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Porous geological formations are commonly interspersed with thin, roughly horizontal,
low-permeability layers. Statistically steady convection at high Rayleigh number Ra
is investigated numerically in a two-dimensional porous medium that is heated
at the lower boundary and cooled at the upper, and contains a thin, horizontal,
low-permeability interior layer. In the limit that both the dimensionless thickness h and
permeability Π of the low-permeability layer are small, the flow is described solely
by the impedance of the layer Ω = h/Π and by Ra. In the limit Ω→ 0 (i.e. h→ 0),
the system reduces to a homogeneous Rayleigh–Darcy (porous Rayleigh–Bénard) cell.
Two notable features are observed as Ω is increased: the dominant horizontal length
scale of the flow increases; and the heat flux, as measured by the Nusselt number Nu,
can increase. For larger values of Ω , Nu always decreases. The dependence of the
flow on Ra is explored, over the range 2500 6 Ra 6 2× 104. Simple one-dimensional
models are developed to describe some of the observed features of the relationship
Nu(Ω).
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1. Introduction

The convective flow of fluid in porous media plays an important role in a range
of environmental and industrial contexts. Recent interest in the subject has been
spurred on by the relevance of convection for the long-term security of geologically
sequestered CO2 in deep saline aquifers (Bachu 2008; Zhang 2013; Huppert &
Neufeld 2014). Sequestration, which has been widely proposed as a means of
mitigating anthropogenic emissions of CO2 (currently more than 30 billion tons
per year; Friedlingstein et al. 2010), is achieved by the injection of supercritical CO2
into brine-saturated porous rock that is typically located at depths of &800 m. Being
less dense than brine, the injected CO2 can leak back to the surface through faults
in the overlying caprock (e.g. Pritchard 2007; Neufeld et al. 2011; Vella et al. 2011).
One mechanism for more secure storage is the weak dissolution of CO2 into the
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underlying brine; dissolution raises the density of the brine, such that the resultant
CO2-saturated solution can be unstable to downwelling convection. Convective flow
leads to an enhanced rate of dissolution, and more secure long-term storage. This
observation has motivated a large number of studies of the convective dissolution of
CO2, using numerical simulations (e.g. Pau et al. 2010; Hewitt, Neufeld & Lister
2013; Szulczewski, Hesse & Juanes 2013; Slim 2014), laboratory experiments (e.g.
Kneafsey & Pruess 2010; Neufeld et al. 2010; Backhaus, Turitsyn & Ecke 2011;
Slim et al. 2013), theoretical analysis (e.g. Riaz et al. 2006; Daniel, Tilton & Riaz
2013; Tilton & Riaz 2014), and field measurements from naturally occurring CO2
reservoirs (e.g. Gilfillan et al. 2009).

Porous media are often modelled as homogeneous, and described by uniform
averaged properties like the porosity and permeability. Natural porous media, however,
are rarely homogeneous. In particular, geophysical aquifers commonly consist of a
series of roughly horizontal layers of rock of distinctly different permeabilities
(Monkhouse 1970; Phillips 2009). Layering of this sort can frequently be observed
on exposed rock faces in quarries or coastal cliffs, such as the Jurassic sandstone
cliffs at Bridport in Dorset, UK (Morris & Shepperd 1982). Both the permeability
and the thickness of layers can be much smaller than those of the main formation:
the exposed Aztec sandstone in Nevada, for example, at over a kilometre in depth,
is characterized by multiple very thin (∼1 cm) horizontal layers that are several
orders of magnitude less permeable than the main formation (Sternlof et al. 2006).
An important example for the geological storage of CO2 is the Utsira sand formation
at the Sleipner field in the North Sea, where roughly 1 million tonnes of CO2 have
been sequestered every year since 1996 (Bickle et al. 2007). Seismic images have
revealed that the flow of injected CO2 is significantly affected by the presence of nine
low-permeability roughly horizontal mudstone layers which intersperse the formation,
and are much thinner (roughly 1–5 m deep) than the formation itself (roughly 200 m
deep) (Bickle et al. 2007).

Convection in a homogeneous and isotropic porous medium has been studied in a
range of settings (Nield & Bejan 2013). The porous version of the Rayleigh–Bénard
cell (known variously as the ‘Horton–Rogers’, ‘Lapwood’, Darcy–Bénard’, or, as in
this paper, ‘Rayleigh–Darcy’ cell), which consists of a fluid-saturated porous medium
with a heated lower boundary and cooled upper boundary, is an archetypal system
for the study of statistically steady porous convection. The strength of convection is
determined in large part by the Rayleigh number Ra, which is a dimensionless ratio
of the buoyancy forces that drive convection to the inhibiting effects of viscosity
and diffusion. In a two-dimensional Rayleigh–Darcy cell, there is no convection for
Ra < Racrit = 4π2 (Lapwood 1948), while for 4π2 6 Ra . 1300, the convective flow
takes the form of large-scale rolls. The rolls, which are steady for low values of
Ra, are perturbed by a series of secondary instabilities as Ra is increased (Graham
& Steen 1994; Otero et al. 2004). For Ra & 1300, the roll structure is broken down
completely, and there is a transition in the flow to the ‘high-Ra’ regime (Otero et al.
2004; Hewitt, Neufeld & Lister 2012). The flow in this regime is characterized in
the interior of the cell by vertical columnar ‘megaplumes’ with a statistically regular
horizontal wavelength. The megaplumes are driven near to the upper and lower
boundaries of the cell by vigorous short-wavelength boundary-layer instabilities or
‘protoplumes’ (Hewitt et al. 2012). Curiously, the interior flow becomes increasingly
‘ordered’ as Ra is increased, and the average horizontal wavenumber k of the flow
is roughly fitted by k ∼ Ra0.4 for 1300 . Ra 6 4 × 104. Over this same range, the
convective flux, as measured by the dimensionless Nusselt number Nu, is extremely
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well described by the empirical fit Nu= α Ra+ β, for α = 6.9× 10−3 and β = 2.75
(Hewitt et al. 2013). Similar behaviour has been observed in three dimensions (Hewitt,
Neufeld & Lister 2014). The high-Ra regime is relevant in geophysical contexts:
estimates of Ra for the convective dissolution of CO2 in a typical high-permeability
aquifer, such as at Sleipner, give values of Ra = O(104), or even larger (see e.g.
Bickle et al. 2007; Hewitt et al. 2013 for approximate parameter values).

The study of convection in inhomogeneous or anisotropic media, however, has
tended to focus on the onset of convection and the subsequent dynamics of the flow
at low Rayleigh numbers (e.g. Simmons, Fenstemaker & Sharp 2001; Ennis-King,
Preston & Paterson 2005; Rapaka et al. 2009; Nield & Bejan 2013). For media
comprising alternate layers of high and low permeability, McKibbin & O’Sullivan
(1980, 1981) found that, as the permeability contrast between the layers is increased,
there is a transition in the flow dynamics from large-scale convective rolls to local
convective structures confined to the higher-permeability layers. Rees & Riley (1990)
studied the effect of layering in a three-dimensional medium on convection patterns
using weakly nonlinear stability analysis. McKibbin & Tyvand (1983) examined the
flow at low Ra in a medium containing a series of thin low-permeability horizontal
layers, while Genç & Rees (2011) considered the limit of an impermeable and
infinitesimally thin horizontal barrier in an otherwise homogeneous cell. In both
cases, the critical Rayleigh number for the onset of convection was found to increase
significantly from the homogeneous case. McKibbin & Tyvand (1983) modelled
the flow under the assumption that both the thickness and the permeability of the
low-permeability layers were small but their ratio was O(1); we adopt a similar
approach here for the case of vigorous high-Ra convection.

