy driven flow with reasonable values of per-
meability without requiring significant changes to the observed 
caprock topography. Note, however, that the impact that reser-
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Fig. 8. (a)–(g) Temporal sequence showing measured distributions of CO2 thickness for years 1999–2010 determined from analysis of seismic reflection datasets (Cowton 
et al., 2016). Cross-hatched polygons = regions where reflections are incoherent due to pockets of natural gas within sedimentary overburden. (h)–(n) Temporal sequence 
showing distributions calculated by inverting for optimal channel permeability model where k1 = 3.5 D, k2 = 20 D and w = 700 m (u1 = 6.5 × 10−4 m s−1, u2 = 3.7 ×
10−3 m s−1). (o)–(u) Temporal sequence showing distributions calculated using ECLIPSE 100 black oil reservoir model for identical permeability model with half the grid 
resolution. (v)–(ab) Gray polygons = temporal sequence showing measured distributions from panels (a)–(g); polygons outlined in red/blue = temporal sequence of predicted 
distributions for vertically-integrated and ECLIPSE models, respectively.
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Table 1
Forecasting CO2 flow in Layer 9. Best-fitting parameters for flow model found by grid search for training set. Misfit for each seismic reflection survey for each set of trained 
parameters are shown in black. Misfits for validation data shown in red.

Training set Model parameters Misfit

w
(m)

k1

(D)
k2

(D)
1999 2001 2002 2004 2006 2008 2010

1999–2010 700 3.5 20 2.88 2.21 2.31 2.60 2.86 3.35 3.33
1999–2008 650 3.5 30 2.89 2.15 2.27 2.66 2.93 3.23 3.66
1999–2006 700 3.5 20 2.88 2.21 2.31 2.60 2.86 3.35 3.33
1999–2004 650 4 28 2.88 2.17 2.28 2.62 2.95 3.26 3.63
1999–2002 650 3.5 50 2.88 2.13 2.24 2.80 3.10 3.43 4.26
voir confinement might have upon flow of CO2 cannot be assessed 
using this model alone. We conclude that an inverse modeling ap-
proach can shed useful light on the properties of Layer 9 and have 
a role to play alongside traditional reservoir characterization tech-
niques to improve forecasts of CO2 flow at other potential carbon 
capture and storage sites.

6. Benchmarking, testing, and forecasting

The computational efficiency of our algorithm relies on the 
assumption that the flow of CO2 may be treated as an uncon-
fined, porous gravity current. It is important to test the results 
of using a vertically-integrated approach with more conventional 
three-dimensional flow simulators. Here, CO2 flow within Layer 9 
was also simulated by running the ECLIPSE 100 black oil reser-
voir model with our optimal, spatially variable, permeability dis-
tribution (Fig. 8o–u). Due to the necessarily greater computation 
time, grid cells for the ECLIPSE 100 simulation were chosen to 
be twice the size of those for the vertically-integrated model (i.e. 
25 × 25 m). These grid cells were vertically spaced 1 m apart and 
the reservoir was assumed to be 24 m thick with an imperme-
able lower boundary. Other parameters such as caprock topogra-
phy, reservoir properties, rate of injection, locus of injection point, 
and fluid properties are unchanged.

The results of the ECLIPSE 100 simulation are nearly identical 
to those of our vertically-integrated model (compare Fig. 8o–u and 
h–n). Inclusion of an impermeable lower boundary condition does 
not appear to make a significant difference, which strongly sup-
ports our assumption of an unconfined reservoir. Minor differences 
can probably be attributed to the reduced resolution of caprock to-
pography used in the ECLIPSE 100 simulation (Fig. 8v–ab). Note 
that this simulation took approximately one hundred times longer 
to run than the vertically-integrated model on a single core. This 
substantial difference in computation time confirms that an inverse 
permeability model based upon conventional flow simulators is, at 
present, impractical. It is also worth noting that, within the con-
straints of the gravity current approximation, improved horizontal 
resolution is achieved with the vertically-integrated simulations.

