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The influence of an external shear flow on the evolution of a solidifying array of
dendritic crystals, termed a mushy layer, is investigated through controlled cooling
of an aqueous ammonium chloride solution in a laboratory flume. The controlled
cooling produces a mushy layer that grows at a constant rate from the base of the
flume over which a laminar shear flow is applied. We find a critical flow speed above
which a spatiotemporal variation of the solid fraction of the layer appears with a
planform transverse to the flow direction. The presence of this distinctive pattern
of spanwise crevasses is compared with a simplified stability analysis in which the
motion of the external fluid over the corrugated mush–liquid interface produces a
pressure perturbation that drives flow and phase change within the mushy layer.
This flow leads to a pattern of solidification and dissolution that is compared to
the experimental results. The physical mechanism underlying the pattern formation
is confirmed by the agreement between the theoretical predictions and experimental
results. Finally, the comparison between theory and experiment provides a value for
the mushy layer permeability, the evolution of which is of relevance to a host of
geophysical, biological and engineering systems.

1. Introduction
Systems in which both fluid flow and solidification play a role are governed by a rich

hierarchy of physical processes acting on a wide range of length scales, all of which
greatly influence the electrical and mechanical properties of the material so produced
(see reviews by Glicksman, Coriell & McFadden 1986; Davis 1990, 2001; Worster
2000). In the case of binary alloys, these material properties are controlled by the
processes of solidification which, in many systems of geophysical and metallurgical
interest, proceed through the growth of an array of dendritic crystals, termed a
mushy layer. Because of the highly convoluted solid–liquid interface, these crystal
arrays are often modelled as a reactive porous medium on a length scale larger than
the inter-dendrite spacing. In so doing, the volume fraction of solid φ, is determined
by a thermodynamic coupling between heat and solute (see reviews by Worster
1992a , 2000). In the absence of an external flow variations in concentration and
temperature of the interstitial fluid can lead to buoyant instabilities driving fluid flow
both within the liquid and within the mushy layer as shown experimentally by Copley
et al. (1970) and theoretically by Worster (1992b) and Chen, Lu & Yang (1994).
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Convective motions of the liquid within this system can arise due to compositional
and thermal gradients both within, and external to, the mushy layer. Convective
motions associated with the buoyancy of the interstitial fluid give rise to the so-called
mushy layer mode, while the boundary layer mode is associated with the instability of
a compositional boundary layer external to the mushy layer, as detailed by Worster
(1992b) and Chen et al. (1994). Once initiated, flow within the mushy layer advects
both temperature and solute leading to local solidification and dissolution. Owing
to the sensitive dependence of mushy layer permeability on the solid fraction, flow
leading to dissolution becomes rapidly focused in confined regions of zero solid
fraction termed ‘chimneys’.

The pattern of dissolution characteristic of chimney formation is found in many
material systems, and is associated with the formation of defects termed ‘freckles’ in
metallurgy. Models predicting the onset of chimney formation are highly desirable
because these patterns are associated with zones of weakness in the resultant material.
The formation and dynamics of chimneys has been investigated experimentally in
a host of systems by a number of authors. Chen & Chen (1991) first characterized
the solid fraction and structure of chimneys in an aqueous system by performing a
posteriori computed tomography (CT) x–ray scans of mushy layers formed through
the cooling of super-eutectic aqueous ammonium chloride (NH4Cl) solutions. Tait
& Jaupart (1989, 1992) explored the formation of chimneys in the NH4Cl system
as a function of both fluid viscosity and mushy layer depth. Huppert, Hallworth &
Lipson (1993) investigated the effect of crystallography on permeability through the
systematic doping of an NH4Cl mushy layer with trace concentrations of copper
sulphate. More recently, Aussillous et al. (2006) used MRI techniques to make in-situ
measurements of the growth of a mushy layer from an aqueous sugar solution and
observed the formation of highly branched chimney structures. Studies that more
faithfully reproduce the base state of the linear stability analyses of Worster (1992b)
and Chen et al. (1994) have been undertaken by Peppin et al. (2007) in a directional
solidification apparatus. Using this apparatus they were able to characterize not only
the growth of the NH4Cl mushy layer, but also to construct a regime diagram showing
the formation of chimneys as a function of bulk concentration and pulling speed.

Motivated in part by the growth of sea ice, the formation of chimneys has been
observed in the laboratory by Wettlaufer, Worster & Huppert (1997a , b) using an
aqueous sodium chloride solution. They found a critical ice thickness beyond which
the rejection of salt associated with the formation of sea ice leads to a buoyant
instability driving convective motion within the newly forming mushy layer. This
convection rapidly gave rise to the formation of chimneys within the sea ice, and is
the principal mechanism by which salt is drained from the ice. They characterized
the onset of this convection by a porous-medium Rayleigh number which itself is
proportional to both the mushy layer depth and its permeability. For this reason, the
onset of convection within sea ice, and the incipient formation of chimneys or ‘brine
channels’, is causally tied to the heat and salt fluxes at the ocean surface which in
turn play a large role in determining the hydrography of polar oceans.