In this paper, we use high-resolution numerical simulations to examine the impact
of a thin horizontal low-permeability layer on the strength and dynamical structure of
high-Ra porous convection. We consider a cell comprising identical upper and lower
layers, between which there is a thin interior layer of a lower permeability. The upper
and lower layers have equal depth, such that the low-permeability layer is located
at the centre of the cell. The whole cell is heated from below and cooled from
above. The flow thus attains a statistically steady state, which allows a systematic
examination of the effect of a thin low-permeability layer on the heat flux through
the cell and on the associated flow structure. In the limit in which there is no
low-permeability layer, the cell is identical to the homogeneous Rayleigh–Darcy
cell discussed above. All physical properties of the fluid and the medium except
the permeability are assumed to be constant throughout the cell; in particular, we
assume for simplicity that the porosity φ of the medium is uniform, and is thus
independent of the permeability (see appendix A for a discussion of this assumption).
To aid intuition, and in common with most previous studies of statistically steady
convection, we consider thermal convection in this paper using an assumption of
local thermal equilibrium between the solid and liquid phase. However, the work is
equally applicable to compositional convection, as discussed in § 2, which is the case
of interest for the convective dissolution of CO2.

The paper is laid out as follows. In § 2, we present the governing equations and non-
dimensionalization. In § 3, we discuss our numerical results. We show that, in the limit
that both the dimensionless thickness h and permeability Π of the low-permeability
layer are small, the flow can be described solely by their ratio Ω = h/Π . In § 3.4, we
examine in detail the dependence on Ω of the dynamical structure of the flow and
the flux Nu, and in § 3.5 we investigate the dependence of the flow on Ra, across the
range 25006 Ra6 2× 104. In § 4, we develop simple one-dimensional models of the
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FIGURE 1. A schematic showing the layered system under consideration, with the
permeability of each layer and the thermal boundary conditions marked. (a) Dimensional
variables. (b) Dimensionless variables.

system that capture some of the observed features of the relationship Nu(Ω), and we
discuss the limitations of the models. Finally, in § 5, we summarize and discuss our
main results.

2. Governing equations
We consider the flow of a Boussinesq fluid in a two-dimensional porous medium,

with horizontal and vertical coordinates x∗ and z∗ respectively. The medium comprises
a thin interior layer sandwiched between relatively deep upper and lower layers
(figure 1a). The combined depth of the three layers is z∗ = H. The upper and
lower layers have uniform permeability K1, while the thin interior layer has uniform
permeability K2 < K1 and depth h∗ � H, and lies between z∗1 = (H − h∗)/2 and
z∗2 = (H + h∗)/2. Within each layer, the medium is homogeneous and isotropic.

We assume that the flow u∗ = (u∗, w∗) in all three layers is incompressible and
is governed by Darcy’s law. The temperature field T∗ is assumed to be locally
equilibrated between the solid and the liquid phases. The equation of state ρ∗(T∗) is
linear and T∗ satisfies an advection–diffusion transport equation. These equations are
given by

∇ · u∗ = 0, (2.1a)

µu∗ =
{
−K1(∇p∗ + ρ∗gẑ), 0 6 z∗ 6 z∗1, z∗2 6 z∗ 6 H,
−K2(∇p∗ + ρ∗gẑ), z∗1 < z∗ < z∗2,

(2.1b)

ρ∗ = ρ0 [1− a (T∗ − T0)] , (2.1c)
[φρlcl + (1− φ)ρscs]

ρlcl

∂T∗

∂t∗
+ u∗ · ∇T∗ = κ∇2T∗, (2.1d)

where µ is the viscosity, p∗ is the pressure, g is the gravitational acceleration, ẑ is
a unit vector in the z∗ direction, ρ0 and T0 are a constant reference density and
temperature, respectively, a is the coefficient of thermal expansion, φ is the constant
porosity of the medium, κ is the constant average thermal diffusivity, and ρi and
ci are the densities and specific heats of the liquid (i = l) or solid (i = s) phases.
A brief discussion of the effect of a different porosity and thermal diffusivity in the
low-permeability layer is given in appendix A. Note that these equations are equally
applicable to compositionally driven convection if we set cs= 0 and take D= κ/φ to
be the constant solutal diffusivity in the liquid phase.

On the upper and the lower boundaries of the domain, the vertical velocity vanishes
and a fixed temperature is imposed, such that

T∗|z∗=0 = T0 +1T, T∗|z∗=H = T0, w∗|z∗=0,H = 0, (2.2a–c)
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where 1T is a fixed unstable (positive) temperature difference. The pressure,
temperature and normal velocity are continuous at the internal boundaries z∗ = z∗1,2.

We non-dimensionalize the system with respect to the depth H of the whole domain,
the permeability K1 of the upper and lower layers, the density difference across the
domain 1ρ = ρ0a1T , the buoyancy-velocity scale U = g1ρK1/µ, and the convective
time scale [φρlcl + (1− φ)ρscs]H/(ρlclU). The dimensionless rescaled temperature is
given by T = (T∗− T0)/1T . In dimensionless variables, the governing equations (2.1)
reduce to

∇ · u= 0, (2.3a)

u=
{
−(∇p− T ẑ), 0 6 z 6 z1, z2 6 z 6 1,
−Π(∇p− T ẑ), z1 < z< z2,

(2.3b)

∂T
∂t
+ u · ∇T = 1

Ra
∇2T, (2.3c)

where p= ( p∗+ ρ0gz∗)/(1ρgH) is a reduced pressure, Π =K2/K1 < 1 is the ratio of
the two permeabilities, and we have combined (2.1b) and (2.1c). The dimensionless
edges of the interior low-permeability layer are given by z1,2 = (1 ∓ h)/2. The
parameter Ra is the Rayleigh number, which is the ratio of the driving strength
of buoyancy to the inhibiting dissipative effects of viscosity and diffusion, and is
given by

Ra= g1ρK1 H
κµ

. (2.4)

Since we have non-dimensionalized with respect to the convective, rather than the
diffusive, time scale, the Rayleigh number appears in (2.3c) as an inverse diffusivity.

The dimensionless boundary conditions on the upper and lower boundaries of the
domain are given from (2.2) by

T|z=0 = 1, T|z=1 = 0, w|z=0,1 = 0 (2.5a–c)

(figure 1b). The conditions at the internal interfaces between the different layers are
given by continuity of temperature, pressure and normal velocity,

[T]= [p]= [w]= 0 at z= z1, z2. (2.6)

Incompressibility (2.3a) is satisfied by the introduction of a streamfunction ψ which
obeys (u, w)= (∂ψ/∂z,−∂ψ/∂x). We eliminate the pressure field by taking the curl
of (2.3b), which gives

∇2ψ =
{
−∂T/∂x, 0 6 z 6 z1, z2 6 z 6 1,
−Π ∂T/∂x, z1 < z< z2.

(2.7)

We incorporate the continuity conditions on the pressure at the internal interfaces by
combining (2.6) with Darcy’s law (2.3b), to re-express the conditions in terms of
discontinuities of the horizontal velocity:

u|z=z+1 =Πu|z=z−1 , u|z=z−2 =Πu|z=z+2 . (2.8a,b)
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The flow is described by three dimensionless parameters: the Rayleigh number Ra;
the permeability ratio Π ; and the relative thickness of the low-permeability layer
h= h∗/H. The statistically steady convective flux, or, in dimensionless variables, the
Nusselt number Nu(Ra, Π, h), can be defined as the temporally and horizontally
averaged heat flux at any height z, and is here given by

Nu= 〈nu(t)〉 =
〈
−1

L

∫ L

0

∂T
∂z

∣∣∣∣
z=0

dx
〉
, (2.9)

where nu(t) is the instantaneous flux through the lower boundary at a given time t,
and L is the aspect ratio of the cell. The angle brackets 〈 〉 signify a long-time average.