A reservoir simulator should have the ability to forecast future 
flow through a given reservoir model. To test the ability of our ver-
tically averaged simulator to predict CO2 flow at the Sleipner Field, 
we have divided the set of time-lapse seismic images from surveys 
for all seven calendar years into different training and validation 
sub-sets (Table 1). In each case, the training sub-set of surveys 
are used to identify optimal reservoir parameters by minimizing 
the misfit between observed and calculated flow distributions us-
ing Equation (9). These results are then used to predict flow dis-
tributions for the validation sub-set. Confidence in the simulator 
depends upon its ability to independently predict flow distribu-
tions that have a small residual misfit compared with the baseline 
performance which is calculated using the entire set. We acknowl-
edge that this machine-learning approach is less useful when the 
number of sets of observations is small. However, the significant 
expense of acquiring additional seismic reflection surveys suggests 
that testing even a limited ability to predict future behavior is a 
worthwhile endeavor.

Our analysis indicates that a reasonable prediction of the distri-
bution of CO2 up to 2008 can be made by using simulations up to 
and including 2004, provided that the rate of injection into Layer 9 
is known (Table 1). However, our ability to predict the distribution 
of CO2 for 2010 by fitting the training set shows a marked dete-
rioration. This deterioration may be caused by a notable reduction 
in observed migration velocity along the northern protuberance, 
which suggests that permeability may decrease northward along 
the channel (Fig. 7). This inference is in accordance with obser-
vations made by (Clark and Pickering, 1996), who suggested that 
deposition of sands within a channel can be variable along the 
length of a channel, particularly near channel bends, and cause 
permeability to spatially vary. An alternative possibility is that un-
certainties in the detailed topography of the northern dome give 
rise to discrepancies between observed and calculated distributions 
of CO2.

Since supercritical CO2 fluid is being injected into the Ut-
sira Formation as of 2017, it is worthwhile attempting to use 
our vertically-integrated simulator to forecast future distributions. 
Here, we explore two end-member sets of forecasts that are based 
upon having fitted CO2 distributions up to and including 2010. The 
first set assumes that no additional CO2 is injected into Layer 9 
after 2010 (Fig. 9a; c–h). With zero additional flux, the distribu-
tion of CO2 shows little further change which suggests that fluid 
has already reached a state of buoyant equilibrium by previously 
migrating rapidly from the southern to the northern dome. The 
second set assumes that the injection rate continues to increase in 
accordance with Equation (8) after 2010 (Fig. 9b; i–n). In this case, 
the areal planform continues to increase almost linearly. Note that 
the volume of CO2 trapped beneath the southern dome does not 
significantly increase between 2010 and 2022 and the maximum 
thickness only increases by ∼ 3 m. The bulk of CO2 that enters 
Layer 9 during this period is accounted for by an increase in the 
amount that is trapped beneath the northern dome. This northern 
dome has a significantly greater trapping capacity than the south-
ern dome, which implies that CO2 will continue to safely migrate 
into it for many years. However, as the layer of accumulated CO2
thickens, it is likely that reservoir confinement and the consequent 
flow of ambient fluid will begin to influence flow dynamics. At that 
stage, our simplified reservoir simulator will not longer be capable 
of accurately describing the distribution of CO2.

