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Shear-enhanced convection in a mushy layer
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We investigate the effect of an external shear flow on the buoyant instabilities
inherent in the directional solidification of a dendritic mushy layer. In the presence of
an external shear flow, perturbations of the mush–liquid interface lead to perturbed
flow in the bulk fluid that create pressure variations along the mush–liquid interface.
These pressure variations drive flow in the mushy layer. A numerical analysis of
the stability of the system provides the critical porous-medium Rayleigh number as
a function of both the external flow speed and the wavenumber of the interfacial
perturbations. In the limit of zero external flow we recover the so-called boundary
and mushy layer modes of buoyancy-driven convection first established by Worster
(J. Fluid Mech., vol. 237, 1992b, p. 649). We find that the application of an external
flow can significantly reduce the stability of both the boundary and mushy layer
modes. The resultant forced mushy layer mode gives rise to the formation of channels
of reduced solid fraction perpendicular to the applied flow that are distinct from
the planform found in the absence of an external flow. The stability of the system
is examined as a function of the principal thermodynamic and dynamic parameters,
and the results are applied to the solidification of sea ice in the presence of vigorous
oceanic flow.

1. Introduction
The coupling of natural and imposed fluid flow to phase change can lead to

dramatic changes in the morphology of growing crystals that in turn influence the
bulk mechanical and electrical properties of the solidified materials (see reviews
by Glicksman, Coriell & McFadden 1986; Davis 1990, 2001; Worster 2000). For
example, in metallurgical applications, flow within a solidifying network of dendritic
crystals, termed a mushy layer, can lead to the formation of zones devoid of solid,
called chimneys, which are associated with defects in the resultant material known
as ‘freckles’. The same class of phenomena occur in a wide range of geophysical
problems. For example, convective flows associated with the formation of sea ice
dominate the heat and salt fluxes to the ocean that combine to create the high-
latitude equivalent of the evaporation–precipitation cycle, and exert a controlling
influence on the formation of polar water masses (Wettlaufer, Worster & Huppert
1997; Wells & Wettlaufer 2007). Ultimately, the large-scale wind-driven motion of the
sea ice is coupled to its thermodynamic evolution through turbulent boundary layers
at the ice–ocean interface (e.g. Morison & McPhee 2001). The coupling of these heat
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and salt fluxes with large-scale oceanic currents is a problem of particular relevance
in the light of our analysis here.

Solidification of many geophysical and industrial systems occurs when these
multicomponent systems are driven far from thermodynamic equilibrium. The
resulting imbalance is relaxed by solidification, through nucleation and settling of
crystals or through the morphological instability of planar solid–liquid interfaces
(Mullins & Sekerka 1964). In consequence the solid–liquid interface is often highly
convoluted and forms an effective porous medium that is thermodynamically reactive,
termed a mushy layer. These dendritic arrays have been successfully modelled
as a continuum on a scale larger than the inter-dendrite spacing. Within this
thermodynamically controlled chemically reactive porous medium, temperature and
concentration are coupled through the liquidus relation which describes the solutally
dependent freezing point (see reviews by Worster 1992a, 1997, 2000). As the mushy
layer solidifies, motion of the interstitial and adjacent fluid can take place owing to
buoyancy forces associated with both thermal and compositional gradients. Worster
(1992b) and Chen, Lu & Yang (1994) detailed the onset of two distinct modes
of convection. A boundary layer mode, associated with the diffusion of solute in
the liquid adjacent to the mushy layer, gives rise to convection on a length scale
commensurate with compositional diffusion. The stability of this boundary layer
mode is largely determined by a compositional Rayleigh number RC , and leads to
fluid motion restricted primarily to the fluid layer. In contrast, a mushy layer mode
of convection takes place both within the porous mushy layer and the overlying
fluid, giving rise to marked changes in the volume fraction of solid, and hence the
permeability in the mushy layer. This mode is triggered when the buoyancy force
due to density gradients in the interstitial fluid overcomes the viscous resistive forces
associated with the proximity of the crystals. The stability of this mode is characterized
by a porous-medium Rayleigh number Rm, which depends on the solid fraction φ,
and hence the magnitude and structure of the permeability Π(φ), of the dendritic
layer. Both modes have been observed in the laboratory (Wettlaufer et al. 1997).
Because of the dependence of the critical porous-medium Rayleigh number Rc

m on
the permeability, we expect forced flows to influence the value of Rc

m and to ultimately
result in the formation of regions of zero solid fraction.

The effect of both natural and forced flows on the stability of a solidifying planar
solid-liquid interface to the morphological instability first described by Mullins &
Sekerka (1964) has been reviewed by Glicksman et al. (1986), Davis (1990, 2001) and
Worster (2000) and is, in part, motivated by the desire to control material properties
influenced by the corrugation of the solid–liquid interface. Of particular relevance to
our study is the work of Forth & Wheeler (1989, 1992) who assessed the stability of
a planar solid–liquid interface when growth was coupled to a shear flow described by
the asymptotic suction profile. They considered the effect of flow on both the diffusive
Mullins–Sekerka instability and the convective instability and found travelling wave
solutions that propagate in the direction of flow at large wavelengths with a speed
proportional to the Reynolds number. Furthermore, they found a slight stabilization
of the morphological instability as the magnitude of the external flow is increased.

The interaction of an external flow with the morphology of a mushy layer has been
studied previously by Feltham & Worster (1999), Chung & Chen (2001), Feltham
et al. (2002) and Neufeld et al. (2006). In their paper, Feltham & Worster (1999)
theoretically evaluated the stability of a mushy layer with a corrugated mush–liquid
interface solidifying into an external shear flow. They neglected the effects of buoyancy
and found that the coupling between external flow and the corrugated porous medium
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produced a Bernoulli pressure variation at the mush–liquid interface that drove flow
throughout the underlying mushy layer with a wavelength commensurate with the
mushy layer depth. This flow in turn perturbed the isotherms within the mushy layer
giving rise to enhanced growth of the interfacial corrugations of the mush–liquid
interface. A more detailed study including both the effect of an external flow and
buoyant forcing due to thermal and compositional gradients was later undertaken by
Chung & Chen (2001) who coupled flow, described by an asymptotic suction profile,
to both the thermal and compositional profiles across the perturbed mush–liquid
interface. The fluid velocity at the corrugated mush–liquid interface was treated using
a Beavers–Joseph boundary condition (Beavers & Joseph 1967). Additionally, they
considered perturbations to both the thermal and solutal fields, using the material
parameters of a 28 wt% aqueous ammonium chloride solution. They argued that
the coupling of the external flow to the corrugated mush–liquid interface leads to
a new forced mode of instability and that if perturbations to both the thermal and
compositional fields are considered, this mode can become forced at shear rates
substantially smaller than those found by Feltham & Worster (1999). However, in
contrast to the work of Feltham & Worster (1999) this new forced mode had a
wavelength commensurate with the boundary layer mode.