We solved (2.3c) and (2.7) numerically. The numerical method is discussed very
briefly here and described in more detail in appendix B. We imposed periodic
boundary conditions on the cell in the x direction at x= 0, L. Unless otherwise stated,
all the numerical results presented in this paper have aspect ratio L= 4. We employed
a vertical coordinate transformation in order to fully resolve both the thin boundary
layers at the upper and lower boundaries of the domain, and the interfaces between
the different layers inside the cell. The initial condition for all calculations, unless
explicitly noted in the text, was given by a linear vertical temperature gradient with
a small random perturbation. After an initial period of reorganization, the flow attains
a statistically steady state. At high Ra, the local flux through the boundary nu(t)
exhibits chaotic fluctuations about a mean in this state, and the computations are
continued until the Nusselt number (2.9) has converged to within 0.25 % of its mean.

3. Numerical results

In this section we present our numerical results and discuss the observations. We
focus initially in §§ 3.1–3.4 on simulations at Ra = 5000, which is an appreciably
higher value than the onset of the high-Ra regime for homogeneous Rayleigh–Darcy
convection at Ra≈ 1300 (Otero et al. 2004; Hewitt et al. 2012). We then examine the
dependence of the system on Ra in § 3.5. The effects of the interior low-permeability
layer on the convective dynamics is more complicated than might be anticipated, and
thus we describe the observations in some detail. A summary of the main observations
is given in § 3.6.

3.1. Numerical results for Ra= 5000
Snapshots of the statistically steady temperature field for different values of the
thickness h of the low-permeability layer and two different permeability ratios
Π are shown in figures 2 and 3. The homogeneous case h= 0 (equivalently Π = 1)
is shown in figure 2(a).

The structure of the flow changes significantly as the thickness of the low-
permeability layer increases. For homogeneous convection (figure 2a), the flow is
dominated away from the boundaries by columnar megaplumes with a roughly
regular horizontal wavelength (Hewitt et al. 2012). The horizontal scale of these
plumes increases significantly as h is increased (figure 2b–f ). The flow increasingly
resembles an ordered array of cells, each of which is half the height of the domain
and comprises a thin vertical plume flowing up/down and a much wider plume
carrying the return flow. For the smaller value of Π (figure 3), the horizontal scale
of the flow increases even more rapidly as h is increased. In fact, for sufficiently
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FIGURE 2. (Colour online) Snapshots of the temperature field T for Ra = 5000, Π =
0.04, and varying thickness h of the low-permeability layer: (a) h=0 (no low-permeability
layer), (b) h = 0.005, (c) h = 0.01, (d) h = 0.02, (e) h = 0.04, and ( f ) h = 0.08. The
white bars on the left mark the location and thickness of the low-permeability layer. The
temporally and horizontally averaged temperature T(z) (solid) is shown on the right-hand
side, together with the temperature averaged only over fluid with w> 0 (dashed) and only
over fluid with w< 0 (dot-dashed).

large values of h, the horizontal scale of the plumes appears to have become so
broad that protoplumes form near the low-permeability layer (figure 3c–e). There is
significant variability in the structure of the flow between different simulations, as
exemplified by figure 2(e, f ) which, contrary to the general trend just discussed, show
a flow with h = 0.08 which has a smaller horizontal length scale than a flow with
h= 0.04.

Profiles of the horizontally and temporally averaged temperature T (figures 2, 3)
show that the temperature difference across the low-permeability layer increases
as h is increased. The background stratification also appears to depend on h: for
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FIGURE 3. (Colour online) Snapshots of the temperature field T for Ra= 5000, Π = 0.01,
and varying thickness of the low-permeability layer: (a) h= 0.005, (b) h= 0.01, (c) h=
0.02, (d) h = 0.04, and (e) h = 0.08. The white bars on the left mark the location and
thickness of the low-permeability layer. Profiles of T(z) (solid) are shown on the right-
hand side, together with the temperature averaged only over fluid with w > 0 (dashed)
and only over fluid with w< 0 (dot-dashed).

homogeneous convection (figure 2a), the profile has a very weak negative gradient
throughout the interior of the domain, whereas, as h is increased, (figures 2b–f and
3), the gradient becomes positive, giving an apparent stable background stratification
in each layer. Profiles of the average temperature restricted to either the upwelling or
the downwelling regions alone (figures 2, 3 dashed and dot-dashed lines) do not show
as large a stratification as the full profiles of T , although the fluid is still slightly
stratified, particularly in the plumes that carry fluid towards the low-permeability
layer.

In any simulation, we find that there are always an equal number of upwelling
and downwelling plumes, and that the plumes are aligned on either side of the low-
permeability layer such that an upwelling plume in the lower layer lies directly below
an upwelling plume in the upper layer. As might be also expected from the geometry,
the numerical results show a symmetry about z= 0.5, such that, provided the results
are averaged over sufficiently long times, the profiles of T are invariant under the
transformations z→ 1− z and T→ 1− T .
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FIGURE 4. (Colour online) The Nusselt number Nu for Ra= 5000: (a) as a function of
the thickness h of the low-permeability layer, and (b) as a function of the impedance
Ω = h/Π , where Π is the permeability ratio. The data points are for Π = 0 (squares),
Π = 0.005 (circles), Π = 0.01 (stars), Π = 0.02 (crosses), Π = 0.04 (pluses), Π = 0.08
(dots). The solid line in (a) is the theoretical prediction for an impermeable interior layer
(see § 4.2). For homogeneous convection (i.e. the limit h→ 0), Nu= 37.25 (dashed line,
taken from Hewitt et al. 2012). Surprisingly, the Nusselt number initially increases with
Ω , before decreasing for Ω & 0.25.

Figure 4(a) shows the Nusselt number as a function of the thickness h of the
low-permeability layer for different values of Π and for an impermeable layer
(Π = 0). Surprisingly, Nu does not decrease monotonically as h is increased, as
might be expected from the increasing proportion of the domain that is occupied
by low-permeability material. Instead, Nu first increases for small h (Π 6= 0), before
decreasing for larger h. The data for Π 6= 0 roughly collapse onto a single curve
when plotted as a function of the quantity Ω = h/Π (figure 4b), as discussed in the
following section. The case Π = 0 is quite different since all the heat flux across an
impermeable layer must be by diffusion.

3.2. Dependence on Ω = h/Π
The Nusselt number collapses onto a single curve as a function of Ω = h/Π
(figure 4b). This dependence can be simply understood by examination of the
governing equations for h, Π � 1. In this limit, Darcy’s law (2.3b) implies that
the horizontal velocity in the low-permeability layer is small (O(Π)), while the
vertical velocity is O(Π/h) and given by

w=−Π
(
∂p
∂z
− T

)
=−Π

h
[ p(z2)− p(z1)+O(h)]. (3.1)

The flow through the low-permeability layer is therefore predominantly vertical if
h, Π � 1 and Π/h = O(1), and it is driven by pressure differences, rather than by
buoyancy. In this limit, the flow is controlled by the parameter Ω = h/Π , which is a
form of impedance, being a ratio of pressure difference and Darcy velocity.