7. Discussion and conclusions

We describe and apply a simplified numerical reservoir simula-
tor based on buoyancy-driven gravity currents to model CO2 flow 
through an unconfined porous reservoir. The vertically-integrated 
nature of the governing equations means that this model is 
computationally efficient compared to industry-standard, three-
dimensional Darcy flow simulators. This reservoir simulator is used 
to investigate flow of CO2 together with the reservoir properties 
required to reproduce the seismically-derived distribution of CO2
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Fig. 9. Forecasting calculations. (a) Volume of CO2 injected into Layer 9 as function of calendar year. Solid circles = measured volumes (Cowton et al., 2016); dashed line 
= calendar limit of available seismic reflection surveys; red dotted line = constant volume of injection into Layer 9 at future times; blue dotted line = increasing volume 
of injection into Layer 9 in accordance with pre-2010 rate of injection. (b) Planform area of Layer 9 as function of calendar year. Black circles = observed areas of Layer 9 
measured using available seismic reflection surveys; dashed line as before; red circles = predicted areas assuming constant volume of injection; blue circles = predicted 
areas increasing volume of injection in accordance with pre-2010 values. (c)–(h) Temporal sequence showing predicted distributions of CO2 thickness for years 2012–2022 
where post-2010 injected volume remains constant. Forecasts were calculated using 700 m-wide channel with permeability of 20 D embedded in background permeability 
of 3.5 D. (i)–(n) Temporal sequence showing predicted distributions where injected volume grows in accordance with pre-2010 estimated. Color scale as for Fig. 8.
in three dimensions for Layer 9 of the Sleipner Field. Flow simula-
tions performed using measured reservoir geometry and reservoir 
and fluid properties only partially match the observed CO2 distri-
butions. Analysis of the baseline seismic reflection survey suggests 
the existence of a submarine channel deposit within the reservoir. 
A simple spatially varying reservoir model with a high permeabil-
ity channel is found to reduce the misfit between observed and 
calculated CO2 distributions. Consideration of the confinement of 
the reservoir does not appear to be required to model the evolu-
tion of Layer 9. Using this best-fitting reservoir model, the future 
flow of CO2 within Layer 9 can be forecast by making simplified 
assumptions about the future flux of CO2 into Layer 9.

An inverse modeling strategy is used to identify a reservoir per-
meability that permits a good match between the observed and 
calculated migration of CO2 through Layer 9 of the Utsira Forma-
tion reservoir. Our comparisons and tests validate the utility of 
using vertically equilibrated models as the basis of inverse tools 
with which to assess reservoir properties. However, it is clear that 
there are regions in which discrepancies between observed and 
calculated CO2 distributions remain. These discrepancies can be at-
tributed to uncertainties in geological parameters that are not per-
mitted to vary in our inversion scheme, such as detailed caprock 
topography and intra-channel permeability. The high bias and low 
variance input permeability model used here is likely to underfit 
the observed CO2 distribution (Geman et al., 1992). Equally, a low 
bias and high variance approach that manipulates parameters such 
as permeability and caprock topography on the grid square level 
to yield a precise match with the observed CO2 distribution will 
overfit the data. The choice of parameters that would permit this 
match is non-unique, a problem exacerbated by the limited num-
ber of time-lapse seismic surveys and by the uncertainty in the 
observed CO2 distribution.

In order to build an improved forecasting strategy, a permeabil-
ity model with intermediate complexity is required. For example, 
our simple channel model can be made more complex by the ad-
dition of a variable permeability within the channel. However, for 
unconfined flows, the observed pattern of migration is only sensi-
tive to the area swept out by the CO2 plume. Estimating param-
eters in this way, outside of the swept region, is difficult without 
evidence from additional sources. While a generalized model could 
be inverted to find a more complex permeability structure, this is, 
at present, unlikely to lead to significant improvements in the in-
ferred reservoir model and its associated ability to forecast future 
CO2 flow.
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The success of this reservoir simulation, in conjunction with 
analysis by Bandilla et al. (2014) and Nilsen et al. (2017) amongst 
others, shows that vertically-integrated models are a computa-
tionally efficient alternative to conventional Darcy flow simulators 
when modeling the flow of CO2 on appropriate length and time 
scales. These efficient models can help to improve the match be-
tween reservoir simulations and geophysical observations. Whilst 
limited agreement has already been demonstrated at the Ketzin 
site in Germany and at the Snøhvit site in Norway, the use of low-
computational cost numerical simulations to test suites of reservoir 
models could enhance our understanding of the sub-surface char-
acteristics of other fields where CO2 injection has been carried out 
(Grude et al., 2014; Lüth et al., 2015). A large body of literature 
that has already documented analytical solutions for gravity cur-
rents in different situations means that the simulator described 
here can be adapted quickly and easily to model CO2 flow within 
other storage geological reservoirs.
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