In the present paper, we study the effect of an external shear flow on the stability
of the mushy layer system to buoyancy-driven convection. In § 2 we outline the
physical configuration and detail the mathematical formulation of the problem. We
then review the unperturbed state in § 3, and formulate the linear stability analysis
and our solution procedure in § 4. Finally, in § 5 we explore the effect of the external
flow and dynamic and thermodynamic parameters on the convective modes of the
system and describe the physical basis of this interaction. We then put our remarks
into the context of previous studies. Concluding remarks are made in § 6.

2. Governing equations
Following previous studies, reviewed most recently by Worster (1997, 2000), we

consider a mushy layer, bounded from below by a horizontal plane defined by the
eutectic temperature TE , which is solidified at constant rate V into an overlying liquid
of bulk concentration C0 and temperature T∞ with a far-field velocity of u = U∞ x̂
(see figure 1). Because of the large interfacial surface area within the mushy layer we
assume that the temperature and concentration of the interstitial liquid are coupled
through the liquidus condition which we approximate by the linear relationship
TL(C) = TE + Γ (C − CE) where CE is the eutectic concentration and Γ is the liquidus
slope. Here we have considered solidification of a super-eutectic binary solution such
as a super-eutectic aqueous ammonium chloride solution. Length, time and pressure
scales within the system are given by κ/V , κ/V 2 and β∗�Cρ0gκ/V respectively. Here
ρ0 is the reference density, g is the acceleration due to gravity, �C = C0 − CE is the
compositional scale, κ is the thermal diffusivity and β∗ ≡ β̃ − Γ α̃, where α̃ and β̃

are the thermal and solutal expansion coefficients respectively. Finally, we define the
non-dimensional temperature θ and composition Θ as

θ =
T − TL(C0)

�T
and Θ =

C − C0

�C
,

where �T = Γ �C = TL(C0) − TE , and hence the thermal (�T ) and compositional
(�C) scales are representative of the variations over the depth of the mushy layer.
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Figure 1. Schematic of the system under consideration. A uniform shear flow is imposed over
a growing mushy layer. Flow within the mushy layer is coupled to that in the liquid via a
perturbed mush–liquid interface indicated by the dotted line.

2.1. Equations in the liquid

The interface between the mushy layer and the liquid is defined by z = ζ (x, t). The
equations governing heat, solute and momentum in the liquid region (z > ζ ) are

(∂t − ∂z)θ + u · ∇θ = ∇2θ, (2.1)

(∂t − ∂z)Θ + u · ∇Θ = ε∇2Θ, (2.2)

(∂t − ∂z)u + u · ∇u = −PrRC

β∗

β̃
∇p + Pr∇2u + Pr(RT θ − RCΘ) ẑ, (2.3)

∇ · u = 0, (2.4)

where ε = D/κ is the inverse Lewis number which is the ratio of solutal to thermal
diffusivity and Pr = ν/κ is the Prandtl number, where ν is the kinematic viscosity of
the fluid. Finally, the thermal and solutal Rayleigh numbers are defined as

RT =
gα̃�T (κ/V )3

κν
and RC =

gβ̃�C(κ/V )3

κν

respectively.

2.2. Equations in the mushy layer

As described above, the mushy layer is a dendritic array of crystals the interstices
of which are filled with a fluid that has a composition determined by the local
temperature through the liquidus relationship as described by Hills, Loper & Roberts
(1983) and Worster (1986, 2000). We utilize a continuum model known as ‘ideal mushy
layer theory’ in which differences in density, specific heat and thermal conductivity
between liquid and solid phases are neglected. This model is homogenized on a length
scale that is large relative to the dendrite spacing, but small relative to the thermal
length scale of the system. The equations governing heat and solute in the mushy
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layer (0 < z < ζ ) are written as

(∂t − ∂z)(θ − S φ) + u · ∇θ = ∇2θ, (2.5)

(∂t − ∂z)[(1 − φ)θ + C φ] + u · ∇θ = 0, (2.6)

where φ is the local volume fraction of solid within the mushy layer as described in
§ 1. Since diffusion of solute occurs only within the fluid on the length scale of the
fluid interstices we neglect the effects of compositional diffusion within the mushy
layer. In consequence, there are two dimensionless parameters introduced. The Stefan
number,

S =
L

c�T
,

captures the relative influence of the heat of fusion to the specific heat and is defined
in terms of the latent heat of fusion L , and the specific heat c. The concentration
ratio,

C =
Cs − C0

�C
,

characterizes the quantity of solute exchanged locally upon solidification and
dissolution, and is defined in terms of the concentration of solute within the solid
Cs . Within the mushy layer we assume that the interstitial fluid is incompressible and
hence, when combined with the assumption that ρs = ρl , continuity is expressed by

∇ · u = 0. (2.7)

Conservation of momentum is treated using Darcy’s equation

u = −RmΠ1(φ)(∇p + θ ẑ), (2.8)

where p is the dynamic pressure. The permeability is expressed as Π = Π̃0Π1(φ), and
thus a porous-medium Rayleigh number, described above, can be defined as

Rm ≡ gβ∗�CΠ̃0(κ/V )

κν
.

Finally, the Darcy number

Π0 ≡ Π̃0

(κ/V )2

is a non-dimensional measure of the permeability of the system. As we shall see later
the Darcy number is the parameter with the greatest influence on the stability of the
mushy layer to a mode forced by shear flow in the adjacent liquid.