We can parameterize the effect of the low-permeability layer in the distinguished
limit h, Π→ 0 with the impedance Ω = h/Π remaining finite. The derivative of (3.1)
with respect to x and the continuity conditions for w and p from (2.6) give

Ω
∂w
∂x
≈ u(z2+)− u(z1−). (3.2)
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FIGURE 5. (Colour online) The Nusselt number Nu(Ω)=Nu(h/Π) from full simulations
for 10−3 6 h 6 0.2 and 10−4 6Π 6 0.1 (dots; includes the data from figure 4) and from
reduced simulations (pluses) for Ra= 5000. The results give good agreement, and tend to
the homogeneous value Nu= 37.25 (dashed line) in the limit Ω→ 0.

We note that there is no requirement of continuity for the horizontal velocity u at
z= z1,2. In the limit h, Π→ 0, (3.2) reduces to a jump condition for u, given by

Ω
∂w
∂x

∣∣∣∣
z=0.5

= [u]z=0.5+
z=0.5− . (3.3)

The temperature and vertical velocity are continuous at z= 0.5 in this limit.

3.3. Reduced numerical simulations
Motivated by the results of the previous section, we developed a simplified numerical
scheme in which the thin low-permeability layer is parameterized by the jump
condition (3.3), together with continuity of temperature and vertical velocity, at
z = 0.5 (see appendix B for details). This parameterization both simplifies the
numerical computations and appreciably reduces the numerical cost, as there is
no longer a low-permeability layer to be resolved. We refer to these simulations as
‘reduced’, to distinguish from ‘full simulations’ in which the low-permeability layer
is fully represented and resolved.

Calculations of Nu(Ω) from reduced simulations give good agreement with results
from full simulations for different values of h and Π (figure 5). The slight difference
in some of the data at large values of Ω is because of the relatively large values of h
in some of the full simulations. There is also some scatter in the data, which is related
to variability in the horizontal structure of the flow, as discussed in § 3.4.2 below.

Figure 5 shows that Nu increases gradually with Ω to give a maximum of Nu ≈
41.2 at Ω ≈ 0.25. This is an increase of approximately 10 % from the value of Nu
for homogeneous convection. For Ω & 0.25, Nu decreases rapidly. For Ω & 5, the
results from reduced simulations level off at roughly a quarter of the value of Nu for
homogeneous convection, while the results from full simulations appear to continue
to decrease slowly.

3.4. The dynamical structure of the flow
We have observed that the dynamical structure of the flow changes significantly with h
and Π (figures 2, 3), and we showed in § 3.2 that the flow is a function of Ω = h/Π
only, for h, Π� 1. In this section, we describe in detail the change in the flow with
Ω , and the corresponding form of Nu(Ω).
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FIGURE 6. (Colour online) (a) Calculations of Nu(Ω) for Ra = 5000 from a series of
reduced simulations with initial condition given by a small random perturbation to a
vertically linear base state (dots; includes the data from figure 5), and from a series of
reduced simulations for increasing Ω in which the initial condition for each value of Ω
was given by the final state from the previous value (crosses). Snapshots (i)–(v) of the
statistically steady-state temperature field for different values of Ω illustrate the increase
in the horizontal wavelength with Ω . Snapshot (vi) shows the different flow structure for
Ω & 5. Snapshots (iii) and (iv) illustrate the effects of hysteresis on the flow structure
and on Nu (see § 3.4.2). (b,c) Spatio-temporal plots of the sign of the vertical velocity
at z = 0.5, for: (b) Ω = 2.5 × 10−3, corresponding to snapshot (i); and (c) Ω = 0.25,
corresponding to snapshot (iv).

3.4.1. Dependence on Ω
For Ω . 0.05 (figure 6a: i and ii), the flow resembles homogeneous flow. The

dynamics is dominated by predominantly vertical columnar flow across the full height
of the domain with a fairly small wavelength. The average widths of upwelling and
downwelling plumes are roughly equal throughout the domain, although there are
substantial fluctuations in the location of the edges of the columnar megaplumes
(figure 6b). The Nusselt number does not change appreciably for Ω . 0.05.

For 0.05 .Ω . 0.3 (figure 6a: iii and iv), the flow increasingly resembles a series
of cells of half the height of the domain. In the lower layer, the cells take the form
of a wide hot upwelling plume neighbouring a much thinner cold downwelling plume.
As the upwelling plume impinges on the low-permeability layer, some fluid spreads
laterally and is entrained into the downwelling return flow, while some ‘leaks’ through
into the upper layer and feeds the base of a thin upwelling plume there. The cells
have a complementary form in the upper layer. As Ω is increased in this range, the
horizontal length scale of the flow increases significantly. The flow also appears to
become increasingly ‘ordered’, in that there is much less temporal variability in the
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FIGURE 7. (Colour online) Data from reduced simulations at Ra= 5000. Left-hand panels
show T(z) (solid), together with the average temperature of upwelling fluid (dashed)
and the average temperature of downwelling fluid (dot-dashed). Centre panels show the
temporally averaged proportion φw of the fluid with w> 0, which reveals the asymmetry
between the widths of upwelling and downwelling plumes. Right-hand panels show the
temporally averaged r.m.s. temperature perturbations Trms(z) (solid) and velocities wrms(z)
(dashed) and urms(z) (dot-dashed). (a) Ω = 0.04, (b) Ω = 0.25, (c) Ω = 1.28, and (d) Ω =
10; corresponding to figure 6(a) (ii), (iv), (v), and (vi), respectively. All the time-averaged
results exhibit a reflectional symmetry in the line z = 0.5 under the transformations
T→ 1− T and w→−w.

location and width of the plumes than at lower values of Ω (figure 6c). The Nusselt
number increases over this range of Ω , which is surprising since, for fixed thickness
h, this implies that the flux increases as the permeability of the low-permeability layer
is decreased.

For 0.3.Ω . 5 (figure 6a: v), the horizontal length scale of the flow continues to
increase. In this range, the horizontal flow along the boundary of the low-permeability
layer appears to be unstable to the growth of protoplumes, which perturb the cellular
structure of the flow. The Nusselt number decreases markedly in this range of Ω .

At Ω ≈ 5, the structure of the flow changes completely. For Ω & 5 (figure 6a: vi),
the flow resembles two layers of homogeneous columnar convection, each of half the
original height and half the original temperature contrast, placed one on top of the
other. Unlike at lower values of Ω , there are no plumes that reach across the full
height of the domain. The Nusselt number appears to be roughly constant for Ω & 5.

Figure 7 shows four sets of temporally averaged data from reduced simulations, with
each set at a value of Ω selected to be in one of the ranges discussed above. For
Ω = 0.04 (figure 7a), T is roughly uniform in the interior of the domain, except for
a small temperature difference across the interior boundary at z= 0.5. Similarly, the
temperature fluctuations and velocities are fairly uniform, with some small deviations
near z= 0.5.

For Ω = 0.25 and Ω = 1.28 (figure 7b,c), the temperature difference across the
low-permeability layer is larger than in figure 7(a), and the root-mean-square (r.m.s.)
quantities vary appreciably near z= 0.5. The average temperature field T has a weak
stable stratification in the upper and lower layers of the domain. There is a notable
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FIGURE 8. (Colour online) Calculations of the temporally averaged r.m.s. temperature
perturbations and velocities at z= 0.5 from reduced simulations at Ra= 5000. The Nusselt
number Nu(Ω) from figure 5 is shown above for comparison. The vertical velocity at
z = 0.5 is approximately zero for Ω & 5; this reflects the transition (dashed line) from
dominantly advective to dominantly diffusive transport across the low-permeability layer.

asymmetry between upwelling and downwelling plumes which varies with depth, and
the average temperature restricted to either upwelling or downwelling regions alone
does not display as strong a stratification as T . These observations suggest that the
apparent stratification is largely a reflection of the variation in the proportion of hot
upwelling and cold downwelling fluid with height.