Theoretical analyses of the effect of forced flows on the evolution of a mushy
layer have been undertaken by Feltham & Worster (1999), Chung & Chen (2001),
Neufeld et al. (2006) and most recently by Neufeld & Wettlaufer (2008). In their study
Feltham & Worster (1999) coupled flow in the melt to the growth of the mushy layer
principally through pressure perturbations evaluated at the corrugated mush–liquid
interface. They found that, for a sufficiently vigorous far-field velocity, these interfacial
pressure perturbations drive flow within the mushy layer that, in turn, perturbs the
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isotherms. They concluded that the resultant compression of the isotherms at peaks
in the interface and rarefaction at troughs leads to enhanced growth of the interfacial
corrugations at wavenumbers commensurate with the depth of the mushy layer.
Chung & Chen (2001) extended this analysis to include the effects of buoyancy in
both the mushy layer and the overlying liquid. They also found that for sufficiently
vigorous external flows corrugations are enhanced, although their analysis predicted
a wavelength commensurate with the thickness of the compositional boundary layer.
Neufeld & Wettlaufer (2008) re-examined the effect of an external flow on the buoyant
convective modes present in the solidifying mushy layer system for a wide range of
material parameters. They found that sufficiently vigorous flows will force both the
boundary and mushy layer modes. In contrast to previous authors, they interpret the
forced boundary layer mode as a translation of the interfacial corrugation and argue
that it is the forced mushy layer mode that leads to solidification and dissolution of
the matrix.

This paper focuses on the forced mushy layer mode of convection and experimental
observations of its dramatic influence on the morphology of the mushy layer. In § 2 we
review the ideal mushy layer model of Feltham & Worster (1999) and Neufeld et al.
(2006) and find the steady-state solution in the limits relevant to our experimental
system. In § 3 we follow their stability analysis of a mushy layer in the presence of
a vigourous external flow including, in this instance, the effects of both buoyancy
within the mushy layer and dissolution and solidification of the mushy layer. We
characterize the relative effects of buoyancy and shear forcing by the external flow,
and show that the permeability of the mushy layer plays a crucial role in the forced
instability. The experimental apparatus with which the instability is observed and the
technique employed to generate steady-state growth of a mushy layer are introduced
in § 4. Finally, the results of our experiments are compared to the simplified theoretical
analysis in § 5. General conclusions are presented in § 6, along with a discussion of
the relevance of the work in metallurgical, biological and geophysical contexts.

2. Theoretical model of forced convection within the mushy layer
2.1. Formulation of the problem

In order to ensure that this paper is reasonably self-contained, we review the
formulation of Feltham & Worster (1999) and Neufeld et al. (2006). The purpose of
this review is not simply to compare their results with our experimental results, but
to show that a simple extension of their model incorporating both changes in phase
and buoyancy effects yields the observed patterns of solidification and dissolution
found in our experiments. The model presented here is a simplified treatment of
the forced mushy layer mode investigated by Neufeld & Wettlaufer (2008). The
model is motivated by the experimental results described in § 5 and therefore treats
both buoyant and forced convection in an aqueous 28 wt % NH4Cl mushy layer
solidified from below at constant velocity V using ‘ideal’ mushy layer theory, as
shown in figure 1. In ‘ideal’ mushy layer theory the temperature and concentration
of the mushy layer are coupled through the solutally dependent freezing point and
differences in the density, diffusivity and specific heat between the liquid and solid
are neglected (see reviews by Worster 1992b, 2000). Cooling the binary solution from
below results in a mushy layer in the region 0 < z < ζ that is bounded from below
by solid and above by a semi-infinite liquid solution. The base of the mushy layer
is at the eutectic temperature TE , the point at which a solid solution is formed.
Owing to the large interfacial surface area of the highly dendritic crystals comprising
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Figure 1. Schematic of the system under consideration. A uniform flow is imposed over a
growing mushy layer. Flow within the mushy layer is coupled to that in the liquid via a
perturbed mush–liquid interface.

the mushy layer, local thermodynamic equilibrium is assumed. Therefore, within the
mushy layer the temperature T is related to the solute concentration C through a
linear liquidus relationship; TL(C) = TE + Γ (C − CE) where Γ is the slope of the
liquidus curve (constant over the range of relevance to our work) and CE is the
eutectic concentration. Far from the mush–liquid interface, the temperature in the
overlying liquid tends to the far-field value T∞.

Motivated by the experimental findings detailed in § 5 we focus on patterns of
solidification and dissolution within the mushy layer. These patterns are a result of
the confluence of buoyant and forced fluid motion. Worster (1992b) and Neufeld &
Wettlaufer (2008) have shown that convective motions arising solely in the liquid
due to the diffusive compositional boundary layer generate negligible flow within the
underlying mushy layer and have only a small effect on its morphology. For clarity of
presentation we therefore neglect the effects of thermal and compositional variations
on buoyancy in the overlying liquid. In addition we neglect diffusion of solute both
within the mushy layer and the overlying liquid.

The equations governing the mushy layer shown below have been described in
this setting by Feltham & Worster (1999). Here we include the effects of buoyancy
within the mushy layer to illustrate the progression from buoyancy- to shear-driven
instability as the strength of the external flow is increased. Length, time and pressure
are scaled by κ/V , κ/V 2 and ρV 2 respectively, and thus non-dimensional equations
expressing conservation of heat and solute within the mushy layer can be written as

(∂t − ∂z)(θ − S φ) + u · ∇θ = ∇2θ, (2.1)

(∂t − ∂z)[(1 − φ)θ + C φ] + u · ∇θ = 0. (2.2)

Here θ is the dimensionless temperature and concentration defined by

θ =
T − TL(C0)

	T
=

C − C0

	C
, (2.3)
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where 	T = TL(C0) − TE and 	C = C0 − CE . The effects of latent heat upon
solidification are characterized by the dimensionless Stefan number

S =
L

c	T
, (2.4)

and the importance of solute rejection is embodied in

C =
CS − C0

	C
, (2.5)

where L is the latent heat, c is the specific heat capacity and CS is the concentration
of the solid.