2.3. Boundary conditions

The mushy layer is bounded from below by the eutectic (z = 0) where

θ = −1 and w = 0. (2.9a, b)

At the mush–liquid interface (z = ζ ) we impose continuity of the thermal and solute
fields. We conserve heat at the interface, as expressed by the Stefan condition, and
follow Worster (1986, 2000) in using the assumption of marginal equilibrium, which
states that the liquid has the minimal interfacial temperature gradient necessary
to eliminate constitutional supercooling. This assumption also constrains the solid
fraction. Velocity normal to the interface and pressure are continuous across the
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mush–liquid interface and a no-slip condition is applied. These boundary conditions
are expressed as

[θ]ml = 0, θ l = Θl, φ = 0, (2.10a, b, c)

φS vn = [n̂ · ∇θ]ml , [n̂ · ∇θ]l = [n̂ · ∇Θ]l , (2.10d , e)

[u · n̂]ml = 0, [p]ml = 0, [u × n̂]l = 0, (2.10f , g, h)

respectively, where vn is the normal velocity of the interface. Finally, as z → ∞ the
temperature, composition and velocity asymptote to their far-field values:

θ → θ∞, Θ → 0, u → U∞ x̂. (2.11a, b, c)

3. Steady-state solution
The governing equations and boundary conditions admit a steady-state solution

similar to that presented by Worster (1992b), Feltham & Worster (1999) and Chung &
Chen (2001) and are reviewed here to ensure a relatively self-contained treatment. In
this steady state, temperature and composition depend only on the vertical coordinate
and there is no flow within the mushy layer, um

0 = 0.
In the overlying liquid the steady-state temperature θ0, concentration Θ0 and

horizontal velocity u0, all decay to their far-field values with length scales set by the
thermal and solutal diffusivities and viscosity respectively:

θ0(z) = θ∞ + (θi − θ∞) e−(z−ζ0), (3.1)

Θ0(z) = θi e−(z−ζ0)/ε, (3.2)

u0(z) = U∞
[
1 − e−(z−ζ0)/Pr

]
. (3.3)

It is immediately clear that there are three length scales of increasing thickness
associated with compositional, thermal and viscous effects, which give rise to three
nested boundary layers. The interfacial temperature and concentration, θi , derived
from the condition of marginal stability, are given by

θi = − ε

1 − ε
θ∞. (3.4)

In the mushy layer temperature and concentration are constrained to each other
by the liquidus relation and are given implicitly by the transcendental equation

z =
α − C

α − β
ln

(
α + 1

α − θ0

)
+

C − β

α − β
ln

(
β + 1

β − θ0

)
, (3.5)

where

α, β ≡ 1

2
(S + C + θ∞) ± 1

2

√
(S + C + θ∞)2 − 4(S θi + C θ∞).

Finally, the steady-state solid fraction is given by

φ0 =
θi − θ0

C − θ0

. (3.6)

4. Marginal stability analysis
We consider perturbations to the field variables of typical normal mode form

(θ, Θ, φ, Ω, u, w, ζ ) = (θ1, Θ1, φ1, Ω1, u1, w1, ζ1) eσ t+i(kxx+kyy), (4.1)
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such that σ = σr + iσi is the complex growth rate and kx and ky are the wavenumbers
of perturbations in the x̂- and ŷ-directions respectively. As shown in the analysis
of Chung & Chen (2001), Squire’s transformation can be used to define an
equivalent two-dimensional problem. The two-dimensional problem is characterized

by a horizontal wavenumber k =
√

k2
x + k2

y and an effective shear flow velocity

ũ0 =
kx

k
u0 =

kxU∞√
k2

x + k2
y

[
1 − e−(z−ζ0)/Pr

]
, (4.2)

in which the external shear flow is in the x̂-direction. Alternatively, this can be written
as

ũ0 = u0 cos (ϑk) (4.3)

where ϑk is the angle between the perturbation and the imposed flow. The immediate
implication of Squire’s transformation is therefore that the applied external flow
has greatest influence on longitudinal modes while leaving the stability of transverse
modes unchanged. Therefore, in the following analysis we consider perturbations to
the basic steady-state in the x̂-direction only and interpret the resultant eigenfunctions
accordingly. The perturbation equations in the overlying liquid region (ζ0 <z < ∞)
can be defined in terms of Ω1 ≡ ik(ikw1 − Du1), and are written as

(D2 + D − k2 − iσi)θ1 = iku0θ1 + w1Dθ0, (4.4)

(εD2 + D − εk2 − iσi)Θ1 = iku0Θ1 + w1DΘ0, (4.5)

(PrD2 + D − Prk2 − iσi)Ω1 = ik(u0Ω1 − w1D
2u0) + k2Pr(RT θ1 − RCΘ1), (4.6)

(D2 − k2)w1 = Ω1, (4.7)

where D ≡ d/dz.
The perturbation equations in the mushy layer (0 < z < ζ0) are

(D2 + D − k2 − iσi)θ1 = S (D − iσi)φ1 + w1Dθ0, (4.8)

(C − θ0)(D − iσi)φ1 + (1 − φ0)(D − iσi)θ1 = θ1Dφ0 + φ1Dθ0 + w1Dθ0, (4.9)[
D2 − DΠ1(φ)

Π1(φ)
D − k2

]
w1 = k2RmΠ1(φ)θ1. (4.10)

Boundary conditions applied to the perturbation equations are as follows.
Perturbations to the solid–mush interfacial position at the eutectic (z = 0) are not
expected to play a dominant role in the development of forced or convective instability
and so we write the perturbed boundary condition at the eutectic as

θm
1 = 0 and wm

1 = 0. (4.11a, b)

At the mush–liquid interface the perturbation boundary conditions are

[θ1 + ζ1Dθ0]
m
l = 0, [θ1 + ζ1Dθ0]l = [Θ1 + ζ1DΘ0]l , (4.12a, b)

φ1 + ζ1Dφ0 = 0, [w1]
m
l = 0, (4.12c, d )

[Dw1]m = −Π0Π1(φ)

Pr
[PrDΩ1 − iσiDw1 + Ω1 + (k2 + ikU∞/Pr)w1]l , (4.12e)

