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We develop a model of the rapid propagation of water at the contact between elastic
glacial ice and a poroelastic subglacial till, motivated by observations of the rapid
drainage of supraglacial lakes in Greenland. By treating the ice as an elastic bending
beam, the fluid dynamics of contact with the subglacial hydrological network, which
is modelled as a saturated poroelastic till, can be examined in detail. The model
describes the formation and dynamics of an axisymmetric subglacial cavity, and the
spread of pore pressure, in response to injection of fluid. A combination of numerical
simulation and asymptotic analysis is used to describe these dynamics for both a
rigid and a deformable porous till, and for both laminar and turbulent fluid flow.
For constant injection rates and laminar flow, the cavity is isostatic and its spread
is controlled by bending of the ice and suction of pore water in the vicinity of the
ice–till contact. For a deformable till, this control can be modified: generically, a
flexural wave that is initially trapped in advance of the contact point relaxes over
time by diffusion of pore pressure ahead of the cavity. While the dynamics are found
to be relatively insensitive to the properties of the subglacial till during injection with
a constant flux, significant dependence on the till properties is manifest during the
subsequent spread of a constant volume. A simple hybrid turbulent–laminar model
is presented to account for fast injection rates of water: in this case, self-similar
turbulent propagation can initially control the spread of the cavity, but there is a
transition to laminar control in the vicinity of the ice–till contact point as the flow
slows. Finally, the model results are compared with recent geophysical observations
of the rapid drainage of supraglacial lakes in Greenland; the comparison provides
qualitative agreement and raises suggestions for future quantitative comparison.
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Poroelastic deformation and subglacial flooding 1171

1. Introduction

Ice sheets, such as those that cover Greenland and Antarctica, transport inland ice
to the ocean. The flow of ice is driven by hydrostatic pressure gradients associated
with the thickness and topography of the ice and resisted by viscous coupling at
the base (Rignot, Mouginot & Scheuchl 2011; Schoof & Hewitt 2013). While the
topography and thickness of these land-fast ice masses have been carefully mapped
using remote observations, it is more difficult to determine the spatial and dynamical
pattern of coupling at the base. Previous efforts to constrain the basal conditions
have included bore-hole measurements of subsurface conditions (Fischer et al. 1998;
Clarke 2005), which provide pointwise estimates of basal properties, and large-scale
inversions (Larour et al. 2012; Sergienko & Hindmarsh 2013; Sergienko, Creyts &
Hindmarsh 2014), which use the large-scale viscous flow of an ice sheet with known
topography and surface velocity to infer the basal traction. Despite these efforts, the
response to changing properties at the base of ice sheets remains poorly understood,
particularly as the base of glaciers remains difficult to access. It has been observed
that, in general, the flow of the Greenland ice sheet accelerates at the beginning of
the melt season when much of the water is thought to be directed to the bed (Stevens
et al. 2016), but questions remain as to the surface and subsurface hydrology of melt
water and the spatial and temporal patterns of ice flow associated with enhanced melt
rates. A contributing factor in the ambiguity between melt water production and basal
sliding is the difficulty in quantifying the volume of melt water reaching the bed as
a function of time. For this reason, observations of the response of glacial sliding to
the drainage of a known volume of melt water from supraglacial lakes provide an
important constraint on processes within the subglacial environment.

In the past decade, observations of the drainage of supraglacial lakes have been
made in a number of melt seasons (Das et al. 2008; Stevens et al. 2015), which
help to constrain the local response to lake drainage events. Using seismometers, a
surface GPS network and pressure transducers deployed within the supraglacial lakes,
these studies characterised the precursor, drainage and sliding response of the ice sheet.
Supraglacial lake drainage events can be extremely rapid, with large (5–10 km2) lakes
draining in as little as 1–2 h. While there is some debate as to the mechanism by
which these drainage events are initiated, the more recent observations suggest that
catastrophic drainage is preceded by a slow uplift and increase in sliding velocity.
This precursor, and its influence on the ice velocity, has been thought to indicate
that some melt water initially lubricates the glacial bed, promoting divergence of the
ice velocity field and fracturing. After this initial transient, observations suggest a
measurable uplift of the ice in a broad, shallow dome, and a related patch of enhanced
ice velocity, both of which spread with time (Stevens et al. 2015).

These observations of subglacial drainage have spurred a number of modelling
studies, which have focused, in the main, on the initial hours of lake drainage. Tsai
& Rice (2010) used a two-dimensional theory of linear elastic fracture mechanics to
model the growth of a subglacial cavity in which melt water fractures the contact
between solid bedrock and elastic ice. Their study focused on the rapid drainage of
the lake, attempting to quantify the rate of lake drainage by solving for the elastic
deformation using a turbulent parameterisation for the flow of the subglacial water
and a fracture criteria at the leading edge. Dow et al. (2015) subsequently examined
the formation of channelised flow in the larger-scale subglacial system around the
drainage event, by coupling a model of turbulent, flow-driven fracture propagation
(Tsai & Rice 2010) with a model of subglacial channel formation (Pimentel &
Flowers 2011). Perhaps the most comparable study to the present investigation is
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that of Adhikari & Tsai (2015), who examined the effect of a pre-existing drainage
network. They modelled this network as a thin, pre-existing aperture below the ice,
which acts as a pre-wetting film for the flow, by analogy with the study of laminar
injection below an elastic sheet by Lister, Peng & Neufeld (2013). They again
consider a planar cavity spreading below a semi-infinite elastic medium, and above
a non-porous base, and apply a turbulent parameterisation of the flow throughout the
fracture and the pre-existing hydrological network.

In this paper, we consider the impact of subglacial till, as modelled by a saturated,
deformable porous layer, on the drainage of supraglacial lakes. More specifically, we
develop a theoretical model accounting for the radial spread of fluid at the base of an
elastic sheet resting on a saturated porous layer. The model describes the formation
and spread of a subglacial, water-filled cavity driven by a rapid influx of lake water,
providing localised flotation of the glacier, and the diffusion of pore pressure within,
and leakage of fluid into, the subglacial till. We make a number of simplifying
assumptions in order to focus on the fluid dynamical processes associated with
spreading over a deformable porous base: we employ lubrication theory throughout,
and assume an axisymmetric geometry, a simple rheological specification of the till
and a simplified description of the flexural response of glacial ice as that of an elastic
bending beam.

Beyond the direct application to supraglacial drainage, there has been renewed
interest in the fluid mechanics associated with spreading below an elastic sheet,
driven by applications in different settings including hydraulic fracturing (Wang
& Detournay 2018), magmatic intrusions (Thorey & Michaut 2016), soft robotics
(Rubin et al. 2017) and control of viscous-fingering instabilities (Pihler-Puzovic, Juel
& Heil 2014). It is well known that the spread of a shallow fluid layer beneath a
bending elastic beam depends sensitively on the conditions at its front or nose (Lister
et al. 2013; Hewitt, Balmforth & De Bruyn 2015b; Peng et al. 2015). In particular,
within the framework of lubrication theory, fluid cannot propagate between an elastic
sheet and the base without some form of regularisation at the nose, such as being
connected to a thin pre-wetted fluid layer or the presence of a vapour tip near the
nose. One of the primary goals of this work is to demonstrate that an underlying
rigid or deformable porous layer allows propagation without any regularisation at the
nose, and to explore the effects of such a layer on the dynamics of spreading.

We begin in § 2 with a description of the model set-up. In § 3 we consider laminar
flow in the limit in which deformation of the till is negligible, and then re-introduce
till deformation and diffusion of pore pressure in § 4. In § 5, we relax the assumption
of laminar flow and, using a simple hybrid parameterisation, examine the role of
turbulence on the spread of the subglacial cavity. Given the potential application
of this work for enhanced understanding of the transient response of ice sheets to
supraglacial lake drainage, we briefly discuss the relevance of our findings to recently
published observations of lake drainage events in § 6.

2. Model set-up

Consider a glacier of thickness d and density ⇢i resting on a shallow, deformable,
porous and saturated till of unstressed thickness b0. Adhesive forces between the till
and glacier are assumed to be weak, such that the glacier rests on the till rather than
being frozen onto it, as would be the case for temperate glaciers or at the margins of
the Greenland ice sheet during the melt season. For simplicity, in this derivation any
basal topography is ignored, although it could readily be incorporated in the existing
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Poroelastic deformation and subglacial flooding 1173

FIGURE 1. Schematic (not to scale) of the rapid inflation of a subglacial cavity in a radial
geometry, driven by an injection flux Q(t) at the origin. The base of the glacier, which
initially compresses the saturated till by an amount �h1, is uplifted to z = h(r, t). Where
h > 0, a cavity of fluid opens up between the glacier and the fully expanded till, which
has depth b0.

model framework. Motivated by the observations by Stevens et al. (2015) of a roughly
radial signal, we assume the subglacial spreading is axisymmetric and work in a polar
coordinate system (r, z), as sketched in figure 1, with the base height z = 0 set to be
level with the height of the unstressed till. At equilibrium, the till is compressed by the
glacier below this point, such that the base of the glacier lies at a height z = h1 6 0.
Fluid is injected into the till beneath the glacier at r = 0 with flux Q(t), causing the
till to expand and the base of the glacier to rise to a height z = h(r, t). If sufficient
fluid is injected, the till can expand to its unstressed height h = 0, and any increase
in pressure beyond this point will cause the ice to lift off the till completely (h > 0),
forming a fluid-filled cavity between the till and the ice (figure 1). If h > 0 anywhere,
we define the touchdown point or nose r = R(t) of the cavity to be the smallest radius
at which h = 0. Note that Q(t) is simply a parameter in this model: we do not attempt
to incorporate any description of how fluid propagates through the ice to its base (see
e.g. Rice et al. 2015).

We proceed by assuming that the characteristic radial length scales of flow below
the glacier are much larger than the uplift or the depth of the till, and so we use
lubrication theory to describe the spreading through the till and cavity.

2.1. The till
We treat the till as a saturated, linear poroelastic medium, characterised by an effective
stress tensor which is linearly related to the strain in the till. In the limit of a rigid till,
the till reduces to a standard incompressible porous medium. In the shallow limit, we
need only consider the vertical force balance on the till, which is dominated by the
vertical normal stress ⌃ (see e.g. Hewitt, Neufeld & Balmforth 2015a). The stress ⌃
can be decomposed into the isotropic fluid pore pressure p and an ‘effective’ network
stress � , giving ⌃ = p + � (cf. Terzaghi’s principle in solid mechanics (Wang 2000)).
Given that deformations are small, the network stress � can be linearly related to the
vertical strain ✏ via

� = �M✏, (2.1)
where M = K + 4G/3 � 1 is the stiffness (or, more precisely, the p-wave modulus,
defined in terms of the bulk and shear moduli of the till K and G; see Hewitt et al.
(2015a)).
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1174 D. R. Hewitt, G. P. Chini and J. A. Neufeld

In steady state, the strain will, in general, vary through the depth of the till to
balance the lithostatic gradient. If, however, the stiffness of the till is large (relative
to its weight) then the variation in strain across the shallow till is small; equivalently,
the compaction length of the till is much greater than its depth. In this limit, which
we assume here, the strain is independent of depth to leading order, and the stress is
thus

� (r, t) = �
Mh(r, t)

b0
, (2.2)

provided h < 0 (such that there is no overlying cavity), and � = 0 otherwise. Strictly,
equation (2.2) is a quasi-steady expression, which relies on an assumption that the till
evolves rapidly in the vertical in response to a change in stress. This assumption is
consistent with the shallow framework introduced in § 2.3. We note, however, that it
could be violated if the external time scales of flow (at the injection point or nose of
the cavity, for example) are much faster, as could be the case if the till permeability
or stiffness is small (see § 2.5).

At equilibrium the till is compressed by the weight of the glacier alone. As such,
the equilibrium height, or far-field compression height, is simply

h1 =
(p1 � ⇢igd) b0

M
, (2.3)

where p1 < ⇢igd is the background pore pressure in the till relative to atmospheric
pressure. In the limit of a rigid porous till, M ! 1, the medium is able to withstand
arbitrary stress, and so h1 ! 0.