For Ω=10 (figure 7d), the profiles look quite different. There is negligible apparent
stratification in either layer; the vertical velocity nearly vanishes at z = 0.5; and the
magnitude of the r.m.s. quantities throughout the domain is much less than at lower
values of Ω .

As the impedance Ω is increased, the vertical velocity wrms at z = 0.5 decreases
(figure 8), while the horizontal velocity urms and temperature fluctuations Trms increase.
The trends in wrms and urms indicate that, as Ω is increased, a larger proportion of
the flow that impinges on the low-permeability layer spreads laterally into the return
flow rather than ‘leaking’ across the layer. The marked increase in Trms with Ω may
be related to the increased tendency towards forming protoplumes near to the low-
permeability layer, though the time scales associated with instability also depend on
the balance of velocities.

There is a clear change in the trend of the r.m.s. calculations at Ω ≈ 5 (figure 8).
In particular, wrms ≈ 0 for Ω & 5, which means that there is no appreciable advective
flux through the low-permeability layer. We interpret the change in the dynamics as
a transition from advection to diffusion as the dominant transport mechanism across
the low-permeability layer. For convenience, we will refer to the regime for Ω & 5 as
the ‘diffusion regime’, and to the regime for Ω . 5 as the ‘advection regime’.
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FIGURE 9. (Colour online) Horizontal profiles taken from a reduced simulation at Ra=
5000 and Ω = 0.25. (a) The temperature variation T − T (solid) and the vertical ‘leakage’
velocity w (dashed) at z= 0.5. (b) The horizontal velocities u+ (solid) immediately above
the low-permeability layer, and u− (dashed) immediately below the low-permeability layer.

3.4.2. Hysteresis
We observed some variation in the calculations of Nu(Ω) between simulations at

the same value of Ω started with different random perturbations to the same initial
state (figure 6a, dots). We also observed systematic differences between series of
simulations with different initial states (figure 6a, dots and crosses). The differences
in Nu(Ω) appear to be related to differences in the number of cells in the domain,
as can be seen by a comparison of two flow structures at Ω = 0.25 (figure 6a: iii
and iv). The fact that there can be different numbers of cells for the same value of
Ω is likely to be due to the restriction imposed by the horizontal periodicity of the
domain. Once the flow develops a particular structure, we find that the structure can
persist as an apparently statistically steady state for a long time.

3.4.3. Profiles at the low-permeability layer
Figure 9 shows profiles of the temperature variation and velocities at z = 0.5 at

Ω=0.25. The vertical ‘leakage’ velocity w through the low-permeability layer forms a
clear piecewise-linear triangular profile (figure 9a). Simulations from across the range
0.05 .Ω . 5 show similar linear profiles for w. The temperature variation T − T is
in phase with w, but has a more rounded profile.

The horizontal velocities u+ and u− just above and just below the low-permeability
layer (at z= 0.5+ and z= 0.5−), respectively, form an offset repeating sawtooth profile
(figure 9b). The profiles reveal something of the cellular structure of the flow. In the
upper half of the domain, for example, hot fluid that has leaked up across the layer
is swept laterally as a buoyant boundary layer and converges into thin regions where
u+ changes rapidly from positive to negative (figure 9b). These regions, which are
also centred on the positive maxima of the leakage velocity w (figure 9a), correspond
to thin upwelling plumes. In the regions between the thin upwelling plumes there
are broad regions of downwelling relatively cold fluid, which impinge on the low-
permeability layer and are deflected into the lateral flow discussed above, roughly like
a stagnation-point flow. The flow in the lower half of the domain has a complementary
form, offset laterally by half a period, such that the thin upwelling plumes in the upper
half of the domain lie above the broad upwelling regions in the lower half of the
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FIGURE 10. (Colour online) Data from reduced simulations for Ra = 2500 (dots),
Ra= 5000 (crosses), Ra= 104 (pluses) and Ra= 2× 104 (circles). (a) The Nusselt number
Nu(Ω), scaled by the Nusselt number Nu0 for homogeneous convection (from the results
of Hewitt et al. 2012). (b) The time-averaged modal wavenumber k scaled by 2π, as
measured from a Fourier transform of the temperature field at z = 0.5 for Ω < 5 (the
advection regime) and at z = 0.75 for Ω > 5 (the diffusion regime). The inset shows
the data for Ω < 5 on a log–log scale, together with the scaling k∼Ω−1/2 (see § 4.1 for
a theoretical prediction of this scaling). Note that the simulations at Ra = 2 × 104 have
aspect ratio L= 2, rather than L= 4.

domain, and the thin downwelling plumes in the lower half of the domain lie below
the broad downwelling regions in the upper half of the domain.

3.5. Dependence on Ra
We have, thus far, focused on the flow at a fixed value of Ra = 5000. Figure 10(a)
shows calculations of Nu(Ω) for different values of Ra in the range 2500 6 Ra 6
2 × 104, scaled by the Nusselt number Nu0(Ra) for homogeneous Rayleigh–Darcy
convection. There are two particularly interesting features of this plot. First, the initial
trend in Nu(Ω) as Ω is increased changes with the value of Ra: for Ra= 2500, Nu
increases by over 30 % before then decreasing, while for Ra= 2× 104, Nu decreases
monotonically. Second, Nu is approximately independent of Ω for Ω & 5. This
observation can be explained by the fact that the flux across the low-permeability
layer is diffusive in this regime, and so is independent of Π . The transition to the
diffusion regime appears to occur at a value of Ω that is roughly independent of Ra,
which is perhaps surprising given that the Rayleigh number can be interpreted as a
measure of the relative strength of advection and diffusion.

Calculation of the time-averaged modal horizontal wavenumber k(Ω) at z = 0.5
(figure 10b) gives somewhat noisy data, which reflects the degree of hysteresis that
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FIGURE 11. (Colour online) Snapshots of the temperature field from reduced simulations
for Ω = 0.1 (left) and Ω = 0.3 (right), together with profiles of T(z) (solid lines) and the
average temperature of fluid with w> 0 (dashed lines) and of fluid with w< 0 (dot-dashed
lines). (a) Ra = 2500, (b) Ra = 5000, (c) Ra = 104, and (d) Ra = 2 × 104. In (d), the
simulations have an aspect ratio L= 2; the snapshot is shown twice for comparison with
the other simulations which have L= 4.

can affect the flow. For small Ω , the wavenumber tends to the value for homogeneous
convection (which is approximately fitted by k = 0.48Ra0.4; see figure 4 of Hewitt
et al. 2012). The wavenumber decreases for Ω & 0.1, which roughly coincides with
the value of Ω at which Nu/Nu0 begins to differ appreciably from 1. The subsequent
decrease in k can be approximately fitted by a scaling of k∼Ω−1/2 (figure 10b inset).

For Ω & 5 in the diffusion regime, the temperature is roughly uniform at z= 0.5; in
this range we instead measure the average wavenumber k at z= 0.75, in the middle
of the upper layer. The wavenumber is slightly larger than the wavenumber for
homogeneous convection, as can be understood by a simple rescaling of the height
and length scales. The flow in each half of the domain resembles homogeneous
Rayleigh–Darcy convection in a layer with half the height and half the temperature
difference, which gives an effective Rayleigh number four times smaller than Ra and
an effective wavenumber that is half the measured value. This rescaling, together with
the relationship k∼ Ra0.4, suggests that the measured wavenumber should be roughly
a factor of 2/40.4 ≈ 1.15 larger than the homogeneous value, and this prediction is
consistent with the data shown in figure 10(b).