Importantly, the mushy layer is treated as a porous medium using Darcy’s law

u = −Π0∇p − Rmθ ẑ, (2.6)

where the permeability of the mushy layer is characterized by the non-dimensional
Darcy number

Π0 =
Π̃0

(κ/V )2
, (2.7)

and in contrast to Feltham & Worster (1999) the effects of both thermal and
compositional buoyancy are incorporated through a porous-medium Rayleigh number

Rm =
g(β̃ − Γ α̃)	CΠ̃0(κ/V )

κν
. (2.8)

Here p is the dynamic pressure, g is the acceleration due to gravity, α̃ and β̃ are
the thermal and solutal coefficients of expansion respectively and ν is the kinematic
viscosity. While the permeability of the mushy layer is, in general, anisotropic and
depth dependent (through the solid fraction), we simplify the analysis substantially
by considering a locally isotropic dimensional permeability Π̃0 which is, to leading
order, constant with depth. We note that the assumption of local isotropy is well
satisfied in the NH4Cl system since the resultant mushy layer is composed of an array
of closely spaced, predominantly vertical, dendritic structures. While the permeability
of the mushy layer is expected to depend on the local solid fraction, which increases
with depth into the mushy layer (see § 2.2), we have used a constant permeability
in comparison with the experimental results of § 4 and § 5. The permeability used in
the following theoretical analysis is therefore best interpreted as a depth-averaged
permeability.

Within the overlying liquid, advection and diffusion of heat are modelled by

(∂t − ∂z)θ + u · ∇θ = ∇2θ, (2.9)

flow is governed by the Navier–Stokes equations

(∂t − ∂z)u + u · ∇u = −∇p + Pr∇2u, (2.10)

where Pr = ν/κ is the Prandtl number, and by an equation describing conservation of
mass

∇ · u = 0. (2.11)

The following thermodynamic boundary conditions are imposed;

θ = −1 (z = 0), (2.12a)

θ = 0, φ = 0, [θ]ml = 0, φS vn = [n̂ · ∇θ]ml (z = ζ ), (2.12b, c, d , e)
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θ → θ∞ (z → ∞). (2.12f )

Here θ∞ = [T∞ − TL(C0)]/	T is the dimensionless far-field temperature, n̂ is the unit
normal pointing into the melt, vn is the normal growth velocity of the interface and
[ ]ml denotes a jump in the quantities across the mush–liquid interface. These boundary
conditions express the following constraints. The base of the mushy layer is fixed at
the eutectic temperature (2.12a) and, owing to our neglect of compositional diffusion
within the liquid, the mush–liquid interface is fixed at the liquidus temperature at the
bulk concentration (2.12b). The requirement of zero solid fraction at the mush–liquid
interface (2.12c) follows from the assumption of marginal equilibrium as discussed
by Worster (1986, 2000). We require continuity of both the thermal field (2.12d ) and
conservation of heat at the mush–liquid interface (2.12e), generally known as the
Stefan condition. Finally, the temperature in the overlying liquid asymptotes to its
far-field value (2.12f ).

The boundary conditions on the fluid velocity are as follows:

u = 0 (z = 0), (2.13a)

[u · n̂]ml = 0, [p]ml = 0, [u × n̂]l = 0 (z = ζ ), (2.13b, c, d )

u → U∞ x̂ (z → ∞), (2.13e)

where U∞ is the imposed far-field velocity. Condition (2.13a) requires vanishing
velocity at the base of the mushy layer. At the mush–liquid interface (2.13b) and
(2.13c) express continuity of mass flux and pressure respectively. In the limit of small
mushy layer permeability we use a no-slip condition at the mush–liquid interface
(2.13d ) rather than the more general Beavers–Joseph boundary condition (Beavers
& Joseph 1967). Finally, we require the velocity within the liquid to asymptote to its
far-field value (2.13e).

2.2. Basic steady-state solution

We briefly review the steady state found by Feltham & Worster (1999) in the limit
C � 1 and note that in our experiment C � 10. The basic steady state, denoted by
subscript zero, describes a stagnant mushy layer (um

0 = 0) with an asymptotic suction
profile in the overlying liquid,

ul
0 = (ul, vl, wl) = (U∞[1 − e−(z−ζ0)/P r ], 0, 0), (2.14)

where the x̂ coordinate has been oriented with the flow as shown in figure 1. The
temperature and solid fraction of the mushy layer are given by

θm
0 =

θ∞

Λ

[
1 − e−Λ(z−ζ0)

]
, (2.15)

φm
0 = −θm

0

C
, (2.16)

where Λ = 1 + S /C . Within the overlying liquid the temperature decays to its
far-field value,

θ l
0 = θ∞

[
1 − e−(z−ζ0)

]
. (2.17)

Therefore, the mushy layer depth, as determined by the Stefan condition (2.12e), is

ζ0 =
1

Λ
ln

[
1 +

Λ

θ∞

]
. (2.18)
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3. Linear stability analysis
We study the relative importance of buoyancy- and shear-forced convection within

the mushy layer through the following linear stability analysis. This work is an
extension of the work of Feltham & Worster (1999) and Neufeld et al. (2006) that
includes the effects of buoyancy and solidification/dissolution of the matrix and a
reduced form of the forced mushy layer mode described by Neufeld & Wettlaufer
(2008) where both thermal and compositional perturbations were considered in the
overlying layer. As shown by Feltham & Worster (1999) thermal perturbations in the
liquid only lead to a small translation of the interface while leaving the overall stability
of the shear-forced mushy layer mode unaffected. Finally, it is important to note that
application of an external flow breaks the symmetry of the purely buoyant problem
and hence application of Squire’s theorem ensures that the effect of the external flow
will be strongest in the flow direction and will have no effect in the cross-stream
direction as demonstrated by Chung & Chen (2001). We therefore consider only
perturbations to the basic steady state of the typical normal mode form