2.2. The ice
We work under the assumption that the uplift of the cavity and the depth of the till
are small relative to the ice thickness d, such that tensional stresses are negligible, and
that the radial scales of the flow ⇠R(t) are long relative to d. As such, we model the
overlying ice as an elastic beam of bending stiffness B = Eid3/12(1 � ⌫2), in terms
of its Young’s modulus Ei and Poisson ratio ⌫. Ice uplifted by an amount h(r) thus
exerts a bending stress Br4h, where in radial coordinates r4 = [r�1@r(r@r)]2. This
formulation transforms an otherwise non-local description of elastic deformation into
a local bending-beam description, allowing for analytically tractable and interpretable
solutions.

While the first assumption above is certainly reasonable, the second (R � d) is
less likely to be strictly valid in the geophysical context of subglacial drainage. The
observations of Stevens et al. (2015) and the typical parameter ranges outlined in § 2.5
suggest that R and d are broadly comparable in size, although the radial scales of
deformation in the till can be rather larger, while the region near the nose of the cavity,
which is found below to play a crucial role in the dynamics, can be rather smaller. For
the purposes of this paper, we nevertheless proceed under the assumption of a bending
beam, in order to focus in detail on the effect of a porous and deformable substrate
on the dynamics of a spreading cavity. Detailed study of the accuracy of the beam
assumption in this context is left for future work, although we note that this issue
was considered in a related study of turbulent fracture near a free surface (Tsai &
Rice 2012).

Lastly, we also note that the ice in this model is purely elastic, and does not creep.
This is likely to be a reasonable approximation over the relatively short time scales
associated with the initial spread of the cavity (<O(1) day), but we would expect
viscous deformation to affect the forcing from, and response of, the ice at larger times.
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Poroelastic deformation and subglacial flooding 1175

2.3. Shallow-layer model
The shallow geometry indicates that vertical velocities are small, and hence that the
fluid pressure p in both the cavity and the till is hydrostatic,

p(r, z, t) = Pg(r, t) + ⇢g(h � z), (2.4)

where ⇢ is the density of water and Pg the pressure at the base of the ice. Above
the fluid-filled cavity, Pg simply consists of the overburden weight and the bending
stresses of the ice. Where there is no cavity, however, part of the pressure from the
ice is instead taken up by the network stress of the till itself, (equation (2.2)). Thus

Pg(r, t) =H(�h)
Mh
b0

+ ⇢igd + Br4h, (2.5)

where H is the unit Heaviside step function. The three terms in (2.5) represent,
respectively, the network stress in the till, which is non-zero only when h is negative,
the weight of the overlying ice and the bending stresses from the overlying ice with
bending stiffness B.

The radial flow u is given by Darcy’s law within the till. In the cavity, we initially
assume that the flow remains laminar (we relax this assumption in § 5) and, as such,
is described by standard lubrication theory with no slip beneath the glacier at z = h.
In both till and cavity, the flow is driven by the radial pressure gradient,

u = �
k
µ

@p
@r

for z < 0, (2.6a)

u =
z(z � h)

2µ

@p
@r

�
(z � h)ub

h
for z > 0, (2.6b)

in terms of the permeability of the till k, viscosity of water µ, and slip velocity ub =
u(z = 0+) at the contact between cavity and till, discussed below. Note that while u
represents the true fluid velocity for z > 0, it represents the Darcy flux, or flux of fluid
per unit area, for z < 0 within the till. We return to consider the effect of turbulent
flow in the cavity in § 5.

The velocity ub in (2.6b) describes the degree of slip between the flow in the till
and in the cavity above. The relevant slip velocity at a fluid–medium interface is
equivalent to an extension of the fluid region by a distance of roughly the pore scale,
⇠

p
k (Beavers & Joseph 1967; Le Bars & Worster 2006). Given that we expect the

permeability to be small (k ⌧ b2
0; see § 2.5), this distance is extremely small, and so

we take the Darcy flux in (2.6a), evaluated at z = 0, as a good estimate for ub. In
fact, since this flux is also very small (O(k)) relative to the flow in the cavity, we
instead simply set ub = 0, which simplifies the subsequent expressions. Although this
simplification could, in principle, be problematic in the vicinity of the nose of the
cavity where the height drops to become comparable to the pore scale, in appendix A
we demonstrate that, even in the nose region, the slip velocity plays a negligible role
in the dynamics.

Thus, given that ub = 0, the radial fluid flux q results from integrating over the depth
of the current,

q(r, t) = �


h3

12µ
+

kb0

µ

�
@p
@r

for h > 0, (2.7a)
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q(r, t) = �
k(b0 + h)

µ

@p
@r

for h < 0, (2.7b)

and contains contributions from flow in the cavity as well as flow in the subglacial till.
We note that the conditional limits in (2.7) are given in terms of the height h rather
than the relative size of the radius r and the touchdown point of the cavity R(t). It is
almost always the case that r > R(t) is equivalent to h < 0, but we will find that, in
certain solutions, oscillations in the uplift can allow for very small regions of positive
h ahead of the touchdown point.

Given these fluid fluxes, conservation of fluid mass within each vertical slice further
requires that

@ h̄
@t

+
1
r

@

@r
rq = 0; h̄ =

⇢
�0b0 + h (h > 0),
�(b0 + h) (h < 0),

(2.8)

in terms of the effective fluid height h̄, which is itself a function of the fluid volume
fraction or porosity � in the till. The porosity of the fully saturated till is a constant,
� =�0, while, when the till is compressed, conservation of solid in any slice indicates
that (1 � �)(b0 + h) = (1 � �0)b0. As such, @ h̄/@t = @h/@t everywhere. Thus, using
(2.4), (2.5), and (2.7), we arrive at equations that describe the evolution of the uplift h,

@h
@t

�
1
r

@

@r

⇢
r
✓

h3 + 12kb0

12µ

◆ 
⇢g

@h
@r

+ B
@

@r
r4h

��
= 0 (h > 0), (2.9a)

@h
@t

�
1
r

@

@r

⇢
r

k
µ

(h + b0)

✓
⇢g +

M
b0

◆
@h
@r

+ B
@

@r
r4h

��
= 0 (h < 0). (2.9b)

These equations are solved subject to the initial condition on the far-field
compression of the till, h = h1, and the following boundary conditions,

h0 = h000 = 0 as r ! 0, (2.10a)

h = [h0] = [h00] = [h000] = [h(iv)] = 0,
M
b0

h0 = �B[h(v)] at r = R(t), (2.10b,c)

h ! h1, h00 ! 0, h000 ! 0 as r ! 1, (2.10d�f )
where primes signify partial derivatives with respect to r, and [ f ] indicates the jump
in f at the specified value of r. These conditions describe, respectively: the symmetry
constraints on the deflection of the beam at the origin; continuity conditions at the
touchdown point r = R(t), including continuity of fluid flux; and conditions of a free
beam in the far field. These conditions provide twelve constraints (since h = 0 at r = R
constitutes two conditions); a thirteenth constraint, which allows for determination of
the unknown extent of the cavity, R(t), imposes the total fluid flux, expressed here in
terms of a volume flux Q(t), and can be written in terms of global mass conservation,

V(t) =
Z t

0
Q dt = 2p

Z 1

0
r(h � h1) dr, (2.11)

where V(t) is the total volume of fluid injected. The final relationship in (2.11) follows
from writing the fluid volume in both the till and the cavity in terms of the porosity
�, and cancelling terms using the relationships discussed after (2.8) that follow from
conservation of solid. We note that, as in (2.9), the dependence on the porosity � of
the till cancels out of the expression for the total volume.
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Poroelastic deformation and subglacial flooding 1177

2.4. Scalings
We render the model dimensionless by the introduction of a vertical length scale H
and characteristic elasto-gravity radial length scale L and time scale T ,

H ⇠ b0, L ⇠

✓
B
⇢g

◆1/4

, T ⇠
L2µ

H3⇢g
⌘

✓
Bµ2

b6
0⇢

3g3

◆1/2

. (2.12a�c)

In terms of the resultant non-dimensional variables, the governing equations become

@h
@t

�
1
r

@

@r

⇢
r
✓

h3

12
+ Da

◆✓
@h
@r

+
@

@r
r4h

◆�
= 0 (h > 0), (2.13a)

@h
@t

�
1
r

@

@r

⇢
rDa(h + 1)

�
1 + M̃

� @h
@r

+
@

@r
r4h

��
= 0 (h < 0), (2.13b)

where
Da =

k
b2

0
, M̃ =

M
⇢gb0

, h̃1 =
h1

b0
(2.14a�c)

are the Darcy number, or dimensionless permeability, the dimensionless stiffness of
the till and the dimensionless equilibrium compression depth, respectively. The initial
condition is h(r, 0) = h̃1 and the boundary conditions are as in (2.10), with (2.10b–f )
now written as

h = [h0] = [h00] = [h000] = [h(iv)] = 0, M̃h0 = �[h(v)] at r = R(t), (2.15a,b)

h ! h̃1, h00 ! 0, h000 ! 0 for r ! 1, (2.15c�e)

where R(t) is now the dimensionless radial position of the nose. Global conservation
of mass (2.11) in terms of the dimensionless flux or volume is

Ṽ =
Z t

0
Q̃ dt = 2p

Z 1

0
r(h � h̃1) dr, (2.16)

where the non-dimensional constant volume flux Q̃ and volume Ṽ are

Q̃ =
Qµ

⇢gb4
0
, Ṽ = V

✓
⇢g
b2

0B

◆1/2

. (2.17a,b)

2.5. Relevant parameter range for subglacial drainage
To motivate our numerical and analytical solutions, we estimate the magnitude of the
characteristic scales and key parameters using typical field values and, where available,
data from the glacier examined by Stevens et al. (2015). In that study, the depth of
the ice sheet was d ' 980 m, which, together with an estimate of the Young’s modulus
of the ice Ei = 0.32–3.9 GPa (Vaughan 1995; Krawczynski et al. 2009) and Poisson’s
ratio ⌫ = 0.3 (Tsai & Rice 2010) gives

B =
Eid3

12(1 � ⌫2)
' 3 � 34 ⇥ 1016 Nm. (2.18)
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1178 D. R. Hewitt, G. P. Chini and J. A. Neufeld

The elasto-gravity length scale is hence of order L ' 1.4–2.5 km, comparable with
the flexure observed in the GPS measurements. The properties of the porous till
are unknown at the site. Previous general estimates of the depth and permeability
of subglacial till vary widely, with depths ranging from b0 = 0.01–10 m and
permeabilities estimated as k ' 10�11–10�19 m2 (Fischer et al. 1998), all of
which imply that the Darcy number is small, but may vary over a wide range:
Da = 10�7–10�21. In the present study, we are limited by computational constraints
to numerical simulations with Da > 10�9, although our analytical results allow
reliable extrapolation to much smaller values of Da. The large range in till thickness,
b0, also suggests an extremely large range of possible characteristic time scales,
T ' 2 ⇥ 10�4–6 ⇥ 105 s. Similar measurements of the subglacial till give stiffnesses
in the range M ' 106–1010 Pa (Fischer et al. 1998), and hence a dimensionless
stiffness M̃ ' 101–108. These estimates suggest that deformation of the till may
vary substantially between glacial settings, with a correspondingly large variation in
the far-field compression, h̃1, although we note that physical properties are often
correlated in some manner, which reduces this variation (e.g. systems of clay and silt
are highly compressible and relatively impermeable, whereas coarse sand and gravel
are essentially rigid but highly permeable). Finally, during the drainage events reported
in Stevens et al. (2015) the lake volume V ' 0.0036–0.0077 km3 which drained
over 3–5 h, resulting in a dimensional flux of the order of Q ' 200–710 m3 s�1.
Hence, given the range of b0, the dimensionless flux could lie anywhere between
Q̃ ' 2 ⇥ 10�9–6.5 ⇥ 103.

Given the enormous range of possible parameter values, and numerical limitations,
we focus in the following sections on computations for which Da ⌧ 1 but Da >
10�9, M̃ � 1 and Q̃ ' 1. We use these results to validate our analytical solutions,
which more readily span the range of possible scales. We emphasise that the large
range of parameters, which results from the significant uncertainties and variability
in differing geophysical settings, suggests that the modelling framework developed
here could most usefully be used to infer the properties of the subglacial environment
through an analysis of the temporal and spatial dependence of the observed uplift
pattern.