Figure 11 shows a comparison of snapshots of the flow for different values of Ra.
For Ω = 0.1, the flow has an ordered cellular structure at each value of Ra, although
the dominant horizontal length scale of the flow decreases as Ra is increased, and the
asymmetry in the widths of upwelling and downwelling plumes is clearer at larger Ra.
For Ω=0.3, however, the qualitative structure of the flow varies with Ra. In particular,
the flow for larger Ra (figure 11c,d) is affected by the formation of protoplumes near
the interior boundary, and, as a result, the flow appears more disordered than the
cellular flow at smaller values of Ra (figure 11a,b).
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It is interesting to note (with reference to figure 10a), that Nu increases between
Ω = 0.1 and Ω = 0.3 for the lower values of Ra (figure 11a,b), but decreases over
this range for the higher values (figure 11c,d). Based on the observations above,
the increase in Nu with increasing Ω at moderate Ra appears to coincide with
an increasingly ordered cellular flow structure. Conversely, the absence of such an
increase at higher Ra coincides with the growth of protoplume instabilities near the
low-permeability layer, which break down the cellular structure and lead to a more
disordered flow.

3.6. Summary of main observations
We have shown that the dynamics of the statistically steady flow depend only on the
ratio Ω = h/Π for h, Π � 1 and for a given value of Ra. The horizontal length
scale of the flow increases as Ω is increased. For small values of Ω , the structure
of the flow resembles homogeneous columnar flow. For larger values of Ω , the flow
adopts an ordered cellular structure which, for sufficiently large Ω , is unstable to
the formation of protoplumes near the interior boundary. For even larger values of
Ω , there is a distinct transition when the advective flux across the inner boundary
becomes weaker than the diffusive flux.

For Ra = 5000, we found that the Nusselt number initially increases with Ω , to
a maximum at Ω ≈ 0.25. For larger values of Ω , Nu then decreases. Beyond the
transition to the diffusion regime at Ω ≈ 5, Nu is independent of Ω in the reduced
model. In full simulations with a finite thickness h of the low-permeability layer, Nu
continues to decrease in the diffusion regime as h is increased (figure 5).

There are two main differences in this behaviour at different values of Ra. First,
the initial increase in Nu with Ω weakens at larger values of Ra, and at Ra= 2× 104

Nu(Ω) decreases monotonically. Second, as Ra is increased, the formation of
protoplumes near the inner boundary appears to occur at a lower value of Ω . The
decrease in the horizontal wavenumber k over the range of Ω for which Nu decreases
is roughly fitted by k ∼Ω−1/2 (figure 10b). The value of Ω ≈ 5 at which there is a
transition in the flow to the diffusion regime appears to be roughly independent of Ra.

4. Simple theoretical models

In order to develop some understanding of the observed behaviour of Nu(Ω), in
this section we describe simple one-dimensional models of the statistically steady
convective system. These models provide a tentative basis for interpretation of the
dynamical behaviour that we have observed, but further refinement will be required
for a fuller understanding (see § 4.3). We describe two simple models, one for each
of the regimes identified in § 3: first, in § 4.1, for the advection regime (Ω . 5); and
second, in § 4.2, for the diffusion regime (Ω & 5).

For simplicity, we make the assumption in both models that the horizontally
averaged temperature T is approximately uniform in each of the upper and lower
layers of the domain, except in thin boundary regions near z= 0, z= 0.5 and z= 1.
(This approximation neglects any background stratification.) Recalling the symmetry
of the system about z= 0.5, we therefore set

T =Θ(Ω) in z> 0.5, and T = 1−Θ(Ω) in z< 0.5. (4.1a,b)
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FIGURE 12. Schematic diagrams of the model system. (a) A sketch of the flow (solid
curves) through and near the low-permeability layer in the advection regime (see § 4.1),
and the isotherm along which T = 0.5 (dashed curve). (b) A profile of the horizontally
averaged temperature T for the advection regime. (c) A profile of T for the diffusion
regime.

Hewitt et al. (2013) found that, in a homogeneous layer of unit depth with average
interior temperature T = 0.5, the convective heat flux Nu is well described for Ra &
1300 by the empirical parameterization Nu = αRa + β, where α = 6.9 × 10−3 and
β = 2.75. A simple rescaling of the depth and temperature scales in the definitions
of Nu and Ra allows the heat flux through a layer of depth Ĥ with average interior
temperature Θ to be described by

Nu= 4αΘ2Ra+ 2β
Θ

Ĥ
, (4.2)

where α and β are given above. We use (4.2) to parameterize the convective flux
through the upper and lower layers in the models outlined below.

4.1. Advective transport across the low-permeability layer
Figure 12(a) shows a schematic diagram of the flow in the advection regime. In the
upper and lower layers, we model the flow as a series of circulating cells of depth
1/2 and width λ. Broad downwelling (upwelling) flow in the upper (lower) layer with
typical vertical velocity wB impinges on the low-permeability layer, and either ‘leaks’
through the layer with typical velocity wL or spreads laterally with typical velocity u
(figure 12a).

The leakage velocity wL is driven by the vertical pressure difference [p] across
the low-permeability layer, which, owing to the symmetry of the system, is also the
horizontal pressure difference over the distance λ between neighbouring plumes. From
the vertical component of Darcy’s law inside the layer and the horizontal component
outside the layer, we therefore have

[p] ∼ΩwL ∼ uλ (4.3)

(cf. (3.3)). Calculated values of wL, u and λ from simulations give good agreement
with (4.3).

The pressure difference [p] must also be related to the density contrasts between
the upper and lower layers. Just above the low-permeability layer, relatively hot
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fluid of temperature ∼1 − Θ that has leaked from below spreads laterally beneath
relatively cold fluid of temperature ∼Θ . We model this lateral flow as a thin buoyant
boundary layer of hot fluid which is driven by a hydrostatic pressure difference

[p] ∼1Θη, (4.4)

where η is the depth of the boundary layer (figure 12a) and 1Θ = 1 − 2Θ is the
density difference between the hot and cold fluid (figure 12b). Under the assumption
that advection dominates the flow near to the low-permeability layer, so that diffusion
can be neglected, we deduce that η is an isotherm (figure 12a) with a slope ∼η/λ set
by the relative strength of vertical and horizontal flow. Hence

η

λ
∼ wL

u
. (4.5)

The velocities wL and u are also related to the typical vertical velocity wB of the
broad downwelling or upwelling regions by conservation of volume flux, which gives

u∼ (wB −wL) λ. (4.6)

Equations (4.3)–(4.6) provide five scaling relationships which describe the unknown
variables u, wL, [ p], λ and η in terms of 1Θ , Ω , and wB. The equations combine to
give wB −wL ∼1Θ/Ω and a simple scaling of

wL ∼Θ − ν1Θ
Ω
, (4.7)

for the leakage velocity wL, where ν is an undetermined constant of proportionality
and wB ∼Θ by Darcy’s law.

We close the system by balancing the leakage heat flux ∼ Ra wL1Θ through the
low-permeability layer with the convective heat flux in the upper and lower layer given
by (4.2). Such a balance gives a quadratic equation for Θ of the form

4αΘ2 + 2βΘ
Ra
= γ (1− 2Θ)

[
Θ − ν (1− 2Θ)

Ω

]
, (4.8)

where γ is another constant of proportionality. (Note that we have set the depth scale
Ĥ in (4.2) to unity in order that Nu reduces to the homogeneous value for small Ω .)