(θm, wl, wm, ζ ) =
(
θm

0 , wl
0, w

m
0 , ζ0

)
+

(
θm

1 , wl
1, w

m
1 , ζ1

)
eσ t+ikx, (3.1)

with wavenumbers k aligned with the external flow, where θm
1 , wl

1 and wm
1 depend

only on the z-coordinate. The problem is further simplified by noting that for most
systems of interest the mushy layer permeability is small. In this limit, flow within
the overlying liquid can be approximated well by that of a viscous liquid impinging
upon a corrugated impermeable medium. The principal effect of the overlying liquid
is therefore to induce pressure variations at the mush–liquid interface. These pressure
perturbations in turn drive a flow within the underlying mushy layer that, owing to
the associated advection of heat and solute within the matrix, results in patterns of
solidification and dissolution. In this manner a reduced model is constructed in which
the flow of an external liquid over a corrugated interface is coupled with convective
flows in a reactive porous medium through a pressure matching condition at the
interface. We first solve for the flow of an external liquid over a corrugated interface
and find the resultant pressure perturbations at the mush–liquid interface. Both the
pressure perturbations and the buoyancy of the interstitial fluid then drive flows
within the reactive porous medium.

3.1. Perturbed flow in the melt

Flow within the overlying liquid layer is described by a modified Orr–Sommerfeld
equation with boundary conditions describing the perturbed interface. We briefly
review the solution of the interfacial pressure perturbations found by Neufeld et al.
(2006) using the formulation of Feltham & Worster (1999). In that formulation,
perturbed flow in the melt is given by

[
Pr(D2 − k2) + D

] [
D2 − k2

]
w1

= ikU∞
{[

1 − e−(z−ζ0)/Pr
] [

D2 − k2
]

− Pr−2e−(z−ζ0)/Pr
}

w1, (3.2)

with boundary conditions

w1 = 0, Dw1 = ik
U∞

Pr
(z = ζ0), (3.3a, b)

w1 → 0, Dw1 → 0 (z → ∞), (3.3c, d )

where D ≡ d/dz. Equation (3.2) can be substantially simplified through the
substitutions s = e−(z−ζ0)/P r and α = kPr, and by defining the small parameter
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Figure 2. Real component of the pressure perturbation at the mush–liquid interface for
U∞ = 100 and Pr = 10. Note that the maximum pressure perturbation is Re[p1(ζ0)] = −121 at
k = 0.06 which corresponds to a negative pressure perturbation at the peaks of the interfacial
deflection. The inset graph shows the pressure perturbation over the range k = [0, 100] as first
reported in Neufeld et al. (2006).

ε = (iαU∞)−1. The resultant equation and boundary conditions were solved by Neufeld
et al. (2006) who found a Frobenius series solution of the form

w1 = λ1s
r2

∞∑
j=0

aj s
j + λ2s

r4

∞∑
j=0

bj s
j . (3.4)

The negative roots of the indicial equation are given by

r2 = −α and r4 =
1

2
[1 −

√
1 + 4α(α + ε−1)], (3.5a, b)

and coefficients aj and bj are obtained from the general recurrence relation

[
(j + r)2 − α2

] [
(j + r)2 − (j + r) − α2 − iαU∞

]
aj

= iαU∞
[
α2 + 1 − (j + r − 1)2

]
aj−1, (3.6)

with a0 = 1 and b0 = 1. The constants λ1 and λ2 are given by

λ1 =
−iαU∞/Pr

∞∑
j=0

(r2 + j )aj − β

∞∑
j=0

(r4 + j )bj

and λ2 = −βλ1, (3.7a, b)

where

β =

∞∑
j=0

aj

/ ∞∑
j=0

bj . (3.8)

This solution of the perturbed velocities within the overlying liquid enables evaluation
of the pressure perturbation felt at the mush–liquid interface, which is expressed by

p1 =
−

(
D2

s − α2
)
Dsw1 + D2

sw1

α2
, (3.9)

where Ds ≡ s d/ds. The pressure perturbation felt at the mush–liquid interface for
an external flow of magnitude U∞ = 100 is plotted in figure 2 as a function of the
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Figure 3. Neutral stability curves of the critical Rayleigh number as a function of wavenumber
for U∞ = 0 (dashed) and U∞ = 56 748 (solid) with parameters Pr = 10, Π0 = 10−5, C = 10.2,
S = 3.6 and θ∞ = 0.18. Above the curves the system is unstable to convective motions while
below the curves the system is stable.

wavenumber of the interfacial corrugation. We note that the pressure perturbation
vanishes in the limit of an infinitely corrugated interface (k → ∞) and in the limit of
a planar interface (k → 0) and is maximal for wavenumbers of order 0.1.