2.6. Summary of the model formulation and solution method
In summary, the dimensionless uplift h(r, t), and the location of the nose of the
cavity R(t), are given by the solution of (2.13) subject to (2.10a), (2.15a–e) and
(2.16). Initially, there is no cavity (R = 0) and, for finite till stiffness, the glacier has
uniformly compressed the till to a level h = h̃1. The problem is characterised by four
dimensionless parameters: the Darcy number, or dimensionless permeability of the till,
Da ⌧ 1; the till stiffness relative to the weight of saturating fluid, M̃ � 1; the injected
volume Ṽ(t) or volume flux Q̃(t); and the initial compression of the till h̃1 < 0.
The problem reduces to flow over a rigid porous base in the joint limit M̃ ! 1
and h̃1 ! 0, while the model becomes ill-posed in the limit of an impermeable till
Da ! 0, at which point the cavity cannot propagate at a finite speed without invoking
additional physics in the vicinity of the contact at r = R (Lister et al. 2013; Hewitt
et al. 2015b).

In the following sections we analyse the model and make comparison with
numerical simulations. For these simulations, we solved (2.13) numerically on a
single domain, using a standard second-order finite difference spatial discretisation on
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Poroelastic deformation and subglacial flooding 1179

a regular grid, for which the flux into and out of each grid cell was calculated using
the relevant expression in (2.13) depending on the local sign of h. We then used a
semi-implicit scheme to advance in time. The constraint of global mass conservation
(2.16) was imposed as a boundary condition on the flux at the origin such that the
terms inside the curly braces in (2.13) were set equal to Q/2p at r = 0. The continuity
conditions at r = R (2.15a) were all implicitly enforced. The touchdown point r = R(t)
was determined by interpolation of the height profile in the first grid cell where h
changed from positive to negative, and the flux into any cells in which h crossed
zero was determined by a weighted average of the two expressions in (2.13a) and
(2.13b), based on the interpolated distance to the crossing point. All simulations used
sufficient grid resolution to resolve the bending scale at the touchdown point, and
were carried out on a domain that was sufficiently long to capture the diffusion of
pressure through the till. These sizes varied significantly depending on the parameters,
but for a typical simulation we used a domain 0 < r < 200 with a grid size dr = 1/50.

3. Rigid till

We consider first the limit in which deformation of the till is negligible, as might
be the case if it were composed of coarse sand or gravel, for example. In this limit,
M̃ ! 1 and h̃1 ! 0; the till behaves as a rigid porous medium and the flow is
parameterised by the permeability Da of the till and the flux Q̃ (or volume Ṽ) of
injected fluid. The governing equations (2.13) reduce to

@h
@t

�
1
r

@

@r

⇢
r
✓

h3

12
+ Da

◆✓
@h
@r

+
@

@r
r4h

◆�
= 0, (3.1)

for r < R(t), and h = 0 otherwise, subject to h0 = h000 = 0 at r = 0, h, h0, h00 ! 0 at
r = R(t). There can be no flux through the nose r = R(t) in this limit, since the
till ahead is rigid, saturated and unbounded, such that an infinite pressure drop
would be required to drive flow. The injected flux or total volume is given by mass
conservation (2.16) over the region r < R(t), which can equivalently be converted
into a flux condition at the origin. The boundary conditions at r = R correspond to
vanishing height, slope and bending moment where the glacier touches down, which
are the relevant conditions for a ‘free’ beam peeling off a substrate with no adhesive
force or fracture criteria. Ahead of the nose, the rigid till is undeformed and h = 0.

Fluid injected into the rigid till immediately creates a cavity, lifting up the overlying
glacier (figure 2a). The subsequent flow and uplift evolve through a series of regimes
over time, in which the spreading of the cavity exhibits different behaviours. These
are briefly outlined here. Very rapidly after injection starts (once h3 > O(Da)), the
majority of injected fluid flows through the cavity rather than the till. In this situation,
the dominant resistance to flow comes from the flow in the vicinity of the touchdown
point or nose (r =R(t)), where the cavity narrows and propagation is driven by peeling
up the overlying glacier and sucking fluid out of the porous till beneath. The majority
of the radial pressure drop therefore occurs across this peeling region, and the pressure
over the rest of the cavity is almost uniform (see figure 2(b); cf. Lister et al. 2013,
Hewitt et al. 2015b).

Until the cavity grows sufficiently large, elastic bending stresses from the overlying
glacier dominate the pressure gradient everywhere. Once R > O(1), however,
gravitational forces play a role in the spreading: first, gravity affects the shape
of the cavity while peeling by bending at the nose still controls the spreading rate;
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FIGURE 2. (Colour online) Snapshots for injection at a constant flux Q̃ = 1 into a rigid
medium, with Da = 1 ⇥ 10�9. (a,c) The height profile h(r, t) at times (a) separated by
powers of four between t = 2�7 and t = 2, and (c) separated by powers of two between
t = 23 and t = 210. (b) The pressure p(r, t) at z = h, for the same times as in (a). The
theoretical predictions for a constant-pressure cavity from (3.2) are also shown in (a) and
(b) (black dashed).

then, for R � 1, the pressure drop is dominated by viscous losses over the whole the
cavity, which subsequently evolves like a classical viscous gravity current (figure 2c;
cf. Huppert 1982).

In this paper, we will focus predominantly on the evolution of the cavity before
gravity plays a role (i.e. when R < O(1)), when bending by peeling at the nose
controls its spread. The evolution at very early times, when the flow is largely within
the porous till, is discussed in § 4.1.

3.1. A fixed flux
Once h3 >O(Da), which occurs very rapidly since Da⌧1, the pressure drop is largely
taken up by peeling at the nose r = R(t). Thus the pressure over the cavity is roughly
uniform (figure 2b), such that the flux through the cavity is small and the height
adopts a quasi-static profile. Given that the pressure is dominated by bending stresses
from the overlying glacier, p ⇡ r4h from (2.4)–(2.5), which can be integrated four
times to give the quasi-static profile

h ⇡
3V⇤

pR2

✓
1 �

r2

R2

◆2

, (3.2)

where V⇤ ⇡ Ṽ = Q̃t is the volume of fluid in the cavity. As the uplift approaches the
nose, (3.2) is locally quadratic with curvature  ⇠ Ṽ/R4, which matches to the peeling
profile at the nose.

This quasi-static interior profile must be matched to the peeling edge, where the
radial pressure gradient is significant and drives flow in the cavity and the porous till.
In the vicinity of the nose, we look for steady travelling-wave solutions to (2.13a)
moving with speed Ṙ and satisfying

�Ṙh0 = [(h3/12 + Da)h(v)]0, (3.3)

in terms of the local variable x = r � Ṙt, where 0 denotes a derivative with respect to x.
This nose region is characterised by vertical and horizontal length scales h ⇠ Da1/3 and
x ⇠ (Da/Ṙ)1/5 respectively, which are the height at which the horizontal flux through
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Poroelastic deformation and subglacial flooding 1181

the underlying till and the cavity are comparable, and the local bending or peeling
length at the tip, respectively. Given these scalings, and after integrating once,

c � f = ( f 3 + 1)f (v), (3.4)

where f = f (⇠) = h(12Da)�1/3, ⇠ = x(Da/Ṙ)�1/5 and c is a constant of integration that
gives the flux across the contact radius ⇠ = 0. Since the till is an unbounded rigid
medium ahead of the cavity, there is no leakage flux and we must set c = 0. In order
to match to the quadratic behaviour of the cavity (3.2) at the nose, we solve (3.4)
subject to f ⇠ A⇠ 2/2 as ⇠ ! �1, for some curvature A, and f = f 0 = f 00 = 0 at ⇠ = 0.
Numerical solution of this eigenvalue problem gives A ⇡ 1.58.

The speed of the nose then follows from a balance of curvature between the nose
and the cavity,

Ṙ =
⇣

A

⌘5/2
✓

Da
125

◆1/6

, (3.5)

where  = 24Ṽ/pR4 is the curvature of the cavity as it approaches the nose. Thus, for
a constant flux,

R(t) ⇡ 1.46

 
Q̃5Da1/3

A5

!1/22

t7/22, h(r = 0, t) ⇡ 0.45

 
Q̃6A5

Da1/3

!1/11

t8/22, (3.6a,b)

with A = 1.58. Note that, up to the value of the prefactor, these predictions
are essentially the same as solutions for flow over an impermeable base with a
pre-wetted film (Lister et al. 2013), with the film thickness in that situation being
replaced by the local height scale ⇠Da1/3 of the nose. Accordingly, the solutions
have an extraordinarily weak dependence on Da, with R ⇠ Da1/66t7/22. The fluid
spreads effectively independently of the permeability of the base, provided that the
permeability is small (but, crucially, non-zero).

Figure 3 shows a selection of data from numerical simulations which verify the
predictions in (3.6). The predictions give excellent agreement when Da is small, as
in the relevant geophysical limit, although the numerical solutions suggest a slightly
stronger dependence on Da than that in (3.6) when Da is relatively large. This
discrepancy arises because the assumption of a constant-pressure cavity breaks down
in this limit: if Da is too large there is only weak resistance to peeling at the nose;
both length and height scales of the travelling-wave solution, ⇠Da1/5/Ṙ and ⇠Da1/3,
become large, and the pressure drop can no longer be assumed to be localised to the
nose.

As discussed at the start of this section, once the current has spread to a radius
R > O(1), the gradient in hydrostatic pressure across the current becomes comparable
to the pressure drop across the nose. For intermediate times, bending stresses
associated with peeling at the nose still dominate the pressure gradient, but gravity
enters the pressure balance over the quasi-static cavity, which results in a different
expression in (3.2), and leads to a prediction R ⇠ t7/12 and h(r = 0) ⇠ t�1/6 in (3.6) (cf.
Lister et al. 2013). At later times, the viscous losses associated with the flow across
the cavity become so large that the spreading becomes dominated by gravity, except
in the vicinity of the nose and around the origin where bending stresses continue
to play a role. The cavity then spreads like a viscous gravity current with R ⇠ t1/2

and h(r = 0) roughly constant. This ultimate transition can be observed clearly in the
snapshots of figure 2(c).
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FIGURE 3. (Colour online) Data from computations with a rigid till and constant injection
flux, showing (a,b) the scaled position of the nose R(t)/Da1/66, and (c, d) the scaled height
of the uplift at the origin h Da1/33. (a,c) Solutions for Da = 10�3 (blue), Da = 10�5 (red),
Da=10�7 (green) and Da=10�9 (black), all with Q̃=1. (b,d) Solutions for Q̃=0.1 (blue),
Q̃ = 1 (red) and Q̃ = 10 (green), all with Da = 10�7. The dashed lines show the predictions
in (3.6). At very early times, the flow is dominated by flow through the porous till and
R ⇠ (Da t)1/6 (see § 4.1). For R � 1, gravity affects the dynamics and the flow spreads like
a classical gravity current with R ⇠ t1/2.

3.2. A fixed volume

If the flux Q̃ is stopped at some time tv, the injected volume of fluid Ṽ = Q̃tv continues
to spread, as would be the case for the rapid drainage of a finite volume supraglacial
lake. The travelling-wave solution at the nose in this case is identical to the previous
section, but now the integral of (3.5) indicates the cavity spreads according to

R(t) ⇡ 1.64

 
Ṽ5Da1/3

A5

!1/22

t1/11; h(r = 0, t) ⇡ 0.36

 
Ṽ6A5

Da1/3

!1/11

t�2/11, (3.7a,b)

where, again, A ⇡ 1.58. As in (3.6), the dependence on Da is effectively negligibly
weak. Note that the radius of the cavity continues to spread, but much more slowly,
while the height at the origin drops.