[Dw1 − ikDu0ζ1]l = 0, [Dθ1 + ζ1D
2θ0]

m
l = 0, (4.12f , g)

[Dθ1 + ζ1D
2θ0]l = [DΘ1 + ζ1D

2Θ0]l , (4.12h)



346 J. A. Neufeld and J. S. Wettlaufer

where boundary condition (4.12e) derives from pressure continuity across the interface,
[p]ml = 0. Finally, in the far field (z → ∞)

θ l
1 → 0, Θl

1 → 0, Ωl
1 → 0, wl

1 → 0. (4.13a, b, c, d )

4.1. Perturbation equations on the finite domain (S, s) = [0, 1]

The perturbation equations are rewritten with the steady-state thermal field as the
independent variable in the manner suggested by Worster (1997). This procedure
avoids inversion of the transcendental equation for the steady-state temperature in
the mushy layer, and maps the mushy layer (z → S) and the infinite half-space of the
liquid (z → s) onto the single domain (S, s) = [0, 1]. Thus, the problem can be posed
as a system of thirteen coupled ordinary differential equations plus a free boundary
with fourteen associated boundary conditions, where the boundary conditions on
perturbations in the liquid are matched to the asymptotic values detailed in the
Appendix.

In terms of the independent variable

s =
θ∞ − θ0

θ∞ − θi

= e−(z−ζ0)

the vertical derivatives become

D = −sDs and D2 = s2D2
s + sDs,

where Ds ≡ d/ds, and hence the perturbation equations (4.4)–(4.7) become(
s2D2

s − k2 − iσi

)
θ1 = ikU∞

(
1 − s1/Pr

)
θ1 + (θ∞ − θi)sw1, (4.14)

(
εs2D2

s + (ε − 1)sDs − εk2 − iσi

)
Θ1 = ikU∞

(
1 − s1/Pr

)
Θ1 − (θi/ε)s1/εw1, (4.15)

(
Prs2D2

s + (Pr − 1)sDs − Prk2 − iσi

)
Ω1

= ikU∞
[(

1 − s1/P r
)
Ω1 + Pr−2s1/Prw1

]
+ k2Pr(RT θ1 − RCΘ1), (4.16)

(
s2D2

s + sDs − k2
)
w1 = Ω1. (4.17)

Within the mushy layer the perturbation equations are rewritten in terms of

S =
1 + θ0

1 + θi

.

To simplify our notation we define Λ = (1 + θi)
−1 and rewrite the vertical derivatives

as

D = ΛDθ0DS and D2 = Λ2(Dθ0)
2D2

S − [1 + S (C − θi)/(C − θ0)
2]ΛDθ0DS.

Under this transformation the perturbation equations in the mushy layer become[
Λ2(Dθ0)

2D2
S − S (C − θi)

(C − θ0)2
ΛDθ0DS − k2 − iσi

]
θ1 = S (ΛDθ0DS − iσi)φ1 + w1Dθ0,

(4.18)

(C − θ0)(ΛDθ0DS − iσi)φ1 +

(
C − θi

C − θ0

)
(ΛDθ0DS − iσi)θ1

=

[
θi − C

(C − θ0)2
θ1 + φ1 + w1

]
Dθ0, (4.19)
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Λ2(Dθ0)

2D2
S −

[
1 +

S (C − θi)

(C − θ0)2
+

ΛDθ0DSΠ1(φ)

Π1(φ)

]
ΛDθ0DS − k2

}
w1

= k2RmΠ1(φ)θ1. (4.20)

The boundary conditions can be similarly transformed. At the eutectic point (S = 0)
we find

θm
1 = 0 and wm

1 = 0. (4.21a, b)

The boundary conditions at the mush–liquid interface (s = S = 1) become

θ l
1 = θm

1 , θ l
1 = Θl

1, (4.22a, b)

φ1 = ζ1

(
θ∞ − θi

C − θi

)
, wl

1 = wm
1 , (4.22c, d )

Λ(θ∞ − θi)DSw
m
1 = − Π0Π1(φ)

Pr
[−PrDsΩ1 + Ω1 + iσiDsw1 + (k2 + ikU∞/Pr)w1]l ,

(4.22e)

Dsw
l
1 = −ikU∞ζ1/Pr, (4.22f )

Λ(θ∞ − θi)DSθ
m
1 + Dsθ

l
1 = S ζ1

(
θ∞ − θi

C − θi

)
, (4.22g)

ζ1 =
ε

θ∞
[Dsθ1 − DsΘ1]l . (4.22h)

The far-field boundary conditions in the liquid, (4.13a–d), now written in the s

domain have a regular singularity at s = 0. We therefore recast the far-field boundary
conditions in terms of matching conditions with the asymptotic behaviour derived
from analytic solutions to the reduced perturbation equations for s � 1. These
asymptotic conditions are detailed in the Appendix.

The perturbation equations and associated boundary conditions are solved using a
multiple shooting technique with orthonormalization as detailed in Acher, Mattheij
& Russell (1987) and Keller (1976). Integration is initiated with the asymptotic
relations in the liquid, and with the boundary values at the eutectic within the
mushy layer. These equations are then integrated over the s and S domains using the
orthonormalization technique at points fixed a priori. Powell’s method, as detailed by
Press et al. (1997), is then used to reduce the mismatch in boundary conditions at
s = S = 1, thereby providing the eigenvalues and eigenfunctions of the problem.

5. Results and discussion
5.1. The effect of an external flow

We begin this section by noting that the breadth of the parameter space forces us to
engage in a strategic, physically motivated, exploration of the stability of the system.
We first consider the case of all three thermodynamic parameters C = S = θ∞ = 1,
with Pr = 10 and Π0 = 10−5. We write

Rc =
β̃

β�Π0

Rm (5.1)

and take RT = 0 to reflect the fact that composition dominates the equation of state
and hence thermal convection plays a secondary role. This substantially simplifies the
resultant stability diagram while capturing the principal modes of compositionally
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Figure 2. Neutral stability curve for S = C = θ∞ = 1, Π0 = 10−5 and U∞ = 0. In the limit
U∞ = 0 we recover the result of Worster (1992b) with the associated boundary layer (k 	 13)
and mushy layer (k 	 2.5) modes.
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Figure 3. Critical Rayleigh number for increasing U∞. Parameter values are C = S = θ∞ = 1
and Π0 = 10−5. Neutral stability curves are U∞ = 500 (solid), U∞ = 1000 (dashed) and U∞ = 4000
(dotted).

dominated convection. We demonstrate this by setting U∞ = 0 to capture the two
direct modes of instability shown in figure 2 that we can readily identify as the two
modes first characterized by Worster (1992b): a short-wavelength (large-wavenumber)
boundary layer mode and a long-wavelength (small-wavenumber) mode termed the
mushy layer mode. These stationary modes arise from unstable stratification in the
diffusional boundary layer ahead of the mushy layer and of the fluid within the
interstices of the mushy layer respectively, as described briefly in the introduction.