3.2. Perturbed flow in the mushy layer

The equations governing perturbations of heat, solid fraction and velocity within the
mushy layer are

(D2 + D − k2)θ1 = S Dφ1 + w1Dθ0, (3.10)

(C − θ0)Dφ1 + (1 − φ0)Dθ1 = θ1Dφ0 + φ1Dθ0 + w1Dθ0, (3.11)

(D2 − k2)w1 = k2Rmθ1. (3.12)

These perturbations are constrained by the following linearized boundary conditions.
At the eutectic (z = 0) the temperature and velocity are

θ1 = 0 and w1 = 0. (3.13a, b)

The conditions on the mushy layer variables at the mush–liquid interface (z = ζ0)
are

θ1 = −ζ1θ∞, φ1 = ζ1θ∞/C , (3.14a, b)

Dθ1 = ζ1Λθ∞, Dw1 = −ζ1

k2Re[p1(ζ0)]

Π0

, (3.14c, d )

where Re[p1(ζ0)] is the real component of the pressure in the liquid at the mush–liquid
interface.

This set of equations and associated boundary conditions form an eigenvalue
problem that is solved numerically for eigenvalues (k, Rm, U∞), the results of which
are plotted in figure 3. This plot shows the curve of neutral stability for both a purely
convective mode (U∞ = 0), and a principally forced-convective mode (U∞ = 56748),
both for typical experimental values C = 10.2, S = 3.6 and θ∞ = 0.18. The stability
of the forced-convective mode as a function of the external flow rate U∞ can be
readily characterized by the minimum, and therefore critical, Rayleigh number Rc

m

as illustrated in figure 4. The plot, which demarcates regions that are stable to
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Figure 4. A plot of the critical porous-medium Rayleigh number as a function of the
external flow rate for Darcy numbers Π0 = 10−3 (dotted), 10−4 (dashed) and 10−5 (solid).
The average thermodynamic parameters of the experiments have been used: C = 10.2, S = 3.6
and θ∞ = 0.18.

convection from ones that are unstable, readily demonstrates the essential character
of the instability. For small external shear rates a buoyant convective instability
is dominant, and therefore the instability of the system is characterized well by a
critical porous medium Rayleigh number. This buoyancy-driven convective mode
is clearly identified with the mushy layer mode of convection first described by
Worster (1992b). However, as the magnitude of the external shear flow is increased,
the system is progressively destabilized by the external flow until at U∞ = Uc

∞ the
critical Rayleigh number Rc

m = 0. For shear flows equal to, or in excess of, this
critical magnitude, the fluid in the mushy layer is unstable to convective motions
driven primarily by the externally imposed pressure perturbations at the mush–liquid
interface. Because the mushy layer is a chemically reactive porous medium, fluid
motion within its interstices is associated with alternating patterns of warming/cooling
and solidification/dissolution as illustrated by the eigenfunctions plotted in figure 5.
The pattern of solidification and dissolution shown in figure 5(b) is driven by the
external flow and is most readily apparent at depth within the mushy layer. These
patterns are typical of both the buoyant- and shear-driven mushy layer modes of
convection and we have therefore interpreted the resultant patterns of solidification
and dissolution in a similar manner to previous authors who focused only on the role
of buoyant convection. This pattern of solidification and dissolution rapidly leads to
the formation of crevasses which are elongated regions of zero solid fraction aligned
perpendicular to the external flow as shown in § 5.

3.3. Experimental model and the role of permeability

Figure 4 illustrates the central role that permeability plays in the forced mushy layer
mode. While there currently exists a range of experimental results on the buoyant
mushy layer mode in which U∞ = 0 (for example Wettlaufer et al. 1997a in NaCl
solution and Peppin et al. 2007 in aqueous NH4Cl) our experimental investigations
focus on the role of the forced mode of instability. Here we develop a semi-analytic
theory in which buoyant convection is neglected (Rm = 0) and in which C � θ0 as
reflected in our experiments for which C � 10.
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Figure 5. The results of the reduced model of mushy layer convection showing
(a) perturbations to the thermal field and (b) perturbations to the solid fraction. Perturbations
to the mush–liquid interface are shown in purple, and streamlines in black. Fluid motion, driven
by pressure perturbations induced by the external flow, is upwards at the peaks and downwards
at the troughs. Near the perturbed interface solidification at the peaks and dissolution at the
troughs simply reflects the growth and recession of the perturbation. This restricted surface
region has little effect on the overall pattern observed experimentally. The eigenfunctions
plotted are for the experimental parameters C = 10.2, S = 3.6, θ∞ = 0.18, Pr = 10, k = 1.09,
Rm = 0 and U∞ = 56 748.

In these limits, equations (3.10)–(3.12), which describe perturbations to the mushy
layer, can be reduced to

(D2 + ΛD − k2)θ1 = w1ΛDθ0, (3.15)

(D2 − k2)w1 = 0. (3.16)

Equation (3.16) together with boundary conditions (3.13b) and (3.14d ) has a solution

w1(z) = −ζ1k
Re[p1(ζ0)]

Π0

sinh (kz)

cosh (kζ0)
. (3.17)
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Figure 6. Image of the laboratory flume showing the entry sill on the left, straw baffle and
confining walls which lead to the test section from which an NH4Cl mushy layer is grown. Fluid
is removed from the collection reservoir on the right and recirculated using corrosion-resistant
pumps (not shown).