Figure 4 shows data from numerical simulations in which a constant flux of fluid
is injected up to t = 1, followed by the slumping of a constant volume of fluid.
As expected, the model again gives increasingly good agreement as Da is made
smaller (figure 4a,c). Over time, and for smaller volumes of fluid, there is a weak
drift from the asymptotic prediction, which arises as the length scale of the nose
region ⇠(Da/Ṙ)1/5 grows. Results for larger volumes of fluid also deviate from the
asymptotic predictions (figure 4b,d), as the radius more rapidly grows to a size large
enough for gravity to affect the flow.
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(a) (b)

(c) (d )

FIGURE 4. (Colour online) Data from computations with a rigid till showing the spread
of a fixed volume with tv = 1. (a,b) The scaled position of the nose R(t)/Da1/66, and
(c,d) the scaled height of the uplift at the origin h Da1/33. (a,c) Solutions for Da = 10�5

(red), Da = 10�7 (green) and Da = 10�9 (black), all with Q̃ = Ṽ = 1. (b,d) Solutions for
Q̃ = Ṽ = 0.1 (blue), Q̃ = Ṽ = 1 (red) and Q̃ = Ṽ = 10 (green), all with Da = 10�7. The
dashed lines show the predictions in (3.7). The vertical dotted line signifies t = tv , when
the injection flux is set to zero.

In summary, spreading with either a fixed flux or fixed volume is made possible
by the presence of an underlying saturated porous medium, but for a rigid till the
dependence of the propagation rate on the properties of the media in each case is
negligibly weak.

4. Deformable till

The case of a rigid till is given by the joint limit h̃1 ! 0 and M̃ ! 1. If the
till is not perfectly rigid but is instead initially compressed to some height h̃1 <
0, the deformation in the till must be coupled with the uplift of the glacier. We
begin this section by presenting some snapshots (figure 5) from numerical solutions
to motivate the subsequent analysis. When the till is deformable, a fluid-filled cavity
does not immediately form; instead, fluid initially flows into the till, causing it to
expand as the increased fluid pressure reduces the load on the matrix (e.g. first panel
in figure 5a). In general, after some time the till becomes fully saturated near the
injection point, and the glacier lifts off the base as fluid flows into a cavity above
the till. The subsequent spread of the cavity is qualitatively similar to flow above a
rigid base, except that the deformation of the till ahead of the nose can affect its
spread. Figure 5 demonstrates two different behaviours: for small till permeability, Da,
or small till stiffness, M̃, the deformation signal can remain localised to the nose,
taking the form of an oscillatory bending wave, while for larger Da or M̃, deformation
appears to propagate increasingly far ahead of the nose. The qualitative effect of the
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FIGURE 5. (Colour online) Snapshots of the uplift h(r, t) from numerical solutions with
Q̃ = 1, and h̃1 =�10�2, for different parameters representing relatively high or low values
of the till permeability and stiffness. Profiles are shown in each panel at times, from left
to right, t = 2�12, t = 2�3, t = 1, t = 23 and t = 26. Lower panels show an enlarged version
of the same data, to reveal the form of the uplift in the till; black lines show z = 0 (long
dashed) and z = h̃1 (short dashed) for reference. (a) ‘High’ permeability (Da = 10�3, blue)
and ‘low’ permeability (Da = 10�8, red), each with M̃ = 104. (b) ‘High’ stiffness (M̃ = 106,
blue) and ‘low’ stiffness (M̃ = 102, red), each with Da = 10�6.

deformation ahead of the nose on the spread of the cavity is not immediately clear:
in figure 5(a) the solution with more localised deformation at the nose lags behind
the other, while in figure 5(b) it spreads very slightly ahead.

We explore this behaviour in the following subsections. We begin in § 4.1 by
describing the initial spread when the majority of fluid flows through the till and, in
§ 4.2, the subsequent spreading in the till ahead of the cavity. We then examine in
some detail the spread of the cavity, driven by peeling at its nose.

4.1. Initial uplift from a poroelastic till
Fluid initially flows into the pore spaces in the compressed till. After some time
t = tb, the till in the vicinity of r = 0 becomes saturated and the glacier is lifted
up by the formation of a fluid-filled cavity. Up until this time, the flow is governed
by (2.13b) and (2.16), and, provided the radial extent of the flow remains small, is
dominated by the bending stresses from the overlying glacier, rather than by gravity
or the elasticity of the till. The dominant balances in those equations are thus h/t ⇠
Da h/r6, which describes fluid and pore-pressure diffusion under an elastic membrane,
and Q̃t ⇠ r2(h � h̃1).

Assuming the injection flux is constant, these scalings motivate the search for an
early-time similarity solution of the form

h = h̃1 +
Q̃ t2/3

Da1/3
g(⌘); ⌘ ⌘

r
(Da t)1/6

. (4.1a,b)

The solution g(⌘) satisfies the sixth-order ordinary differential equation (ODE)

2
3

g �
1
6
⌘

@g
@⌘

=
1
⌘

@

@⌘

"
⌘

@

@⌘

✓
1
⌘

@

@⌘
⌘

@

@⌘

◆2

g

#
, (4.2)
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FIGURE 6. (Colour online) (a) The similarity solution g(⌘) for the initial uplift, from
(4.2). (b–d) The time tb at which the glacier first lifts off the base, extracted from
numerical computations with Q̃ = 1, as a function of Da and for stiffness (b) M̃ = 102,
(c) M̃ = 104 and (d) M̃ = 106. The initial compression of the till is h̃1 = �10�3 (black
circles), h̃1 = �10�2 (blue stars) and h̃1 = �10�1 (red squares). Dashed lines show the
asymptotic prediction tb ⇡ 32.2(|h̃1|3Da/Q̃3)1/2, which is independent of M̃ but breaks
down if Da M̃|h̃1|/Q̃ is sufficiently large (see (4.5)).

together with g0 = g000 = 0 at ⌘ = 0, g = g00 = g000 = 0 as ⌘ ! 1 and 2p
R1

0 ⌘g d⌘ = 1.
Numerical solution of this ODE (figure 6a) shows that the uplift decays away from
the origin and exhibits strongly damped oscillations about g = 0 (h = h̃1).

A cavity will form above the till once the height rises to h = 0, which is when the
effective solid stress has dropped to zero and the till is fully saturated. The highest
uplift is evidently at the origin (see solution in figure 6a), and the numerical solution
gives g ! 0.0988 as ⌘ ! 0. This value, from (4.1), gives h = 0 when

tb ⇡ 32.2

 
|h̃1|3Da

Q̃3

!1/2

. (4.3)

This prediction for the lift-off time tb is independent of the stiffness of the till,
and gives good agreement with numerical results over a range of parameter space
(figure 6). The prediction breaks down, however, if the radial scale of the flow
⇠(Da t)1/6 becomes comparable to the length scale at which stiffness in the till
balances the bending stresses, ⇠M̃�1/4, before the till is fully saturated; i.e. if

tb & ts ⌘
1

M̃3/2Da
, (4.4)

or
|h̃1|DaM̃

Q̃
& O(0.1). (4.5)

If (4.5) holds, the flow in the till changes to a classical poroelastic diffusive current
and spreads much more rapidly (r ⇠ t1/2, as discussed in § 4.2 below). This transition
will therefore significantly delay the formation of a cavity, as can be seen in the data
from simulations in figure 6.
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1186 D. R. Hewitt, G. P. Chini and J. A. Neufeld

4.2. Deformation in the till
Once t & ts, as defined in (4.4), the stiffness of the till, rather than the bending stress
of the overlying ice, dominates the radial pressure gradient in the till. Irrespective of
whether a cavity has formed near r = 0 or not, the deformation in the till far from
the origin is governed by classical poroelastic diffusion after this time, and (2.13b)
reduces to the linear diffusion equation

@h
@t

⇡
DaM̃

r
@

@r
r
@h
@r

, (4.6)

provided h̃1 ⌧ 1 and M̃ � 1. Equation (4.6) gives diffusive radial spreading over a
length scale r ⇠ (DaM̃ t)1/2, which we will return to in the following sections and
thus denote by X(t). Subsequently, we will show that the ratio of this poroelastic
deformation length X ⇠ (DaM̃ t)1/2 to the radius of the cavity R(t) controls the
evolution of the system.

4.3. The spread of the cavity
Once the glacier has lifted off the base and the cavity has grown large enough
(h3 > O(Da)), the fluid-filled cavity spreads in a manner analogous to spreading over
a rigid till in § 3: peeling by bending at the nose over a narrow region of length
(Da/Ṙ)1/5 controls the spread of the roughly uniform-pressure cavity behind, which
evolves quasi-statically as in (3.2). However, the details of peeling at the nose are
different, and depend on the manner in which the cavity matches to deformation in
the till ahead of the nose.

The matching depends crucially on whether the cavity radius R(t) is large or small
relative to the characteristic length scale X(t) of deformation in the till discussed in
§ 4.2. The two cases are shown schematically in figure 7(b,c), respectively. When the
cavity radius is large compared to deformation in the till, R � X, there is a compact
travelling-wave region around the nose which matches smoothly to an undeformed
profile ahead, and propagation is by peeling. In contrast, when the deformation in the
till extends over a larger region than the cavity radius, X � R, the travelling-wave
region matches the quasi-static cavity behind to a spreading region of deformation in
the till ahead of the nose. Generically, we find that the flow evolves from the former
case towards the latter, but that the influence of gravity on the flow may take hold
before this transition can occur at R & 1.

As in § 3, the shape of the quasi-static cavity is given by (3.2), while the evolution
of the nose is again described by a local travelling-wave solution,

� Ṙh0 ⇡

(
[(h3/12 + Da)h(v)]0 if x 6 0,

Da[h(v) + M̃h0]0 if x > 0,
(4.7)

from (2.13), where x = r � Ṙt, recalling that we are working in the limit M̃ � 1. Again,
as in § 3, (4.7) can be rescaled by the vertical height scale h ⇠ Da1/3 and local bending
length x ⇠ (Da/Ṙ)1/5, and integrated to give

c � f =

(
( f 3 + 1)f (v) if ⇠ 6 0,

f (v) + � 4f 0 if ⇠ > 0,
(4.8)

9C
C#

%�
��

�"
: "

$8
��

� 
��

��
��7

 
 �

��
� 


�
	

�
")

!�
"2

�6
��

7$
" 

�9
CC

#%
���

)
)

)
 4

2 
3$

:�
86

 "
$8

�4
"$

6 
�1

6!
��

63
D$

*�
.:

3$
2$

*�
"7

�/
D%

:4
��"

!�
��

�0
4C

��
��

��
2C

��
��

	
��

��
�%

D3
�6

4C
�C"

�C9
6�

,2
 

3$
:�

86
�,

"$
6�

C6
$ 

%�
"7

�D
%6

��2
(2

:�2
3�

6�
2C

�9
CC

#%
���

)
)

)
 4

2 
3$

:�
86

 "
$8

�4
"$

6�
C6

$ 
% 

https://doi.org/10.1017/jfm.2018.624
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Poroelastic deformation and subglacial flooding 1187

(a) (b)

(c)

FIGURE 7. (Colour online) Schematics of the travelling-wave region around the nose for
(a) a rigid till, (b) a deformable till with R � X (here drawn with � ⌧ 1; see (4.9) and
§ 4.3.1) and (c) a deformable till with R ⌧ X, where X = (Da M̃ t)1/2 is the length scale
of poroelastic deformation in the till and R is the radius of the cavity. The grey shaded
regions denote the till, the vertical lines indicate the right-hand edge of the travelling-wave
region, while the thick blue arrows denote the flux of fluid. Only in (c) does fluid spread
ahead of the travelling-wave region.

where f = f (⇠) = h/(12Da)1/3, ⇠ = x(Ṙ/Da)1/5, c is a constant of integration that gives
the flux across ⇠ = 0, and the new parameter

� =

✓
Da
Ṙ

◆1/5

M̃1/4 (4.9)

is the ratio of the characteristic peeling length at the nose, (Da/Ṙ)1/5, to the length
scale over which bending and stiffness balance in the till, M̃�1/4. Equation (4.8) is
solved subject to f ! A⇠ 2/2 as ⇠ ! �1 and f = [ f 0] = [ f 00] = [ f 000] = [ f 0000] = 0 at
⇠ = 0, for some curvature A(c, � ). The conditions as ⇠ ! 1 depend on the spatial
form of the deformation ahead of the nose, as discussed below.