By holding the parameters C = S = θ∞ = 1 and Π0 = 10−5 constant and increasing
the strength of the external shear flow we can ascertain the effect of the external flow
on the stability of the system as shown in figures 3 and 4. The application of the
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Figure 4. Complex growth rate shown as a function of the wavenumber for (a) the mushy
layer mode and (b) the boundary layer mode (note the differing scales for boundary and
mushy layer complex growth rates). The curves are for U∞ = 500 (solid), U∞ = 1000 (dashed)
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associated with the boundary (dashed, left-hand axis) and mushy layer (solid, right-hand axis)
modes of convection as a function of the external flow speed U∞.

external flow breaks the symmetry of buoyancy-driven convection thereby creating
travelling wave solutions for both the boundary and mushy layer modes. Moreover,
as U∞ is increased the wave speed of the boundary layer mode increases to values
greatly in excess of that of the mushy layer mode, thereby separating the two modes
as shown in figure 4.

The overall effect of the external flow on both the boundary and mushy layer
modes is nicely characterized by plotting the minimum critical Rayleigh number of
each mode, Rc

m = Rc
m(U∞) as shown in figure 5. We see that for both modes, increasing
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the magnitude of the external flow first causes a minor increase in the stability of
the system. Then, as the external flow is increased beyond a critical value there is a
dramatic decrease in the stability of the system. As is clear from figure 5 the critical
flow rate for the boundary layer mode is much less than that for the mushy layer
mode, and in both cases is dependent upon, among other things, the thermodynamic
parameters of the system and the permeability of the mushy layer.

5.2. Physical mechanisms

Now we discuss the physical mechanisms underlying the behaviour of the curves of
Rc

m with respect to the magnitude of the external flow. Importantly, we note that
the imposition of a weak external flow modifies the pre-existing buoyant modes
of convection while a vigorous external flow drives instabilities which arise from
the interaction of the external flow with a deformable interface. In both cases, the
presence of an external flow breaks the symmetry of the system resulting in σi 
= 0.
Thus both the boundary and mushy layer modes admit travelling wave solutions that
propagate in the direction of the imposed flow. These two modes are illustrated in
figures 6 and 7 and for both modes the influence on the stability of the system can be
most readily understood by examining the secondary flow generated as the external
flow impinges upon the corrugated mush–liquid interface.

In the absence of an external flow, secondary fluid motions are driven by density
differences, primarily due to compositional gradients, both within the compositional
boundary layer and within the interstices of the mushy layer. The nature of this
buoyancy-driven flow has been previously demonstrated by Worster (1992b) for both
the mushy layer and boundary layer modes and is characterized by upwellings above
the peaks and downwellings above the troughs of the interface. We find that these
patterns of buoyancy-driven convection are progressively modified as the strength of
the external flow is increased. For sufficiently vigourous external flows the secondary
flow is dominated by interactions of the external flow with the corrugated mush–
liquid interface. In this limit, because the no-slip condition must be satisfied all along
the corrugated mush-liquid interface, the presence of the peaks (troughs) effectively
reduces (enhances) the flow speed further into (recessed from) the bulk fluid relative
to the unperturbed planar state. The result is retrograde motion at the peaks and
prograde motion at the troughs (with respect to the bulk flow). Continuity requires
that these motions be balanced by upwellings on the upstream face of the peaks and
downwellings on the downstream face of the peaks with a phase difference of nearly
π/2 (the phase difference becoming exactly π/2 only in the limit of a non-deformable
corrugated interface).

The principal effect of a weak external flow (small U∞) on the convective modes of
instability is to break the symmetry of the unforced problem. Advection of both the
thermal and solutal fields by the secondary flow introduces a space phase shift in the
growth drive along the interface leading to travelling wave solutions. In addition, as U∞
is increased the influence of the corrugated interface becomes more pronounced and
the associated secondary flow leads to lateral advection of the perturbed solute field.
This effectively decreases the length scale for compositional convection, and therefore
stabilizes both the boundary and mushy layer modes of convection for U∞ < 1000
(see figure 5). For flows in excess of U∞ ≈ 1000 this effect is somewhat reduced at the
long wavelengths typical of the mushy layer mode as shown in figure 5. In this case,
the vigour of the external flow competes directly with the induced secondary flow,
thereby compressing the compositional boundary layer on the upstream faces of the
peaks of the perturbed interface. This competition is associated with solutions whose
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Figure 6. The eigenmodes of the forced boundary layer mode for U∞ = 3000, k = 11.2,
Rm = 12.6 and σi = −164.6. Plots are of the streamlines of the flow with (a) the perturbed
solid fraction (blue – dissolution, red – solidification), (b) the perturbed concentration (blue –
reduced, red – enhanced) and (c) the perturbed thermal field (blue – cooling, red – warming).
Thermodynamic parameters are S = C = θ∞ = 1 and the Darcy number is Π0 = 10−5.
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Figure 8. The forced boundary layer mode, illustrated in (a), occurs when the external flow
generates a secondary recirculating flow upwelling on the upstream faces of the peaks as
indicated by the curved arrows. This sweeps the compositional boundary layer (shown shaded
and bounded by solid and dash-dot lines) from the downstream to the upstream side of the
peaks. The resultant decrease (increase) in concentration on the upstream (downstream) face
of the peaks generates a growth drive (shown by straight arrows) leading to an interfacial wave
which propagates downstream. The forced mushy layer mode, illustrated in (b), occurs when
the imposed shear flow generates pressure perturbations at the mush–liquid interface which in
turn drive circulation within the porous mushy layer. This recirculating flow compresses the
isotherms at the peaks leading to growth of the corrugation.