Equation (4.8) can be readily solved for Θ (the resultant expression is convoluted
and not given here) and has one real root in the range 06Θ 6 1/2 if Ω >O(να/γ ).
In fact, since α=O(10−3) and Ra>O(103), (4.8) can be well approximated by setting
the left-hand side equal to zero, provided that γ =O(1) or larger. The simple solution
of the resultant equation is given by

Θ = (2+Ω/ν)−1 , (4.9)

which can be combined with (4.2) to give an expression for the flux of the form

Nu= αRa
(1+Ω/2ν)2 +

β

(1+Ω/2ν) . (4.10)

The predictions of Nu(Ω) from (4.10) for ν = 3 are shown in figure 13, and give
a reasonably good qualitative fit with the data. The parameter ν was chosen to give
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FIGURE 13. A comparison of calculations of Nu(Ω) from reduced simulations (dots) and
the predictions of the model for the advection regime with ν= 3 (solid lines, from (4.10))
and for the diffusion regime (dashed lines, from (4.14b)). (a) Ra= 5000, (b) Ra= 104, and
(c) Ra= 2× 104.

a rough fit across the range of Ra. The model does not describe the initial increase
in Nu with Ω at moderate values of Ra (e.g. in figure 13a).

The model also gives a prediction for the scaling of the width λ of the cells.
Equations (4.3)–(4.5) combine to give wL ∼1Θλ2/Ω2, which can then be combined
with (4.7) to give

λ∼
(
Ω2 Θ

1Θ
− νΩ

)1/2

∼Ω1/2, (4.11)

using (4.9). The model therefore predicts that the length scale between plumes
increases like Ω1/2, or, equivalently, the horizontal wavenumber decreases like Ω−1/2,
in agreement with the calculations of the wavenumber k from the numerical data,
shown in figure 10(b).

4.2. Diffusive transport across the low-permeability layer
For sufficiently large values of Ω , the flux through the low-permeability layer is
primarily diffusive. In the diffusion regime, the system resembles two layers of
homogeneous columnar convection placed one on top of the other, with boundary-
layer regions above and below the low-permeability layer as well as near the upper
and lower boundaries of the domain (figure 12c).

The diffusive flux across the low-permeability layer of thickness h is given by

Nu≈ 1Θ
h
= 1− 4Θ

h
(4.12)

(figure 12c). We eliminate Θ by equating (4.12) with the convective flux through the
upper and lower layers, which is given by (4.2) with Ĥ= 1/2. The resultant quadratic
equation for Θ(h) has one real root in the range 0 6 Θ 6 1/2, which can be back-
substituted into (4.12) to give

Nu= 1
αRa h2

[
(αRa+ 2β) h+ 2− 2

√
α Ra h+ (1+ βh)2

]
. (4.13)

The prediction of Nu(h) from (4.13) was shown by the solid line in figure 4(a);
it shows that Nu decreases as h is increased, and gives very good agreement with
numerical results for Π = 0.
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For h, Π � 1, the interior temperature and Nusselt number from (4.13) reduce to

Θ = 1
4 −O(h) and Nu= 1

4α Ra+ β −O(h). (4.14a,b)

Thus, in the limit h, Π → 0, Nu is a constant. Predictions of (4.14b) give fairly
good agreement with data from reduced simulations at large Ω (figure 13, dashed
lines), although they appear to slightly underestimate the data. It is likely that this
underestimate is related to the implicit assumption in the model that the temperature
at the edge of the low-permeability layer is uniform. In the reduced simulations, we
observed non-zero horizontal fluctuations in T at z=0.5 (figure 7d), which will induce
flow, potentially leading to thinner diffusive boundary layers above and below the
low-permeability layer and a slightly larger flux than the model predicts.

4.3. Discussion
The results of figure 13 demonstrate that simple one-dimensional models can give
a reasonable qualitative description of the relationship Nu(Ω). The model for the
advection regime also predicts that the dominant horizontal wavenumber decreases
like Ω−1/2, in agreement with the numerical data shown in figure 10(b). The model
is based on a number of assumptions, and some of these are briefly discussed here.

The model takes the form of a balance between the heat flux through the upper
and lower layers and the heat flux through the low-permeability layer, each of which
is parameterized in terms of the average temperature in each half of the domain.
The heat flux through the upper and lower layers is related to the convective flux
for homogeneous Rayleigh–Darcy convection by a rescaling of temperatures and
lengths. The model for the heat flux through the low-permeability layer has three
key components: a relationship between the pressure-driven vertical flow across the
layer and horizontal flow above and below the layer (4.3); a relationship between the
pressure and the temperature difference across the layer (4.4), which incorporates an
expression for the boundary-layer depth near to the layer (4.5); and conservation of
volume flux (4.6).

The second relationship is the least straightforward to model. In order to generate
a simple closed model, we assumed that heat is advected without diffusing near
to the low-permeability layer, which gives rise to the scaling in (4.5). Inspection
of isotherms and streamlines from the numerical simulations suggests that vertical
diffusion may not be completely negligible in these regions; however, it is not clear
how to incorporate a balance between diffusion and both horizontal and vertical
advection into the simple model.

The boundary-layer scaling in (4.4) relies on the assumption that the lateral flow
on either side of the layer is not weak relative to the vertical flow across the layer.
This assumption breaks down in the limit Ω → 0, as the homogeneous flow is
predominantly vertical throughout the interior of the domain. In fact, we find that
there are no real solutions to (4.8) if Ω is sufficiently small (Ω <O(να/γ )), which
probably reflects the breakdown of this assumption.

The observed increase in Nu with Ω for small Ω is not captured by the simple
model in the advection regime. Our numerical results suggest that the increase in
Nu is related to the flow becoming more ‘ordered’ (see e.g. figure 6), although this
is a qualitative observation and it is not clear how an increased ‘order’ leads to an
increased flux. An additional interesting feature of the increase in Nu is that the effect
is smaller at larger values of Ra, and so, by implication, it is not associated with
asymptotically large values of Ra. We have been unable to find a simple physical
model for the increase in Nu with Ω , and the effect remains puzzling.
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5. Conclusions

We have undertaken a detailed numerical investigation of statistically steady
convection at high Ra in a domain containing an interior low-permeability layer of
height h and relative permeability Π < 1. In the limit h,Π� 1, the flow depends only
on the parameter Ω = h/Π , and the low-permeability layer can be parameterized by a
jump condition for the horizontal velocity at z= 0.5. Reduced numerical simulations
which solve the jump condition give good agreement with fully resolved numerical
simulations for a range of values of h and Π .

In § 3.4, we examined the structure of the flow for Ra = 5000, in the reduced
framework h, Π � 1. For Ω & 0.05, the flow develops an ordered cellular structure
with a horizontal length scale that increases with Ω . Each cell is roughly half the
height of the domain, and comprises a thin vertical plume carrying fluid in one
direction and a much wider plume carrying the return flow, together with some
‘leakage’ of buoyancy across the low-permeability layer. Remarkably, Nu increases
as Ω is increased (i.e. as the permeability of the interior layer is decreased) in this
dynamical regime. For 0.3.Ω.5, the horizontal length scale of the flow continues to
increase but Nu decreases. The flow can be unstable to the formation of protoplumes
near the low-permeability layer in this range of Ω . For Ω & 5, advection through
the low-permeability layer is weaker than diffusion, and the flow structure changes
completely to resemble two layers of homogeneous columnar convection placed one
on top of the other. The statistically steady flow structure and the associated flux
appear to be sensitively affected by the initial conditions, which is probably due to
restriction imposed on the flow by the horizontal periodicity of the domain.