Once again, the curvature A(c, � ) determines the spreading rate Ṙ via (3.5). Given
A, the radius R(t) and height h(r = 0) are exactly as in (3.6). However, unlike for (3.4),
the flux c is not, in general, zero. Instead c, and the solution f (⇠), are determined by
matching to the deformation in the till as ⇠ ! 1.

We note here that, given c as discussed in the following subsections, the true
(unscaled) flux through the nose, which we label qR, can be determined by reversing
the scalings that yielded (4.8) and integrating around the fixed radius r = R to give

qR = �2pR c Ṙ(12Da)1/3. (4.10)

4.3.1. Compact response: R � X
When the length scale of deformation in the poroelastic till is small compared with

the cavity radius, R � X = (Da M̃ t)1/2, the travelling-wave solution matches smoothly
to h = h̃1 ahead, as the cavity overruns the characteristic diffusion of pressure in the
till. In scaled variables, f ! f1 as ⇠ ! 1, where

f1 =
h̃1

(12Da)1/3
, (4.11)
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FIGURE 8. (Colour online) (a,b) Solutions of the travelling-wave equation (4.8) in the
limit R � X = (Da M̃ t)1/2, such that the travelling wave matches smoothly to h̃1 ahead.
(a) f1 = 0, and (b) f1 = �2, with � = 0 (black), � = 1 (blue), � = 101/4 (red) and
� = 1001/4 (green). (c) The curvature A = f 00(⇠ ! �1) of the travelling-wave profile, as
a function of the scaled flux c, in the soft-till limit � = 0 (red squares) and in the rigid-till
limit � ! 1 (black circles). The dashed lines show the asymptotic predictions for large
c: A ! |c| and A ! 1.2|c|2/5. (d) A density map of the curvature A(c, � ), calculated
from (4.8) for different � and c. Recall that c evolves between the two limits c = f1 =
h̃1/(12Da)1/3 for R�X and (4.20) for R⌧X. The blue arrow sketches a typical trajectory
of the curvature over time (see § 4.4).

and so c = f1 from (4.8b).
It is evident from the form of (4.8) that solutions will depend on the size of � . In

the limit of a ‘soft’ till, � ⌧ 1, the stiffness length scale is much greater than the
bending scale at the nose, and (4.8) reduces to

f1 � f =

(
( f 3 + 1)f (v) if ⇠ 6 0,

f (v) if ⇠ > 0,
(4.12)

with boundary conditions as for (4.8), and f 0, f 00 ! 0 as ⇠ ! 1. Solutions of (4.12)
take the form of a damped oscillatory bending wave ahead of the nose (see solutions
with small � in figure 8a,b). The curvature A that matches to the cavity increases
with f1 (figure 8c) and has a limiting value A ! 1.78 as f1 ! 0. For large | f1|, the
relevant height scale of the solutions changes and an asymptotic analysis in this limit
gives A ! |f1| (figure 8c).

In the opposite limit of a ‘stiff’ till, � � 1, the uplift ahead of the nose is
dominated by relaxation of the network stress – that is, the effective solid stress – in
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Poroelastic deformation and subglacial flooding 1189

the till. In this limit, based on the form of (4.8) we expect a narrow boundary layer
of width � �1 immediately in advance of the nose, where bending and deformation
in the till balance. Beyond this layer, the uplift relaxes to its far-field value h̃1 over
a long scale ⇠� 4. We therefore look for a travelling-wave solution divided into three
regions,

f1 � f = ( f 3 + 1)f (v); �1 < ⇠ 6 0, (4.13a)
0 = f̂ (v) + f̂ 0; f̂ (⇣ ) = � 3f , ⇣ = � ⇠ ; 0 6 ⇣ < 1, (4.13b)

f1 � f = f 0; � = � �4⇠ ; 0 6 � < 1, (4.13c)

where the independent variables are ⇠ , the boundary-layer scale ⇣ = � ⇠ , and the long
scale � = � �4⇠ , respectively. By consideration of the matching conditions between
these regions, it can be shown that asymptotically consistent solutions to (4.13) require
continuity of the third derivative of h (that is, the shear force) at ⇠ = 0. All lower
derivatives must therefore vanish as ⇠ ! 0�, which provides sufficient constraints to
specify fully the solution for ⇠ < 0. Thus the region ahead of the nose has no impact
on the dynamics of the cavity in this limit: the cavity evolves exactly as though the
till were rigid, except with a non-zero value of c = f1 from (4.11). Numerical solution
of this problem shows that the curvature A again increases with f1 (figure 8c), with
limiting values

A ! 1.58 as f1 ! 0, A ! 1.2|f1|2/5 as f1 ! �1. (4.14a,b)

The former of these limits is simply the solution for a rigid till (§ 3), while the latter
can be found by an asymptotic analysis of (4.13a) after rescaling the radial scale by
⇠ ⇠ | f1|�1/5.

Given this solution for ⇠ < 0, the profile ahead of the nose can be calculated from
the matching conditions at ⇠ = 0. In the boundary layer, equation (4.13b) subject to
f̂ (0) = f̂ 0000(0) = 0, f̂ 000(0+) = f 000(0�) and f̂ bounded as ⇣ ! 1, gives

f̂ =
p

2f 000(0�) sin(⇣/
p

2) exp(�⇣/
p

2). (4.15)

Ahead of the boundary layer, the profile described by (4.13c) decays exponentially
over a wide region of width � 4, with f = f1[1 � exp(�⇠/� 4)] (see solutions with
large � in figure 8a,b).

4.3.2. Diffusion ahead of the cavity: R ⌧ X
If, instead, diffusion of pore pressure occurs over a length greater than the cavity

radius, R ⌧ X = (DaM̃t)1/2, the cavity lags far behind the pressure signal in the till.
This situation can only arise if � � 1, since � 5 ⇠ M̃1/4(Da M̃t)/R � 1, and so we
consider only that limit here.

As pointed out above, the cavity spreads independently of the solution ahead of the
nose when � � 1. Thus the only effect of the spreading current ahead of the nose is
to change the constant c. In the previous subsection, we set c = f1 by matching with
the undisturbed till ahead of the nose. Here, however, this can no longer be the case,
because the diffusive pressure signal in the till has already spread far ahead of the
nose, changing the uplift there. Equivalently, the flux through the nose (4.10) does not
accumulate within the travelling-wave region in this limit, but instead passes through
the nose to supply the diffusive spread in the till beyond (see figure 7c), thereby
reducing the fluid volume in the cavity.
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1190 D. R. Hewitt, G. P. Chini and J. A. Neufeld

The uplift in the till ahead of the nose is governed by the linear diffusion equation
(4.6). This equation has a similarity solution h(⌘) that satisfies

⌘
@h
@⌘

= � exp (�⌘2/4), h(⌘ ! 1) = h̃1; ⌘ ⌘
r

(Da M̃ t)1/2
. (4.16a�c)

The coefficient � in (4.16a) is determined by matching the height profile in the
vicinity of the touchdown point r = R with the local travelling-wave solution
there (given by (4.15) as ⇣ ! 1). This condition gives h(⌘ ! ⌘R) ! 0, where
⌘R = ⌘(r = R) ⌧ 1. The solution of (4.16a) for small ⌘ takes the form

h ⇠ h̃1 + � log(⌘) + O(⌘2), (4.17)

from which we deduce that

� ⇠ h̃1

"
log

 
(Da M̃ t)1/2

R

!#�1

⇠
2h̃1

log(Da M̃ t)
, (4.18)

provided R ⌧ X = (DaM̃ t)1/2.
The goal of this analysis is to determine the scaled leakage flux c in (4.8). This

can be achieved by balancing the true (unscaled) flux across the nose, given in (4.10),
with the flux into the till given from (4.6), which is qR = �DaM̃

R 2p

0 @h/@R|r=RR d✓ =

�DaM̃
R 2p

0 @h/@⌘|⌘=⌘R⌘R d✓ . Equating these expressions for the flux, and using (4.16a)
and (4.18), gives

qR

2p
⇠ �cRṘ(12Da)1/3 ⇠ �Da M̃� ⇠

2Da M̃|h̃1|

log(Da M̃ t)
, (4.19)

and so the scaled leakage flux

c ⇠
2Da M̃ f1

RṘ log(Da M̃ t)
, (4.20)

where f1 = h̃1/(12Da)1/3. Solutions in this limit are thus again characterised by (4.14)
and figure 8(c), but now with f1 replaced by c from (4.20). Note that while the true
flux qR in (4.19) decays over time like 1/ log(t), the scaled flux c ⇠ 1/RṘ log(t) grows
over time in this limit, which affects the evolution of the curvature A in (4.14), and
thus the spread of the cavity.

4.4. Summary: spread of the cavity for a fixed flux
In summary, the evolution of the cavity and the propagation of pressure in the till
depend on the relative size of the radius of the cavity and the poroelastic length scale
in the till. They are further determined by the size of � = (Da/Ṙ)1/5M̃1/4, which
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t t

(a) (b) (c)

FIGURE 9. (Colour online) The radius R(t) of the cavity from simulations with Q̃ = 1 and
(a) Da = 10�8, h̃1 = �10�2, (b) Da = 10�8, h̃1 = �10�3, and (c) Da = 10�4, h̃1 = �10�2.
In each case, the till has stiffness M̃ = 102 (black), M̃ = 104 (blue) and M̃ = 106 (red).
The black dashed line shows the corresponding solution with a rigid till.

compares the bending length of the nose region with the characteristic length scale
of pore-pressure diffusion, and f1 = h̃1/(12Da)1/3, which compares the compression
depth to the height of the nose region.

If the till is fairly impermeable or soft, then � is small and there is a constant flux
c = f1 into the travelling-wave region around the nose. The nose takes a form shown
schematically in figure 7(b), and deformation in the till ahead of the cavity is slaved
to the location of the nose. The curvature A is given by the red curve in figure 8(c),
and the spreading is unaffected by the stiffness M̃ of the till.

If, on the other hand, the till is fairly permeable or stiff, then � can be large. In
this case, the local travelling-wave region extends out ahead of the nose a distance
O(� 4). As long as this distance is much smaller than the extent of the cavity, then
again c = f1 and the deformation of the till is slaved to the location of the nose.
The curvature A is given by the black curve in figure 8(c). If, however, this distance
becomes large, then the pressure in the till diffuses ahead of the cavity, and the nose
takes the form shown schematically in figure 7(c). Fluid flows across the nose region
and feeds the diffusive spread in the till ahead. The scaled flux c grows over time
according to (4.20).

In each case, the approximate spread of the cavity is simply given by the rigid
prediction (3.6), with the relevant curvature A(c, � ). Of course, � grows over time
like 1/Ṙ1/5, and so the flow generically evolves from the former limit (� ⌧ 1) towards
to the latter (� � 1). The flux c can also grow over time in the latter limit. The time
dependence of these factors leads to slight variations from the time scale R ⇠ t7/22

in (3.6). The evolution of A over time can be visualised in figure 8(d), which shows
a numerically calculated phase plane of A(c, � ), together with a sketch of a sample
trajectory in time. When R � X, trajectories move vertically upwards as � grows in
time and c = f1 is fixed. Once R ⌧ X, trajectories will bend to the right, as fluid leaks
through the nose and c grows. Of course, the location and extent of this trajectory
depend on the specific parameters of the system, and we note that the curvature does
not necessarily vary monotonically along a trajectory.