The thermal perturbations are solved using boundary conditions (3.13a) and (3.14a)
giving

θ1(z) = ζ1θ∞
Re[p1(ζ0)]

Π0

{
−e−Λ(z/2−ζ0) cosh (γ z)

cosh (kζ0)
+ e−Λ(z−ζ0) cosh (kz)

cosh (kζ0)

+ e−Λ(z−ζ0)/2 sinh (γ z)

sinh (γ ζ0)

[
eΛζ0/2 cosh (γ ζ0)

cosh (kζ0)
− 1

]}

− ζ1θ∞e−Λ(z−ζ0)/2 sinh (γ z)

sinh (γ ζ0)
(3.18)

where γ =
√

Λ2 + 4k2/2. Finally, we impose conservation of heat at the mush–liquid
interface through the Stefan condition (3.14c). This provides a dispersion relation for
the permeability of the mushy layer necessary for flow forced by the motion of the
external fluid;

Π0(k) = Re[p1(ζ0)]

{
γ eΛζ0/2

cosh (kζ0)

[
cosh (γ ζ0)

tanh (γ ζ0)
− sinh (γ ζ0)

]

+ k tanh (kζ0) − Λ

2
− γ

tanh (γ ζ0)

}{
Λ

2
+

γ

tanh (γ ζ0)

}−1

. (3.19)

Using this result we find the minimum critical Darcy number as a function of the
external flow speed

Πc
0 = a

(
Uc

∞
)b

, (3.20)

where a = 409.20 and b = −1.60 are obtained from a numerical fit of the critical
permeability derived from (3.19). This power-law dependence of the critical
permeability on the magnitude of the external flow rate is verified by the experimental
results of § 5 and, importantly, results in an estimation of the dimensional permeability
of the NH4Cl mushy layer.

4. Experimental apparatus and methods
The experimental apparatus shown in figure 6 is designed for controlled growth

of an NH4Cl mushy layer in the presence of a laminar flow of prescribed far-
field velocity. The apparatus consists of a large Perspex laboratory flume 1.6 m in
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Figure 7. Schematic of the laboratory flume. Pumps recirculate the working fluid into an
initial reservoir. The fluid flows over a sill, through a straw baffle and a narrowing section
to produce an ideal, laminar profile before transiting over the test section. Finally the fluid
is pumped out to the collection reservoir. Flow control is achieved through the use of a
recirculation line with associated valves.

length with a depth of 15 cm. As illustrated in figure 7, flow is generated within
the flume by two corrosion-resistant pumps that inject the NH4Cl solution behind
a sill thereby dampening the initial turbulent discharge. The solution then passes
through a baffle and a pair of constricting walls that produce a laminar flow field at
the experimental velocities considered. The confining walls are constructed from two
custom moulded Perspex walls whose angle with respect to the flow direction was
chosen to eliminate vortex generation at the sidewalls. This laminar flow then passes
over a test section where an NH4Cl mushy layer is grown at constant rate from a
base plate whose temperature can be varied as a function of time (as detailed in the
following subsections). Ultimately, the solution enters the collection reservoir and is
recirculated.

Using this apparatus a typical experimental run proceeds as follows. An NH4Cl
mushy layer is grown at constant rate from a cooled plate recessed 5 mm from the
base of the quiescent flume (U∞ = 0). Once the free surface of the mushy layer is at
the same height as the base of the flume the external flow is initiated (U∞ > 0) thus
ensuring that the viscous boundary layer remains uniform as it transitions from flow
over the Perspex flume to that over the mushy layer. Typical growth rates of the mushy
layer are 10−4–10−3 cm s−1 which therefore have a negligible impact on the bulk flow
on the time scales over which the forced instability develops. Secondly, and perhaps
most importantly, by performing a series of experiments in which both the thermal
forcing and experimental parameters were unchanged, but in which no external flow
was applied, we observed evidence of the mushy layer mode of convection only after
a depth of 8–10 mm was reached. Thus, once the external flow has been initiated any
morphological change in the mushy layer can be directly attributed to forcing by the
external flow.

4.1. Thermal control of mushy layer growth

4.1.1. A model for thermal control

Steady-state growth of the mushy layer is achieved through temporal control of the
temperature at the base of the test section. A model prescribing the required thermal
forcing has been developed and is based on the steady-state solutions derived in § 2.
To first approximation, solidification occurs at the base plate once the temperature
reaches the liquidus temperature at bulk concentration. The temperature required at
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Liquid

Mushy layer

Figure 8. Vigorous, small-scale, compositional convection in the fluid ahead of the mushy
layer in the absence of external flow as seen from the side in this negative shadowgraph image
of a growing mushy layer. The boundary layer mode of convection does not have a significant
effect on the mushy layer morphology implying that the mushy layer remains unperturbed
despite vigorous convection above it. The depth of the mushy layer shown is 2 mm.

the base plate Tb(t) is therefore given by

Tb(t) = TL(C0) +
T∞ − TL(C0)

Λ

[
1 − exp(ΛV 2t/κ)

]
, (4.1)

through a coordinate transformation of the steady-state thermal solution (2.15) to a
reference frame fixed at the copper base plate.

4.1.2. The effect of convection in the liquid

Typical experiments on the growth of NH4Cl mushy layers in the absence of
externally imposed flows show that the system is unstable to the boundary layer mode
well in advance of the mushy layer mode. The onset of this mode results in vigorous,
small-scale fluid motion in the compositional boundary layer ahead of the mush–
liquid interface while leaving the fluid within the mushy layer effectively stagnant
as shown in figure 8. This rapid convection drives both thermal and compositional
fluxes exceeding those predicted by diffusion alone. We therefore use the approach of
Worster & Kerr (1994) in modifying the thermal flux in the liquid at the mush–liquid
interface by a convective flux FT . Thus, the Stefan condition becomes

∂θ

∂z

∣∣∣∣
z=ζ0

=
FT

cV 	T
, (4.2)

where c is the specific heat defined below. Convection within the boundary layer is
driven primarily by the compositional perturbations. Therefore, compositional Nusselt
and Rayleigh numbers are defined as