stability is only weakly dependent on the external flow rate for 1000 < U∞ < 100 000.
Finally, as the external flow is increased above a critical value (U∞ > 2000 for the
boundary layer mode and U∞ > 30 000 for the mushy layer mode), convection is
forced by the external flow. In this regime, the imposition of a parallel shear flow
over the interfacial corrugations dominates the secondary flow. At long wavelengths
this secondary flow gives rise to negative pressure perturbations at the peaks and
positive pressure perturbations at the troughs which in turn drive flow within the
mushy layer. Smaller-wavelength corrugations to the mush–liquid interface result in
a secondary flow which sweeps the compositional boundary layer upstream. In both
cases the consequence is to create a pattern of solidification and dissolution with a
planform controlled by the shear.

In detail, we interpret the destabilization of the boundary layer mode as U∞ becomes
large as the instability of a deformable interface in the presence of an external flow.
For sufficiently large U∞ the secondary flow is dominated by the interaction of the
corrugated interface with the external flow and as U∞ → Uc

∞, Rc
m → 0, in which case

buoyancy ceases to play a role and the secondary flow decouples from both thermal
and compositional perturbations. In this limit the secondary flow is characterized
by upwellings on the upstream faces of interfacial peaks and downwellings on the
downstream side with a phase shift of nearly π/2 from the corrugated interface.
Hence, the depletion of solute within the boundary layer associated with growth
of the interface and relative enrichment at the troughs is swept upstream by the
perturbed flow. This results in preferential growth on the downstream faces of the
peaks and dissolution on the upstream faces resulting in a growth which is primarily,
but not completely, translational in nature. Thus corrugations to the mush–liquid
interface grow and propagate downstream with a phase velocity proportional to the
magnitude of the applied shear flow as illustrated schematically in figure 8(a). Similar
travelling wave solutions have been investigated theoretically by Forth & Wheeler
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Π0 = 10−3 (dotted) and all curves correspond to the parameter values C = S = θ∞ = 1.

(1989, 1992) in which the effect of shear flows on the Mullins–Sekerka type instability
of a solidifying solid–liquid interface were studied. That this effect is not a result
of forced flow within the mushy layer can be seen both through the vanishingly
small magnitude of flow within the mushy layer as U∞ becomes large and through
the relative insensitivity of the forced mode to changes in the permeability of the
underlying mushy layer.

This contrasts with the case of forced mushy layer convection. Here, as first
described by Feltham & Worster (1999), the dominant effect of the induced secondary
flow is to create negative pressure perturbations at the peaks and positive pressure
perturbations at the troughs of the mush–liquid interface as illustrated in figure 8(b).
The resultant flow within the mushy layer compresses the isotherms at the peaks
and rarifies them at the troughs, leading to overall growth of the interfacial
corrugation. That this instability is dominated by flow within the mushy layer is
clearly demonstrated by the relatively small wave speed associated with compression
and rarefaction of the thermal boundary layer within the overlying liquid. More
dramatically the dominance of the Darcy number in determining the stability of the
forced mushy layer mode attests to the importance of interstitial flow. As shown in
figure (9), changing the permeability by one order of magnitude dramatically affects
the stability of the system in the presence or absence of an external shear flow. Indeed
it is readily apparent that the Bernoulli suction effect is substantially more effective
for mushy layers of larger permeability.

In part due to the magnitude of the forced flow associated with the forced mushy
layer mode, the consequences for the evolution of the mushy layer are substantial.
This Bernoulli-driven motion not only perturbs the isotherms in the mushy layer
but, significantly, it drives solidification and dissolution of the matrix. As is the case
for the unforced mushy layer mode, this alternate solidification/dissolution pattern
is thought to give rise to regions of zero solid fraction within the mushy layer.
These patterns, called chimneys, which are cylindrical structures of zero solid fraction
within the mushy layer, have been observed by several authors in unforced mushy
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Figure 10. Illustration of the planform of crevasses, or grooves (shown in dark shading),
regions of zero solid fraction aligned perpendicular to the applied flow, which are the
anticipated result of the forced mushy layer mode of convection.

layers, including Copley et al. (1970), Chen & Chen (1991), Tait & Jaupart (1992),
Wettlaufer et al. (1997) and Liu & Hellawell (1999). In contrast, we predict a planform
of zero solid fraction crevasses, or grooves, aligned perpendicular to the external flow
as illustrated in figure 10. This is the principal influence of the shear flow on the
structure of the mushy layer in this regime.

The dependence of the critical Rayleigh number of both the boundary and mushy
layer modes of instability shown in figure 5 is typical for a wide range of parameter
values. Hence, it is instructive to track the influence of the external shear flow by
following the critical value Uc

∞ at which Rc
m = 0 for both the boundary and mushy

layer modes as a function of the thermodynamic parameters (see figure 11). In this
limit the effects of buoyancy are absent and both the boundary and mushy layer modes
are driven entirely through the interaction of the external flow with the corrugated
mush–liquid boundary. The forced boundary layer mode, shown in figure 11(a), is
driven by redistribution of the compositional boundary layer by the perturbed flow
and is therefore relatively insensitive to variations in θ∞. In contrast both C and S
characterize the reactivity of the mushy layer to thermal and solutal variations. An
increase in C enhances the solute released upon dissolution, thereby strengthening the
basic mechanism leading to the forced boundary layer mode. Similarly, a reduction in
S enhances the amount of the mushy layer that can be dissolved for a given thermal
perturbation. Therefore the mush–liquid interface is destabilized by a decrease in S .