The simplest conclusion of this analysis is thus that the cavity spreads as though it
were above a rigid medium, but with roughly O(1) variations in the curvature A. This
conclusion is demonstrated by the solutions in figure 9, which show that the radius of
the cavity for a variety of computations is relatively well approximated by the solution
for a rigid till. Note that the cavity above a deformable till is always shorter and
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10–110–3 103101 10–110–3 103101
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r r
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(c) 101
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FIGURE 10. (Colour online) Snapshots and data from computations with Da = 10�8 and
M̃ = 104 (blue) and M̃ = 106 (red). (a,b) Snapshots of the uplift, focused on the nose, at
(a) t = 2�3 and (b) t = 25. (c) The radius of the cavity R(t) (thin solid lines) and extent
of the deformation in the till R1(t) (thick solid lines). (d) The height of the uplift at
the origin. The early-time bending scaling t1/6 and diffusion scaling t1/2 are also shown,
together with the predictions of R and h from (3.6), for � ⌧ 1 and f1 = h̃1/(12Da)1/3 =
�2.03, for which A = 3.46 (dashed lines in (c) and (d)). The other parameters are Q̃ = 1
and h̃1 = �0.01, and the green stars in (c,d) indicate the times of the snapshots in (a,b).
Note that the kinks in R1 correspond to oscillations in the uplift ahead of the cavity.

higher than that above a rigid till, because the rigid limit A ! 1.58 is a minimum
of the curvature (see figure 8d). Note also that figure 9(c) shows one calculation in
which the cavity evolves quite differently: here the cavity only forms at all after a
very long time (ts in (4.4) is very large), and the majority of the injected fluid has
already spread through the till rather than forming a cavity.

Two more detailed examples, which highlight the subtle differences in the solutions,
are shown in figures 10 and 11. The figures show snapshots of both radius and height
of the cavity, together with a measure of the extent R1 of the deformation in the till,
which we define to be the smallest radius such that h(R1) is within 1 % of its far-field
value h̃1.

Figure 10(a,b) shows snapshots at two different till stiffnesses for a low till
permeability. Both solutions exhibit a low-� bending wave at the nose initially
(figure 10a), but, over time, the signal of deformation begins to grow ahead of the
nose for the solution with the larger stiffness (figure 10b). This behaviour, which
is indicative of the growth of � over time, can also be observed in the data in
figure 10(c): R1 exhibits a transition to a diffusive scaling ⇠t1/2 while the cavity
continues to spread like t7/22. Ultimately both R and R1 scale with t1/2, once gravity
dominates the flow. Note that the higher-stiffness solution spreads slightly faster and
has a slightly lower uplift than the lower-stiffness solution: this is a consequence of
the higher value of � here, which leads to a lower value of A in (3.6). Note also
that the lower-stiffness solution is well described by the theory with � ⌧ 1 until
gravity plays a role.

Figure 11 shows the same data but for computations with a higher till permeability.
Thus, � is slightly larger and the snapshots (figure 11a,b) show a clear evolution
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FIGURE 11. (Colour online) Snapshots and data from computations with Da = 10�5 and
M̃ = 104 (blue) and M̃ = 106 (red). (a,b) Snapshots of the uplift, focused on the nose, at
(a) t = 2�3 and (b) t = 25. (c) The radius of the cavity R(t) (thin solid lines) and extent
of the deformation in the till R1(t) (thick solid lines). (d) The height of the uplift at the
origin. The early-time bending scaling t1/6 and diffusion scaling t1/2 are also shown, as is
the prediction of the height at early times from (4.1) (dotted line in d). Predictions of R
and h from (3.6), for � ⌧ 1 and f1 = h̃1/(12Da)1/3 = �0.0203, for which A = 1.79, are
also shown in (c) and (d) (dashed lines). The other parameters are Q̃ = 1 and h̃1 =�0.01,
and the green stars in (c,d) indicate the times of the snapshots in (a,b). Note again that
the kinks in R1 correspond to oscillations in the uplift ahead of the cavity.

towards stiffness-dominated uplift ahead of the nose, much earlier than before. Despite
this, the theoretical prediction for � ⌧ 1 still gives a good fit with the lower-stiffness
computation (in which we estimate � ⇡ 0.3 initially, growing by roughly an order of
magnitude over the course of the simulation). Note that, unlike in the previous figure,
the cavity spreads more slowly here when the stiffness is larger. This is because the
diffusive signal in the till spreads far ahead of the cavity, causing an increase in the
flux c and thus a larger curvature A (as in figure 8d).

4.5. Spread of the cavity for a fixed volume
We end this section by considering the spread of a fixed volume over a deformable till.
Given the conclusions in the previous subsection, if the injection flux is set to zero
at time tv we expect the fluid-filled cavity to evolve like the solution for the rigid till
(3.7), but with a curvature A(c, � ) given by matching to the deformation in the till
ahead.

Figure 12 shows snapshots over time of the spread of a constant volume over a
deformable till, for different parameters. Unlike in the previous section, the figure
suggests that the evolution of the flow is strongly dependent on the till permeability
and stiffness, with the cavity rapidly draining away completely into the till if it is
sufficiently permeable or stiff. This behaviour is corroborated by the results of a set
of simulations in figure 13. The figure shows that, after the injection flux stops, the
fluid initially spreads as it would over a rigid base, as described by (3.6). However,
the radius of the cavity recedes relatively rapidly over some critical time, and the
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FIGURE 12. (Colour online) Snapshots of the uplift h(r, t) when Q̃ = 1 for t < 1 and then
Q̃ = 0, to give a constant volume Ṽ = 1. Profiles are shown in each panel at times, from
left to right, t = 1, t = 22, t = 24 and t = 26. Lower panels show an enlarged version of
the same data, to reveal the form of the uplift in the till; black lines show z = 0 (long
dashed) and z = h̃1 (short dashed) for reference. (a) ‘High’ permeability (Da = 10�4, blue)
and ‘low’ permeability (Da = 10�8, red), each with M̃ = 104. (b) ‘High’ stiffness (M̃ = 106,
blue) and ‘low’ stiffness (M̃ = 102, red), each with Da = 10�6.

height drops away much faster than predicted. The time scale for collapse of the cavity
appears to scale roughly with the inverse of Da, M̃ and h̃1. This strong dependence
on the parameters, in particular the stiffness M̃, contrasts with the behaviour for a
fixed flux, where the evolution of the cavity does not vary significantly across a wide
range of parameters.

The drainage of the cavity into the till here is a result of the leakage flux qR
through the nose (4.10). When the cavity is being fed by a constant volume flux, the
scaled flux c is either constant (if the nose matches directly to h̃1 ahead) or given by
(4.20) (if the nose matches to a diffusive signal ahead). In either case, the magnitude
of qR remains negligibly small relative to the constant injection flux, and V⇤ ⇡ Q̃t
remains a good approximation for the volume of fluid in the cavity in (3.2). However,
once the injection flux stops, the volume lost by leakage may no longer be negligible
relative to the now fixed volume Ṽ in the cavity. In fact, since the spread of the
cavity becomes much slower after injection, Ṙ becomes much smaller and � grows
significantly. Diffusion of pressure in the till thus rapidly overtakes the cavity once
injection stops, which indicates that the leakage flux rapidly evolves to be given by
(4.19):

qR ⇠
4pDa M̃ |h̃1|

log(Da M̃ t)
. (4.21)

A balance of the available volume Ṽ in the cavity with the integrated volume lost over
time by leakage into the till ahead (4.21) suggests that the cavity will have collapsed
after a time scale

t ⇠
Ṽ

DaM̃|h̃1|
, (4.22)
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FIGURE 13. (Colour online) Data from numerical solutions when Q̃ = 1 for t < 1 and
then Q̃ = 0, to give a constant volume Ṽ = 1. (a–c) The position R(t) of the nose,
and (d–f ) the total height of the uplift h � h̃1 at the origin. Different columns show
solutions for different parameters: (a,d) Da = (10�3, 10�4, 10�5, 10�6, 10�7), (b,e) M̃ =
(106, 105, 104, 103, 102) and (c, f ) h̃1 = �(10�3, 10�2, 10�1) (in each case, black, blue,
red, green, pink, respectively). Other parameters in each case are Da = 10�5, M̃ = 104 and
h̃1 = �10�2. Vertical dotted lines show the time at which the flux is set to zero. Black
triangles show theoretical scalings.

(ignoring logarithmic corrections and O(1) constants). That is, the time to drain the
cavity scales inversely with Da, M̃ and h̃1, in agreement with the results in figure 13.

Once the cavity has drained, the remaining relaxation of the till is governed
by classical poroelastic diffusion (4.6). The radial extent of the pressure signal
spreads over a scale r ⇠ (DaM̃t)1/2 and the height at the origin drops like t�1 (see
figure 13d–f ).

In summary, when the rate of advance of the cavity is rapid, as it is for a constant
volumetric influx or initially for the spreading of a constant volume, the qualitative
spread of the cavity is unaffected by the properties of the till, although they have
some signature in the uplift ahead of the cavity. However, as the cavity slows and
poroelastic diffusion outpaces the advance of the cavity, a significant fluid volume
leaks into the far field, resulting in a relatively rapid cavity collapse. Given the weak
dependence on till properties during the initial propagation, it is therefore worth noting
that the major observable feature that might constrain the properties of the subglacial
till would be the scale over which the cavity collapses.

5. Turbulent flow in the cavity

The drainage of supraglacial lakes is sufficiently rapid that in many cases the initial
flow is likely to be turbulent over a significant fraction of the cavity, as modelled
previously by Tsai & Rice (2010) in a limit in which the glacier was frozen to the
bedrock. In this final section, we briefly consider the effect of turbulent, rather than
laminar, flow in the cavity. In particular, and unlike in previous studies, we focus here
on determining when turbulence, rather than laminar peeling at the front, determines
the rate of propagation.
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Since the height of the cavity, and thus the effective local Reynolds number of the
flow, always decreases to zero where the glacier touches the till, there must still be
a region of laminar flow sufficiently close to the nose, irrespective of how vigorously
the fluid flows through the bulk of the cavity. Thus, following previous work for
flow in fractures (Dontsov 2016), we introduce a very simple phenomenological
relationship between the driving radial pressure gradient in the cavity and the mean
flow U, which is parameterised by an effective local Reynolds number Re for the
flow. This relationship reduces to the laminar and turbulent limits, @p/@r ⇠ U as
Re ! 0 and @p/@r ⇠ U2 as Re ! 1. To avoid overly muddying the analysis, we
choose an extremely simple relationship: the aim here is not so much to provide a
detailed empirical description for flow in the cavity at arbitrary Reynolds number,
but rather to gain qualitative insight into the relative importance of turbulence in the
interior, as opposed to viscous peeling at the front, in determining the propagation of
the cavity.

5.1. Simple model for hybrid turbulent–laminar flow
Following standard formulations for flow in channels and pipes, we introduce a
Darcy–Weisbach friction factor fD(Re) for flow in the cavity, which relates the
driving pressure gradient @p/@r to the mean radial flow U via

�
@p
@r

= fD(Re)
⇢U2

4h
, (5.1)

in terms of the (dimensional) height of the cavity h, density of fluid ⇢, and Reynolds
number

Re ⌘
⇢Uh
µ

. (5.2)

For laminar flow, this relationship has already been determined in (2.7a) (with U ⌘
q/(rh), and considering only the contribution from the cavity in that expression), and
gives

�
@p
@r

=
12µ

h2
U, H) fD(Re ! 0) !

48
Re

. (5.3)

For turbulent flow with Re � 1, we instead make a phenomenological argument that
the mean turbulent flow U is bounded by viscous shear layers of width � ⌧ h against
the top (ice) and bottom (till) surfaces of the cavity. We can estimate the scale of these
layers by assuming the local boundary-layer Reynolds number is held at some critical
value Rec ⇠ O(103) (this parameter also incorporates the effects of wall roughness and
can vary significantly; see e.g. Dontsov 2016) such that

⇢U�

µ
' Rec. (5.4)

A balance of the pressure gradient with the viscous stresses from the two boundaries
thus gives

�
@p
@r

h ' 2µ
U
�

' 2µU
⇢U

µRec
, (5.5)

and hence
fD(Re � 1) '

8
Rec

. (5.6)
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Poroelastic deformation and subglacial flooding 1197

Perhaps the simplest possible patch of the two limits in (5.3) and (5.6) is an additive
composite,

fD(Re) '
8

Rec
+

48
Re

, (5.7)

for which (5.1) reduces to

�
4⇢h3

µ2

@p
@r

= Re2
✓

8
Rec

+
48
Re

◆
. (5.8)

More usefully, we can invert this relationship and combine with (5.2) to give

Uh = sgn(G)
3µRec

⇢

 s

1 +

����
G

72Rec

����� 1

!
, (5.9)

where sgn(x) signifies the sign of x, and

G(h) = �
4⇢h3

µ2

@p
@r

. (5.10)

We note that other empirical turbulence relationships incorporating wall roughness can
be readily included in the analysis (see appendix C), but that this does not significantly
alter either the physical model or the spreading behaviour.