NuC =
FC

D(C0 − Ci)/d
and RC =

gβ̃(C0 − Ci)d
3

Dν

respectively, where d is the depth of the compositional boundary layer, FC is the
compositional flux and D is the solutal diffusivity. By making the standard assumption
that the compositional flux is independent of the boundary layer thickness the four-
thirds law is recovered,

FC = 24/3λD

(
gβ̃

Dν

)1/3

(C0 − Ci)
4/3, (4.3)

where λ is a constant. Finally, it is assumed that this compositional flux drives a
thermal flux given by the relation

FT = A
k

D

(
T∞ − Ti

C0 − Ci

)
FC

= 24/3λAk

(
gβ̃

Dν

)1/3

(T∞ − Ti)(C0 − Ci)
1/3, (4.4)
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Parameter Symbol Value Reference

eutectic concentration CE 19.7 wt% Washburn (2003)
eutectic temperature TE −15.4 ◦C Washburn (2003)

liquidus slope (super-eutectic) Γ 4.72 ± 0.07 Kwt% −1 Washburn (2003)
kinematic viscosity ν 9.54 × 10−3 cm2 s−1 Sarazin & Hellawell (1988)
latent heat L 421.95 J cm−3 Worster & Kerr (1994)
thermal expansion coefficient α̃ 6 × 10−4 K−1 Sarazin & Hellawell (1988)

solutal expansion coefficient β̃ 2.5 × 10−3 wt% −1 Worster & Kerr (1994)
solute diffusivity D 1.3 × 10−5 cm2 s−1 Sarazin & Hellawell (1988)

specific heat of solid cs 0.545 cal cm−3 K−1 Worster & Kerr (1994)

specific heat of solution cl 0.847 cal cm−3 K−1 Worster & Kerr (1994)

thermal conductivity of crystal ks 5.26 × 10−3 cal cm−1 s−1 K−1 Worster & Kerr (1994)

thermal conductivity of liquid kl 1.39 × 10−3 cal cm−1 s−1 K−1 Worster & Kerr (1994)
inter-dendrite spacing δdendrite 0.03 cm Worster (2000)
kinetic growth parameter G 4.14 × 10−5 cm s−1 K−2 Worster & Kerr (1994)

Table 1. Physical properties of aqueous ammonium chloride solution
and its crystalline solid phase.

where A is a constant which depends on the ratio of thermal to compositional
diffusivities. Worster & Kerr (1994) note that the parameter A is about unity for the
weak double-diffusive form of convection typical within the compositional boundary
layer and thus we set A = 1.

4.1.3. Kinetic undercooling

The model of mushy layer growth can be further expanded by relaxing the
assumption that the temperature and concentration within the mushy layer are
constrained by the liquidus relationship. Specifically, recognizing that solidification is
an intrinsically non-equilibrium process a model of kinetic undercooling is introduced.
Following Worster & Kerr (1994), this undercooling is parameterized as

∂ζ

∂t
= V = G[TL(C0) − Ti]

2, (4.5)

where G = 4.14 × 10−5 cm s−1 ◦C−2 is a so-called kinetic growth parameter.
Rearranging this expression for the interfacial temperature gives

Ti = TL(C0) −
√

V/G,

and therefore the full equation describing the base-plate temperature required for
constant growth of a mushy layer is given by

Tb(t) = TL(C0) −
√

V/G +
FT

ΛcV

[
1 − exp

(
Λ

V 2

κ
t

)]
, (4.6)

where FT is defined by (4.4). The parameter values, A = 1 and λ= 0.0101, used for
the experiment are taken from Worster & Kerr (1994) who also studied the NH4Cl
mushy layer system. All other constants are given in table 1. Furthermore, ‘ideal’
mushy layer theory neglects variations in the physical properties of the liquid and
solid phases. To first approximation, the thermal conductivity k and specific heat c of
the mushy layer are estimated as k = φks + (1 − φ)kl and c = φcs + (1 − φ)cl , where
ks , kl , cs and cl are the thermal diffusivities and specific heats of the solid and liquid
respectively (listed in table 1). A depth-averaged value of φ = 0.6 has been taken
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from the post-growth CT scan measurements of the solid fraction of a similar NH4Cl
mushy layer described by Chen et al. (1994).

4.2. Experimental realization and measurement of constant growth

Controlled solidification of an NH4Cl mushy layer is accomplished in the following
manner. The base of the test section is recessed 5 mm from the base of the flume
and is composed of a 2 mm thick copper plate whose temperature is monitored and
controlled by a computer running Labview. The temperature at the base of the mushy
layer is monitored by three thermocouples embedded within the copper base plate.
This provides the necessary input for control, which is achieved by two elements.
The first is an array of Peltier devices, or thermoelectric coolers, which are held in
thermal contact with the copper base plate. These Peltier devices produce a thermal
flux proportional to the applied electrical power, and thus provide a mechanism
for relatively fast thermal control of the base plate. The flux through the array of
Peltier devices is controlled by a power supply that is manipulated by the Labview
program. Underlying this array is a brass manifold through which 14 l of coolant is
circulated by two RTE-7 Neslab baths. In practice, owing to the large thermal inertia
associated with the large volume of coolant, these Neslab baths provide temperature
control and stability over long time scales while the Peltier devices provide accurate,
and enhanced, temperature control on shorter time scales. In this way, a prescribed
temporal variation of the temperature of the base plate can be used to force steady-
state growth of the overlying mushy layer.

The experiment is visualized in two ways. At regular intervals shadowgraph images
of the side of the test section are taken. From these images the depth of the mushy
layer is calculated as a function of time. A second set of images is taken of the
planform of the resultant mushy layer. It is through examination of these images that
the presence of the forced mushy layer mode is detected.