Variation of the Uc
∞ with the thermodynamic parameters is examined for the forced

mushy layer mode in figure 11(b). Here it is important to recognize that, as in
thermally driven convection, the long-wavelength limit is dominated by diffusion
within the mushy layer. Within this reactive porous medium diffusion is modified by
solidification and dissolution of the matrix as characterized by the composition ratio
C and the Stefan number S . This is perhaps most clearly illustrated in the limit
C >> θ in which case equations (2.5) and (2.6) can be combined to give

(∂t − ∂z)θ + u · ∇θ =
κeff

κ
∇2θ =

∇2θ

1 + S /C
(5.2)

as shown by Worster (2000). We note that the effective thermal diffusivity κeff within
this reactive porous medium is therefore enhanced as C is increased and diminished as
S is increased. This diffusivity acts to smooth out thermal perturbations induced by
secondary flow generated by the interaction of the external flow with the corrugated
mush–liquid interface, and therefore stabilizes the system. Thus, as C is increased the
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Figure 11. Variation of the critical external flow rate, Uc
∞, at which Rc

m = 0 as a function
of external parameters, C (solid), S (dashed), θ∞ (dotted) for (a) the boundary layer mode
and (b) the mushy layer mode. In each case, one parameter is varied while the remaining
parameters are held fixed and equal to unity. See text for discussion.

system is stabilized with respect to the forced mushy layer mode, while an increase in
S destabilizes the system as shown in figure 11(b). Finally, we note that the mushy
layer depth is decreased as θ∞ is increased, thereby damping the induced flow within
the mushy layer and ultimately leading to stabilization.

5.3. Comparison with previous work

The present study complements and extends the work of both Feltham & Worster
(1999) and Chung & Chen (2001). Feltham & Worster (1999) studied the effect of a
shear flow imposed on a corrugated mushy layer in which the effects of buoyancy were
neglected. As noted in the introduction, they found that the perturbed flow in the liquid
coupled to flow in the mushy layer through a pressure matching condition creates
a Bernoulli suction effect. A critical flow rate was found above which this Bernoulli
suction forced flow within the mushy layer on a length scale commensurate with its
depth. This fluid motion compresses the isotherms at the peaks and rarefies them at
the troughs, resulting in further corrugation of the mush–liquid interface. Chung &
Chen (2001) extended this work by including the effects of both compositional and
thermal convection, and by coupling flow in the external liquid to flow in the mushy
layer through a Beavers–Joseph condition. While they found no appreciable effect
on the mushy layer mode they found a critical external shear rate above which the
boundary layer mode of convection was forced. They attribute its formation to the
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mechanism outlined by Feltham & Worster (1999), namely that pressure perturbations
at the mush–liquid interface drive a flow within the underlying mushy layer which
is ultimately responsible for the formation of corrugations. In addition, Chung &
Chen (2001) report finding a new morphological mode with negative critical Rayleigh
number. Their results show that for large enough external shear flows this mode
merges with the boundary layer mode.

Here we have examined the effect of a large range of external flows on compositional
convection. In contrast to the work of Feltham & Worster (1999) we retain the
buoyancy effects leading to natural convection, thereby allowing us to assess the effect
of the external shear flow on the boundary and mushy layer modes of convection.
Furthermore, by neglecting thermal convection, RT = 0, and by examining the limiting
case of small permeability where the Beavers–Joseph condition becomes one of no-
slip, we significantly simplify both the mathematical analysis and the interpretation
of the resulting stability diagrams. Finally, in contrast to the work of Chung & Chen
(2001) we find that both the boundary and mushy layer modes are destabilized above a
critical external flow. In addition, we find no evidence for the form of morphological
instability described by Chung & Chen (2001). This may be due, in part, to our
neglect of thermal contributions to convection since RT = 0 in all our calculations.
Our interpretation differs from both these previous studies in the following important
respects. First, we find that flow within the mushy layer does not play a role in
the shear forced boundary layer mode. Secondly, we find a smooth transition from
buoyancy-driven convection to shear-forced convection for both the boundary and
mushy layer modes and, as just noted, find no evidence for the morphological mode
of Chung & Chen (2001). An immediate consequence of this interpretation is that
the two modes greatly differ in their effect on the mushy layer. The effect of the
forced boundary layer mode is to generate a travelling interfacial wave, while leaving
the structure of the underlying mushy layer relatively unaffected. In contrast to the
previous authors, we find that the forced mushy layer mode has the greatest effect on
the structure of the mushy layer through solidification and dissolution driven by fluid
flow. However, as opposed to the chimneys produced through natural convection we
predict that the perturbations typical of this forced mode will give rise to crevasses
or grooves of zero solid fraction aligned perpendicular to the external flow because
perturbations to the flow field are greatest for wavenumbers aligned with the flow
(see figure 10). These predictions are experimentally bourn out by the observations
of Neufield & Wettlaufer (2008).

5.4. Geophysical relevance

Mushy layers occur in a host of geophysical systems in which shear flows play an
important role. In the Earth’s polar oceans solidification of sea water, which can be
treated as an aqueous sodium chloride solution, can occur in the presence of large-
scale oceanic currents. The sea ice which forms is accurately modelled as a mushy
layer (see Feltham et al. 2006) and is important not only because of its role in the
radiation balance of the Earth through the ice–albedo feedback, but also because of
its role as a mediator of the heat, mass and momentum fluxes between atmosphere
and ocean. Of particular importance are the salt fluxes, which are essential drivers
of the thermohaline structure of the polar seas and global deep water masses. The
role of oceanic currents in forcing desalination of sea ice can be estimated using the
parameters in Feltham & Worster (1999). We find that the forced mushy layer mode
can be triggered in sea ice with a dimensional permeability of Π̃0 = 10−4–10−7 cm2,
as estimated by Wettlaufer, Worster & Huppert (2000), in the presence of an external
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shear flow of magnitude Ũ∞ 	 10–800 cm s−1. While this shear rate indicates that
a reasonably vigorous external current is needed to force mushy layer convection,
it does not incorporate macroscopic-scale bottom roughness and should therefore
be interpreted as an upper bound. Furthermore, as shown in the present analysis,
the efficacy of the forced mushy layer mode of convection is sensitive to the large
uncertainties associated with estimates of the dimensional permeability of sea ice.
Indeed, while Wettlaufer et al. (2000) estimated a more narrow range of in-situ
depth-averaged permeabilities than used for our estimates here, they noted that these
numbers result from field conditions that differ in an important respect from those
controlled in the laboratory. Typical laboratory experiments are arranged to capture
the classical Stefan-type growth at a fixed cold boundary temperature less than the
liquidus. In contrast, when sea ice forms from open water in winter conditions the flux
balance that determines the upper (cold) surface temperature is more complex, leading
to a transient, slowly cooling, upper boundary temperature. Hence, the depth-averaged
solid fraction increases in time causing a slow decrease in the permeability of the ice.
The implication for the case of natural sea ice is that under transient shear forcing
commonly experienced in the field, the critical conditions necessary to trigger the
instability we have analysed herein need be less vigorous early in the evolution of the
ice cover. Therefore, horizontal inhomogeneities in the structure, and hence mechanical
and thermal properties, of the ice due to this intrinsic dynamic/thermodynamic
mechanism of instability may be operative on the large scale. This is particularly
relevant under contemporary conditions wherein an increasing fraction of the seasonal
ice cover is thin (e.g. Nghiem et al. 2007).