Given (5.9), we can simply replace the relevant flux term in (2.7a), and combine
with mass conservation (2.8) to give a new evolution equation for the uplift of the
glacier for h > 0. Such an operation yields

@h
@t

+
1
r

@

@r

✓
rkb0

µ

@p
@r

◆
+

1
r

@

@r
(r Uh) = 0, (5.11)

which, when combined with an expression for the pressure gradient from (2.5),
replaces (2.9a) as the governing equation for h > 0. In terms of dimensionless
quantities, scaling as in § 2.4, (5.11) reduces to

@h
@t

+
1
r

@

@r

✓
r Da

@p
@r

◆
+ sgn

✓
@p
@r

◆
1
r

@

@r

"
r

6Re

 
�1 +

s

1 +Reh3

����
@p
@r

����

!#
= 0,

(5.12)
for h > 0, where @p/@r = �(@/@r)(h + r4h) is the driving pressure gradient and the
parameter

Re ⌘
1

18Rec

b4
0

µ2

✓
⇢9g5

B

◆1/4

=
2

3Rec


b2

0

12µ

⇢gb0

L

�
⇢b0

µ
, (5.13)

is a scaled effective Reynolds number, based on the depth of the till and an elasto-
gravity velocity scale written in terms of the bending length L in (2.12). The original
viscous model (2.13a) is recovered in the limit Re ! 0.
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5.2. Implications of the hybrid model
For simplicity we consider flow above a rigid till. In the vicinity of the nose, a local
travelling-wave solution of (5.12) satisfies

�Ṙh = Dah(v) �
1

6Re

⇣
�1 +

p
1 �Reh3h(v)

⌘
, (5.14)

having integrated once, and under the assumption that the pressure gradient is positive
throughout the region. If the last term inside the square root is small inside the nose
region, then (5.14) reduces to the laminar balance (3.3). Given the height and length
scales of the nose region, this constraint reduces to

Re(12Da)4/3

(Da/Ṙ)
< O(1), or Re .

1
12Ṙ(12Da)1/3

. (5.15a,b)

In this limit, the pressure drop is still dominated by peeling at the nose, where the
flow is laminar. The turbulent cavity thus remains at a uniform pressure to leading
order and spreads exactly as before, controlled by laminar peeling at the front.

If, however, (5.15) does not hold, then the nose region is no longer fully laminar.
In this situation, we find a qualitative change in the flow: the nose can no longer
approach the interior cavity as a quadratic, which suggests that the construction of
a constant-pressure cavity and a peeling nose must break down. Indeed, as briefly
outlined in appendix B, once turbulence enters the peeling region, the height of the
cavity approaches the nose like (R � r)5/2 and the pressure is no longer uniform to
leading order across the cavity. In this limit, the dominant contribution in (5.12) is
from turbulent flow in the cavity. Provided that bending stresses, rather than gravity,
dominate the pressure gradient (i.e. R . 1), (5.12) reduces to

@h
@t

⇡
1

6
p
Rer

@

@r

"
r ⇤

r
h3

@

@r
r4h

#
, (5.16)

where ⇤
p

x = sgn(x)
p

|x| is a sign-preserving square root. For a constant injection flux,
(5.16), together with (2.16), has a similarity solution which satisfies

6
11

✓
3f � 4⌘

@f
@⌘

◆
=

1
⌘

@

@⌘

2

4⌘
⇤

s

f 3
@

@⌘

✓
1
⌘

@

@⌘
⌘

@

@⌘

◆2

f

3

5 ; 2p

Z ⌘N

0
f ⌘ d⌘ = 1,

(5.17a,b)
where

⌘ = r

 
Q̃2

Re

!�1/11

t�4/11, h =
⇣

Q̃7
R

2
e

⌘1/11
t3/11f (⌘), (5.18a,b)

and ⌘N is an eigenvalue which determines the location of the nose. The boundary
conditions are f 0(0) = f 000(0) = 0 and f ⇠ (⌘N � ⌘)5/2 as ⌘ ! ⌘N (see appendix B),
together with an integral constraint for the total volume. Numerical solution of (5.17)
gives ⌘N = 1.308 or R(t) = 1.308(Q̃2/Re)

1/11t4/11.
Figure 14 shows numerical solutions of the full hybrid problem (5.12) for different

values of Re, which demonstrate the transition between laminar and turbulent flow at
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0 0.2 0.4 0.6 0.8 10–110–3 101 10–110–3 101

0.5

1.0

1.5

2.0

100

10–1

0.7

0.8

0.9
1.0

0.6

0.5

t tr

h R

(a) (b) (c)

FIGURE 14. (Colour online) Numerical solutions of the hybrid turbulent–laminar model
for Re = 1 (black), Re = 10 (blue), Re = 100 (red) and Re = 103 (green). All computations
have a rigid till with Da = 10�10 and a fixed injection flux Q̃ = 1. (a) Snapshots of the
height of the cavity h at t = 0.5, together with the constant-pressure cavity prediction
(black dotted) and the turbulent similarity solution of (5.16) (green dashed, for Re = 103).
(b) The cavity radius R(t), for the same computations, and (c) the scaled cavity radius
R/t7/22. Again, the prediction for a laminar nose (black dotted, from (3.6)) and that for a
turbulent nose (green dashed, for Re = 103 from (5.18)) are shown. Solutions evolve from
the latter toward the former. At later times, gravity dominates and the spreading becomes
faster.

the nose. The clearest qualitative effect of a higher value of Re is that the cavity is
shorter and higher (figure 14a), which is a consequence of the increased dissipation
in the flow. The evolution of the cavity, however, is remarkably similar between the
laminar and turbulent limits: the evolution of R(t) described by (3.6) and (5.18) differs
only by a factor of (t3/Q̃3

R
6
eDa)1/66, which is reflected by the nearness of the curves

in figure 14(b). These curves also show that solutions gradually evolve from a fully
turbulent cavity towards a constant-pressure cavity with a laminar nose over time, as
the flow slows down. This behaviour is particularly clear if the results are rescaled
(figure 14c). Given the scalings in (5.18) and the laminar nose constraint (5.15), the
time over which the flow evolves to the laminar peeling solution is

t ⇠R
10/7
e Q̃2/7Da11/21, (5.19)

over which time the cavity has reached a size

R ⇠R
3/7
e Q̃2/7Da4/21. (5.20)

Note that after this time, the evolution of the cavity is again governed by peeling in
the laminar nose region, and the pressure in the cavity is roughly uniform. The flow
may still be turbulent in the interior of the cavity, but this has no effect to leading
order: the pressure drop associated with any flow in the cavity, turbulent or laminar,
is small relative to that required to peel the glacier off the till at the nose.

Once the injection stops, the remaining volume Ṽ of fluid again continues to spread.
In the fully turbulent limit governed by (5.16), the similarity scaling now indicates
that R(t) ⇠ t2/11. The rate of advance Ṙ is therefore smaller, and so the peeling region
will become fully laminar even more quickly, given the constraint (5.15). Thus, the
flow will rapidly evolve to a situation in which the previous results for laminar flow
again apply. In particular, for flow over a deformable till, the spreading current will
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FIGURE 15. (Colour online) Numerical solutions of the hybrid turbulent–laminar model
when the injection flux Q̃ = 1 is set to zero at time tv = 1, and the till is deformable with
M̃ = 105 and h̃1 = �0.01. Different lines have Re = 10 (blue), Re = 103 (red) and Re = 0
(i.e. fully laminar; black dashed). (a) Da = 10�5 and (b) Da = 10�7.

again ‘leak’ fluid through the nose into the till ahead, as described in § 4.5, and the
cavity will again collapse into the till over the same time scale (4.22). In fact, even if
the flow remains fully turbulent at the nose, matching between the turbulent nose and
poroelastic diffusion in the till indicates that leakage will occur over the same time
scale. Figure 15 shows full solutions of the spread of a constant volume for different
Re, which demonstrates this behaviour.

6. Implications

6.1. Geophysical implications
The previous sections outline the various physical processes that may give rise to
the observed, transient measurements of uplift and enhanced basal sliding associated
with the rapid drainage of supraglacial lakes. Here we briefly discuss some of the
implications of our model and discuss how future interpretation of the geophysical
data could further constrain the properties of the subglacial till, leaving a detailed
comparison with geophysical data for future work.

The drainage, and rapid propagation, of supraglacial melt water has been measured
using a dense GPS network in Greenland (Das et al. 2008; Stevens et al. 2015).
These data sets measure the relative motion of points surrounding the supraglacial
lakes throughout the melt season, and have been processed to infer spatial patterns
of uplift and enhanced sliding rates of glacial ice associated with the rapid drainage
of a reasonably well-constrained volume of melt water. Analysis of the resulting data
may enable inference of the properties of the subglacial till and a more detailed
examination, on relatively short time scales, of the influence of melt water (or pore
pressure) on the coupling between ice velocity and the subglacial environment. To aid
in the comparison between predictions of our model and the geophysical observations,
table 1 shows a compilation of the non-dimensional and dimensional model results.

To focus the analysis, we take the results of the 2011 drainage event described in
Stevens et al. (2015) as a specific example. In § 2.5, an estimate of the natural flexural
length scale of the glacial ice of 1.4–2.5 km was shown to be comparable to the
flexural signal seen in the GPS observations. In addition, the geophysical observations
indicate that a lake volume V = 0.0077 ± 0.001 km3 drained in ⇠3 h, from which a
mean flux of Q ' 710 m3 s�1 can be inferred. Given these predictions, the transition
time for turbulent-to-laminar control calculated from (5.19) is '4 000 h, which is far
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Poroelastic deformation and subglacial flooding 1201

TABLE 1. Summary of non-dimensional and dimensional model results, showing the time
taken for the cavity to first appear, and predictions for the radius and height of the cavity
for both turbulent and laminar flow in the cavity. For the laminar case, the predictions
are shown both for a rigid and a deformable till. In the latter case, we have shown the
results for a fairly stiff till in which the pressure signal does not spread ahead of the
travelling-wave region (i.e. � � 1; R(t) � X(t)); in general, the parameter A varies over
time as discussed in § 4.4. Dimensional variables are all defined in § 2, and h1 = (p1 �
⇢igd)b0/M, as in (2.3).
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in excess of the ⇠3 h initial rapid flux of lake water, and suggests that the initial
drainage (over the first 3 h) was controlled by turbulent dissipation. An estimate
from the turbulent model in § 5 suggests that the cavity would have grown to a size
R ' 5.0–6.3 km over these three hours, with a central uplift of h(0, t) ' 0.2–0.35 m;
both of these predictions are roughly consistent with the GPS observations, which
suggest a maximum central uplift of ⇠0.6 m (Stevens et al. 2015). We note that,
once lake drainage had ceased and the water volume within the cavity was constant,
a transition to laminar flow is likely to have occurred rapidly (as discussed at the end
of § 5.2), such that subsequent propagation of the cavity would have been controlled
by laminar peeling at its nose.

The present analysis is also suggestive of both the initiation of the hydrofracturing
event, and the eventual subsidence of the observed uplift. A key conclusion of Stevens
et al. (2015) is that rapid drainage of supraglacial lakes is preceded by a transient
uplift, driven by the slow percolation of melt water to the base of the ice sheet,
which causes enhanced basal sliding. This enhanced basal sliding naturally produces
a localised divergence in the ice velocity, leading to the horizontal fractures, or
crevasses, which provide a fast route for water to reach the bed and are characteristic
of rapid supraglacial lake drainage events. While we make no attempt here to model
the transport of melt water to the base of the glacier (see e.g. Rice et al. 2015), our
model suggests that, in the presence of a poroelastic subglacial till, an initial, small,
melt water flux to the base may locally increase the pore pressure within the till.
After a characteristic time, summarised in table 1, this melt water flux is sufficient
to lift the base of the ice sheet off the till, a point certainly concomitant with an
enhancement of basal sliding. Subsequent initiation of crevassing would cause a rapid
increase in the flux of melt water to the base, triggering the turbulent expansion of
the subglacial cavity. During this transient activity, and shortly after the end of the
drainage event, the geophysical data (see e.g. the supplementary movies of Stevens
et al. 2015) suggest a flexural signal in the uplift of the ice at the extremities of the
expanding cavity, with a vertical amplitude of roughly ⇠0.1 m.