In § 3.5, we explored the dependence of this behaviour on Ra. We found that the
initial increase in Nu with Ω is more pronounced at smaller Ra and less pronounced
at larger Ra. As Ra is increased, the value of Ω above which the flow near the
low-permeability layer is unstable to the growth of protoplumes appears to decrease.
Calculations from numerical simulations of the dominant horizontal wavenumber k at
z= 0.5 suggest that the increase in the horizontal length scale with Ω roughly fits a
scaling of k∼Ω−1/2.

In § 4, we developed simple one-dimensional models that describe the behaviour of
Nu(Ω), for both the advection and the diffusion regime. The model for the advection
regime also predicts that the dominant horizontal wavenumber scales with Ω−1/2, in
agreement with the numerical data. This model was discussed in § 4.3. The model for
the diffusion regime has no free parameters and gives fairly good agreement with both
full and reduced numerical results.

Throughout this paper, we have considered a low-permeability layer located at
the centre of the cell, with upper and lower layers of equal depth. An interesting
extension to this work would be to examine the effect of a low-permeability layer
located at different depths in the cell, which would break the reflectional symmetry of
the system about z= 0.5. A simple balance between the effective Rayleigh numbers
of the upper and lower layers, each of which should scale with the height and
temperature difference across the layer, suggests that the heat flux should decrease
if the low-permeability layer is moved off centre. The dominant horizontal length
scale of the flow is also likely to vary as the location of the low-permeability layer
is changed, although whether the length scale increases or decreases may depend on
whether the deeper or the shallower layer dominates the dynamics of the flow. A
detailed examination of the effects of the location of the low-permeability layer lies
beyond the scope of this paper and is left for future work.
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Two observations from this work are particularly striking: the dramatic increase in
the horizontal length scale of the flow with Ω , and the unexpected increase in Nu with
Ω for moderate values of Ra. These observations could have interesting consequences
in geophysical and industrial settings.

Appendix A. Discussion of the assumptions of uniform porosity and thermal
diffusivity

For simplicity, in the main body of this paper we made the assumption that the
porosity φ is uniform throughout the domain, and is, by implication, independent
of the permeability K. In a physical system, it is likely that φ would vary with K.
However, typical models of the relationship K(φ) (such as the Kozeny–Carman model)
suggest that the porosity scales with roughly the cube root of the permeability (Bear
1988), and so changes in the porosity are likely to be much weaker than changes in
the permeability. The average thermal diffusivity κ , which we assumed to be constant,
is in general a weighted average of the thermal conductivities ks and kl in the solid
and liquid phases, scaled by ρlcl, and so will also vary with the porosity if ks 6= kl.

Here we briefly consider the qualitative effect of a lower porosity in the
low-permeability layer. Suppose that the porosity and thermal diffusivity of the upper
and lower layers are φ1 and κ1, respectively, while those of the low-permeability
layer are φ2 < φ1 and κ2, respectively. The flow u is determined by the solution of
the Poisson equation (2.3b), and is thus not directly dependent on the porosity or
diffusivity. Under the assumption that the flow through the low-permeability layer
is not dominated by time-dependent dynamics, the advective flux through the layer,
which scales with wT , is also not significantly affected by a decrease in the porosity.
The diffusive flux, however, is scaled by a factor of κ2/κ1 (see (2.1d)). The relative
size of κ1 and κ2 depends on the conductivities ks and kl as well as on the porosity:
a decrease in porosity will lead to an increase in the proportion of the heat flux that
diffuses through the solid phase of the medium.

Thus, we anticipate that a lower porosity in the low-permeability layer would not
have an appreciable effect on the flux in the advection regime, but could lead to either
a larger or a smaller flux in the diffusion regime, depending on the relative sizes of ks

and kl. As a result, the transition between advection and diffusion regimes may occur
at a different value of Ω . A simple parameterization of the effect of a lower porosity
in the low-permeability layer could be incorporated into our model of the flux in the
diffusion regime (§ 4.2) by including a factor of κ2/κ1 in (4.12); this parameterization
is equivalent to the rescaling h→ (κ1/κ2) h.

Appendix B. Numerical scheme

In this appendix, we outline the numerical scheme that we used for both ‘full’ and
‘reduced’ simulations. The numerical scheme is similar to that used by Hewitt et al.
(2012, 2013).

In order to resolve the dynamics in the thin boundary layers near to the upper and
lower boundaries of the domain and near to the low-permeability layer, we used a
vertical coordinate transformation ζ (z). For the full simulations, we used a coordinate
transformation of the form

z(ζ )= T (ζ , 0.25+ ν, η1)+T (ζ , 0.75− ν, η1)+ εT (ζ , 0.5, η2)

T (1, 0.25+ ν, η1)+T (1, 0.75− ν, η1)+ εT (1, 0.5, η2)
, (B 1)



Convection in a layered porous medium 867

where
T (x, y, η)= tanh [η (x− y)] + tanh (ηy), (B 2)

and η1, η2, ν and ε are specified parameters that depend on the thickness h and on Ra.
These parameters were chosen to ensure that sufficient grid points lay in the regions
near z= z1 and z= z2, as well as in the boundary layers near z= 0 and z= 1.

For the reduced simulations, we used a simpler transformation of the form

z(ζ )= T (ζ , 0.25+ ν, η)+T (ζ , 0.75− ν, η)
T (1, 0.25+ ν, η)+T (1, 0.75− ν, η) , (B 3)

where T is defined in (B 2), and η(Ω, Ra) and ν(Ω, Ra) are again parameters that
control the stretching, chosen to ensure the dynamics near z = 0, z = 0.5, and z = 1
were fully resolved.

After an analytic transformation to (x, ζ ) coordinates, the governing equations (2.3c)
and (2.7) for both full and reduced simulations were solved on a uniform rectangular
grid. The transport equation (2.3c) was discretized in time with a second-order
alternating-direction implicit (ADI) method (Press et al. 1989). The diffusion and
advection operators were spatially discretized with standard second-order finite
differences and a second-order flux-conservative representation, respectively. The
Poisson equation (2.7) was solved for the streamfunction ψ , and thus the velocity
u, using a fast Fourier transform for the x derivatives and a standard second-order
finite-difference operator for the ζ derivative. The ADI method requires the values
of the velocity at the half time step, which were calculated using a second-order
midpoint method.

In the full simulations, both the transport equation and the Poisson equation were
solved across the whole domain. In the reduced simulations, the velocity at z = 0.5
was given by the jump condition (3.3), which was incorporated into the numerical
scheme by replacing the expression for the streamfunction at z= 0.5 from the Poisson
equation with an expression derived from (3.3). Since the temperature is continuous
at z= 0.5, the transport equation was again solved across the whole domain.

For the full simulations at Ra = 5000, we used a typical spatial resolution of
1x= (512)−1 and 1ζ = (350)−1 for the horizontal and vertical directions, respectively.
For the reduced simulations, we used a smaller vertical resolution of 1ζ = (220)−1.
The time step was chosen to be smaller than the Courant time scale. We confirmed
that the calculations were well resolved by doubling both the spatial and temporal
resolutions and recovering statistically identical results. Based on previous calculations
of the homogeneous layer (Hewitt et al. 2012), we expected that the smallest
horizontal scales decreased like Ra−1, and so a scaling of 1x ∼ Ra−1 was used
for simulations at other values of Ra.
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