6. Conclusion
We have performed a linear stability analysis of the interaction between convection

in a solidifying mushy layer and a semi-infinite liquid layer in shear. We find that
for a shear rate below a critical value the two modes of buoyancy-driven convection
identified by Worster (1992b), the boundary layer and mushy layer modes, are
moderately suppressed. However, above a critical shear rate the system is unstable to
a forced mode of convection. In contrast to the findings of Chung & Chen (2001)
we find that for shear flows in excess of a critical value the minimum Rayleigh
number of both the boundary and mushy layer modes decreases monotonically with
increasing U∞. Perhaps most strikingly, we find that the forced mushy layer mode
gives rise regions of zero solid fraction in the form of crevasses, or grooves, which
form perpendicular to the applied flow. Furthermore, we find that the permeability of
the matrix dominates the mushy layer mode of instability as well as the parameters at
which various modes become dominant. Because the permeability is one of the least
well-known parameters in most physically relevant systems our results demonstrate
the importance of future experiments being focused on determining the permeability
under a range of conditions for systems of both metallurgical and geophysical
relevance. Such experiments have been initiated by Chen & Chen (1991) and Liu &
Hellawell (1999) for the super-eutectic aqueous ammonium chloride system. Moreover,
the analysis presented here would need to be modified in the nonlinear regime to
correctly deal with the increasing permeability, and hence the relevance of the Beavers–
Joseph conditions, as the instability evolves.

The physical mechanisms investigated here may be important in a whole host
of geophysical and industrial settings. For example, in the polar oceans, salt and
turbulent fluxes are dominated by the formation of young sea ice. As we have shown,
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oceanic shear flows may significantly alter the nature of these fluxes and hence the
structure of the sea ice. Finally, the physical mechanism outlined above indicates
the possibility of tailoring external flows to manipulate the solidification patterns of
dendritic networks – a major goal in materials science.
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Appendix. Asymptotic treatment of the liquid region
Owing to a regular singularity in the liquid equations at s = 0 we match asymptotic

solutions for the variables as s → 0. The asymptotics are most clearly enumerated by
defining

(θ1, Θ1, Ω1, w1) =

4∑
j=1

smj (θ̃j , Θ̃j , Ω̃j , w̃j ) (A1)

and hence equations (4.14)–(4.17) become[
s2D2

s + 2mjsDs + m2
j − mj − k2 − iσi

]
θ̃j = ikU∞

(
1 − s1/Pr

)
θ̃j + (θ∞ − θi)sw̃j , (A2)

[
εs2D2

s + (2mjε + ε − 1)sDs + εm2
j − mj − εk2 − iσi

]
Θ̃j

= ikU∞
(
1 − s1/Pr

)
Θ̃j − (θi/ε)s1/εw̃j , (A3)

[
Prs2D2

s + (2mjP r + Pr − 1)sDs + Prm2
j − mj − Prk2 − iσi

]
Ω̃j

= ikU∞
[(

1 − s1/Pr
)
Ω̃j + Pr−2s1/Prw̃j

]
+ k2Pr(RT θ̃j − RCΘ̃j ), (A4)

[
s2D2

s + (2mj + 1)sDs + m2
j − k2

]
w̃j = Ω̃j . (A5)

The resultant four linearly independent solutions are of the form

i θ̃j Θ̃j Ω̃j w̃j

1 1 0
Prk2RT

P rm2
j − mj − Prk2 − i(kU∞ + σi)

Prk2RT[
m2

j − k2
][

Prm2
j − mj −Prk2 − i(kU∞ + σi)

]

2 0 1
−Prk2RC

Prm2
j − mj − Prk2 − i(kU∞ + σi)

−Prk2RC[
m2

j − k2
][

Prm2
j − mj − Prk2 − i(kU∞ + σi)

]
3 0 0 1

1

m2
j − k2

4 0 0 0 1

(A6)
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where

m1 =
1

2
[1 +

√
1 + 4k2 + 4i(kU∞ + σi)], (A7a)

m2 =
1

2ε
[1 +

√
1 + 4ε2k2 + 4εi(kU∞ + σi)], (A7b)

m3 =
1

2Pr
[1 +

√
1 + 4Pr2k2 + 4Pri(kU∞ + σi)], (A7c)

m4 = k. (A7d)

The first and second derivatives are then given by

Ds θ̃j =
(θ∞ − θi)w̃j

m2
j + mj − k2 − i(kU∞ + σi)

, (A8a)

DsΘ̃j = 0, (A8b)

DsΩ̃j =
Prk2RT Ds θ̃j

P rm2
j + mj (2Pr − 1) + Pr − 1 − Prk2 − i(kU∞ + σi)

, (A8c)

Dsw̃j =
DsΩ̃j

m2
j + 2mj + 1 − k2

, (A8d)

D2
s θ̃j =

2(θ∞ − θi)Dsw̃j

m2
j + 3mj + 2 − k2 − i(kU∞ + σi)

, (A8e)

D2
s Θ̃j = 0, (A8f)

D2
s Ω̃j =

Prk2RT D2
s θ̃j

P rm2
j + mj (4Pr − 1) + 4Pr − 2 − Prk2 − i(kU∞ + σi)

, (A8g)

D2
s w̃j =

D2
s Ω̃j

m2
j + 4mj + 4 − k2

. (A8h)
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