While it is not possible to constrain all the properties of the subglacial till
without a more detailed analysis, we can demonstrate that our model predictions,
together with plausible parameter estimates, are consistent with this observation. For
example, using a subglacial till thickness b0 ' 1 m, permeability k ' 10�12 m2, and
stiffness M ' 108 Pa, which are consistent with the geophysical data of Stevens
et al. (2015), the results of the model in § 4.3 (after redimensionalisation) suggest
that the vertical flexural amplitude would decrease over time from a ‘soft’-till limit
|h1| ' ⇢igdb0M�1 ' 0.1 m, which is consistent with the data, towards a ‘stiff’-till
limit b0Da1/3 = (b0k)1/3 ' 10�4 m. These same values suggest that for an uplift time
of 8 h, corresponding to the duration of the measured precursor (Stevens et al. 2015),
the mean magnitude of the precursor flux would be Q ' 0.3 m3 s�1 (using table 1).
While these results are suggestive, it is perhaps most pertinent to conclude that the
qualitative similarity between the structure of the geophysical observations and the
results of the model indicates that the properties of a poroelastic, subglacial till may
indeed determine both the initial and the eventual long-term response of ice sheets
to the drainage of supraglacial lakes. A more detailed analysis may provide more
quantitative estimates of the controlling properties of this subglacial till; we leave
such an analysis for future investigation.

6.2. Qualitative comparison with previous models
The modelling framework here is most similar to that used by Tsai & Rice (2010)
and Adhikari & Tsai (2015). Both of these studies employed a fully turbulent
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Poroelastic deformation and subglacial flooding 1203

parameterisation for flow in the cavity, with no porous till, and used a ‘deep’
approximation of the ice as an elastic half space. Tsai & Rice (2010) used a model
of fracturing at the tip, which does not allow for any leakage or spread of pressure
ahead of the cavity. Adhikari & Tsai (2015) instead coupled the spread of the cavity
to a pre-existing subglacial hydrological network, parameterised by thin fluid layer,
which allows for propagation of a flexural signal ahead of the cavity. Our investigation
contains two significant differences: we account for a deformable porous till below
the glacier; and we consider both a laminar and a hybrid turbulent–laminar model for
the flow within the cavity. We also employ the opposite approximation of a shallow
bending beam for the ice, rather than an elastic half-space (see § 2.2).

If the flow in the cavity is strongly turbulent, the predictions of this work
broadly match those of Tsai & Rice (2010) and Adhikari & Tsai (2015): poroelastic
deformation in the till plays a negligible role in its spread. It does, however, affect the
diffusion of pressure into the wider hydrological system ahead of the cavity, and thus
the observable flexural signals in the ice. At later times as the cavity slows, however,
laminar control is reasserted and the dynamics changes. A hybrid turbulent–laminar
model is crucial for capturing this transition in the physical control of the spreading
cavity from turbulent dissipation to laminar peeling and suction through the till at
the nose as the cavity spreads; a fully turbulent model, as employed in previous
work, would enforce a turbulent parameterisation even in regions where the gap
width becomes arbitrarily narrow. Poroelastic deformation in the till also controls
the leakage from and eventual collapse of the cavity; this raises the possibility of
inferring properties of the subglacial hydrology from measurements of the eventual
cavity collapse. Finally, poroelasticity of the till may play a key role in the initial
precursor behaviour of slow leakage to the base, local lubrication of the ice sheet
and diverging ice velocity, as discussed in the preceding subsection.

7. Conclusions

In this paper, we have developed and analysed a theoretical model of the spread of
fluid at the base of an elastic sheet that is resting on a shallow, saturated, poroelastic
bed. This model provides a framework in which to interpret observations of the
drainage of supraglacial lakes in Greenland made by Das et al. (2008), Stevens et al.
(2015) and others. The model consists of a simplified description of the elastic flexure
of glacial ice, using Euler–Bernoulli beam theory, coupled with the shallow flow of
water within an expanding subglacial cavity and poroelastic till.

In § 3, we showed that the spreading of a laminar cavity above a rigid till is
controlled by peeling at the nose of the cavity. Suction of pore fluid from the porous
till allows the cavity to propagate, but the dependence of the spreading rate on the
properties of the till is essentially negligible. We then extended this analysis to a
deformable till in § 4. For laminar injection with a fixed flux, propagation can be
broadly split into two regimes: first, in which variations in pore pressure associated
with bending at the front are confined to a travelling wave during relatively rapid
propagation; and second, in which diffusion of pore pressure through the till spreads
faster than the spreading cavity. Each regime has different signatures in the pressure
distribution ahead of the till, but the qualitative impact on the spreading of the cavity
is both subtle and relatively weak. Again, the properties of the till have minimal
impact on the spread of the cavity, although they do affect the coupling of the
cavity to the till ahead. In contrast, for the spread of a fixed volume of fluid, the
till properties play the dominant role in controlling the spread of the cavity, via the
leakage flux.
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In § 5, we used a simple hybrid parameterisation of turbulent–laminar flow to
investigate the situation when the flow in the cavity is highly turbulent, as is likely
to be the case for rapid supraglacial lake drainage (cf. Tsai & Rice 2010). In this
limit, the cavity spreads self-similarly and is independent of the properties of the till
(see the dimensional results quoted in table 1): turbulent dissipation within the cavity
results in a large-scale radial pressure gradient across the cavity. However, as the
radius of the cavity increases and the rate of expansion decreases, the flow becomes
laminar in the nose: the pressure drop instead becomes dominated by peeling and
suction from the till at the nose, and the cavity spreads as in the laminar cases
discussed above. Note that flow in the majority of the cavity may still be turbulent
in this limit provided the dominant pressure drop comes from laminar suction at the
nose.

Finally, in § 6 we briefly compared our results with geophysical data, and found
a qualitative reproduction of various key observations. This agreement suggests that,
particularly during the melt season when supraglacial lakes are observed to drain, it is
turbulent dissipation and flow through a poroelastic till which determine the subglacial
extent of melt water propagation and hence lubrication. The properties of the till are
unlikely to play a role in the rapid spread of the cavity, but will affect diffusion of
pressure and leakage of water into the wider subglacial hydrological system, the long-
term collapse of the cavity and the precursor and initiation stages of drainage. It is
to be hoped that a more detailed comparison between model results and geophysical
data might therefore yield further insights into the local lubrication conditions at the
base of the Greenland ice sheet, and thus help to explain the observed ice velocity
associated with lake drainage events.
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Appendix A. The slip velocity at the nose

We have assumed that the slip velocity ub in (2.6b) is negligible in this paper; if it
were included, it would give an additional contribution to the flux of order hub@h/@r
in (2.13a). The no-slip condition on the boundary between the fluid and the saturated
medium suggests that ub = O(Da), while a more detailed balance gives a correction to
this on the scale of the pore size, O(Da1/2) (Le Bars & Worster 2006). Given Da ⌧ 1,
the contribution from this flux is certainly negligible over the majority of the cavity,
but could, in principle, play a role in the nose region near r = R, where the flux
through till and cavity become comparable. In that region, h3 ⇠ Da, and so the extra
contribution to the flux from the slip velocity is O(Da4/3). The other contributions to
the flux in this region are O(Da), and so the slip velocity is also negligible in the
nose region.

Appendix B. Behaviour at the nose in the laminar and turbulent limits

After suitable rescaling, steady solutions in a frame moving with the nose satisfy

� f = f (v) + f 3f (v), (B 1)
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if the flow is laminar, or

� f = f (v) �
p

�f 3f (v), (B 2)

if the flow is fully turbulent. The former equation gives f (v) ⇠ 1/f 2 in the far field,
which might suggest an approach to the nose of f ⇠ �(R � r)5/3 for some � > 0. This
solution is inconsistent with (B 1), however, which would indicate that � < 0. Instead,
equation (B 1) matches to a constant-pressure cavity in the interior, and f approaches
the interior as a quadratic.

The turbulent travelling-wave equation, however, gives f (v) ⇠ 1/f in the far field,
which suggests f ⇠ �(R � r)5/2. In this case, equation (B 2) gives a positive value for
�, which suggests that a power-law solution of this form exists. Thus we anticipate a
similarity solution for the whole cavity in the fully turbulent limit, which approaches
the nose like (R � r)5/2. The dominant pressure drop in this case occurs across the
whole cavity, as for a viscous gravity current, rather than across the peeling nose.

Appendix C. General scaling behaviour for turbulence models

The turbulence model presented in § 5 is used primarily for the simplicity of
presentation and to demonstrate the utility of a composite expression matching
between laminar and turbulent behaviours in the spreading blister. However, wall
roughness may play a role in the scaling between the imposed pressure gradient and
the mean fluid velocity. Tsai & Rice (2010), for example, use a Manning–Strickler
relationship of the form

�rp / ⇢l1/3
w

U2

h4/3
, (C 1)

where lw is the wall roughness length scale. Since the turbulence relationship includes
an additional roughness length scale, the dependence on the cavity opening h is
necessarily altered, and raises the question of the how the mode and speed of
propagation depends on this additional parameter. To explore this behaviour more
generally, we replace the turbulent limit of (5.1) by a more general power-law
relationship,

�rp =
2⇢ l�wU2

Rech�+1
, (C 2)

which reduces to the form considered in the main text when � = 0. In the limit of
large Reynolds number, the turbulent evolution equation (5.16) can be reduced to

@h
@t

⇡
1

6
q
R̃e

1
r

@

@r

"
r ⇤

r
h�+3

@

@r
r4h

#
, (C 3)

where we redefine the rescaled effective Reynolds number, R̃e = Re(lw/b0)
� , to

incorporate the wall roughness scale lw. Assuming that turbulence extends into the
nose of the cavity, quasi-steady travelling-wave solutions can be sought with the
asymptotic form h ⇠ A[R(t) � r]n, for A, n > 0. Given this form, a balance of the
spatial dependence at the nose requires that n = 5/(� + 2), giving a propagation rate

dR
dt

=
1
6

A1+� /2

s
5(3 � � )(1 � 2� )(1 + 3� )(3 + 4� )

R̃e(� + 2)5
. (C 4)
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FIGURE 16. (Colour online) Numerical solutions of the self-similar turbulent model
(C 6): (a) the uplift f (⌘/⌘N) for � = 0, 1/6, 1/3 and 0.48; and (b) the eigenvalue ⌘N(� ).

In the limit � = 0, we recover the scaling behaviour h ⇠ (R � r)5/2 observed in § 5,
while the Manning–Strickler limit � = 1/3 gives h ⇠ (R � r)15/7. More generally, it is
evident from (C 4) that turbulent propagation of this kind is always possible provided
the dependence on the roughness length scale results in 0 6 � < 1/2.

As in the case � = 0 discussed in the main text, equation (C 3) admits a general
similarity solution with a constant injection flux, in terms of the similarity variable
and self-similar deflection profile,

⌘ ⌘ r

 
Q̃�+2

R̃e

!�1/(2�+11)

t�(�+4)/(2�+11), h =
⇣
R̃

2
eQ̃7
⌘1/(2�+11)

t3/(2�+11)f (⌘). (C 5a,b)

The self-similar profile is given by solution of

✓
6

2� + 11

◆ ⇥
3f � (� + 4)⌘f 0

⇤
=

1
⌘

@

@⌘

2

4⌘
⇤

s

f 3+�
@

@⌘

✓
1
⌘

@

@⌘
⌘

@

@⌘

◆2

f

3

5 , (C 6)

2p

Z ⌘N

0
f ⌘ d⌘ = 1, (C 7)

as depicted in figure 16(a). The solutions show a very similar overall structure for
different � , with only moderate influence on the prefactor ⌘N (figure 16b). The power-
law spreading rate is also barely affected by the exponent � , with R ⇠ t0.364–0.375 for
� 2 [0, 0.5].
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