Measurements of the thermal variables, the power applied to the Peltier array, and
the resultant evolution of the height of the mushy layer from a typical experimental
run are shown in figure 9(a–c). In figure 9(b) the theoretical model governing the
steady-state growth of an NH4Cl mushy layer is shown along with the experimentally
achieved thermal forcing. It is apparent that, after an initial thermal transient, the
base-plate temperature achieved was in good agreement with the model forcing until
800 s into the experiment. This is ensured through gradual cooling of the manifold
by the Neslab baths, and through rapid application of electric power (shown in
figure 9c) to the Peltier devices. It should also be noted that, as shown by the dotted
line in figure 9(b), owing to the large fluid volume contained within the laboratory
flume, the far-field temperature did not vary appreciably during the course of the
experiment. The resultant mushy layer growth is shown in figure 9(a). Here, after an
initial transient, linear growth of the mushy layer is achieved. At t = 420 s, shown in
figure 9(a) by the vertical grey bar, an external flow was initiated of Ũ∞ = 8.4 cm s−1.
This produces an initial transient in mushy layer growth, most probably associated
with patterns of solidification and dissolution driven by the external flow. The
solidification then continues with a lower growth rate most probably due to a greater
volume-averaged solid fraction. This is consistent with the solidification/dissolution
patterns considered in § 3 and described in § 5 and mirrors the increased solid fraction
observed when fluid motion is driven by interstitial buoyancy as measured in situ
through MRI imaging by Aussillous et al. (2006).
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Figure 9. Typical thermal forcing and response from experiment 250106C (see table 2).
(a) The height of the mushy layer as a function of time (�) and the best-fit line (solid) of
the growth velocity measured both before and after application of the external flow (indicated
by grey shading). (b) The temperature forcing required for constant growth (solid) and the
achieved base place temperature (dashed) along with the bulk fluid temperature (dotted), and
the temperature of the two Neslab cooling baths (dash–dot). (c) The current (solid) and the
voltage (dashed), and hence the power, applied to the base plate to achieve the required forcing.
See text for further details.

5. Experimental results and discussion
The experimental apparatus and methods described in § 4 have been used to perform

a systematic study of the effects of an applied external flow on the development of a
mushy layer grown at constant rate. Owing to the breadth of parameter space, and
the constraints imposed by selection of NH4Cl as the working solution we focus our
attention on variations in the magnitude of the external shear (U∞) only, keeping the
thermodynamic parameters C , S and θ∞ relatively constant. Experimentally this is
achieved through variation of the dimensional growth velocity V through thermal
forcing of the base plate, and variation of the dimensional magnitude of the external
flow Ũ∞. A summary of the experimental conditions, along with the measured values
of the thermodynamic parameters is presented in table 2.

Each experiment begins with the linear growth of an NH4Cl mushy layer within
the quiescent laboratory flume as described in § 4. The typical planform of the mushy
layer just prior to the initiation of an external flow is shown in figure 10(a). In all
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stable/
Designation Ũ∞ (cm s−1) V (×10−4 cm s−1) U∞(×103) C S θ∞ unstable

071105A 4.9 ± 0.1 9.4 ± 0.3 5.2 ± 0.1 10.86 3.86 0.18 stable
071105B 12 ± 1 7 ± 1 17 ± 0.3 10.86 3.86 0.17 unstable
071105C 8.2 ± 0.4 7.41 ± 0.07 11.1 ± 0.06 10.86 3.86 0.16 unstable
071105D 5.8 ± 0.2 7.6 ± 0.1 7.7 ± 0.3 10.86 3.86 0.29 unstable
071105E 2.99 ± 0.07 8.00 ± 0.09 3.74 ± 0.09 10.86 3.86 0.30 stable
161105A 12 ± 1 8.2 ± 0.1 15 ± 0.2 9.93 3.56 0.12 unstable
161105B 8.4 ± 0.4 6.57 ± 0.09 12.7 ± 0.06 9.93 3.56 0.12 unstable
161105C 4.7 ± 0.1 7.4 ± 0.1 6.3 ± 0.1 9.93 3.56 0.15 stable
220106A 10 ± 1 8 ± 1 12 ± 0.2 10.47 3.73 0.23 unstable
220106B 10 ± 1 9.5 ± 0.1 10 ± 0.1 10.47 3.73 0.23 unstable
230106A 9 ± 1 10.8 ± 0.04 8 ± 1 10.81 3.84 0.30 unstable
230106B 9 ± 1 8.9 ± 0.1 10 ± 1 10.47 3.73 0.27 unstable
230106C 9 ± 1 9.3 ± 0.1 9 ± 1 10.47 3.73 0.25 unstable
230106D 9 ± 1 3.19 ± 0.02 27 ± 0.3 10.47 3.73 0.24 unstable
230106E 5.8 ± 0.2 10.5 ± 0.04 5.5 ± 0.3 10.47 3.73 0.27 unstable
250106C 8.4 ± 0.4 6.6 ± 0.1 12.7 ± 0.07 10.31 3.68 0.08 unstable
250106D 3.60 ± 0.08 5.72 ± 0.06 6.3 ± 0.1 10.31 3.68 0.20 stable
250106E 3.60 ± 0.08 9.7 ± 0.1 3.72 ± 0.09 10.31 3.68 0.19 stable
250106F 3.60 ± 0.08 9.8 ± 0.2 3.68 ± 0.08 10.31 3.68 0.19 stable
280106A 4.7 ± 0.1 3.93 ± 0.06 11.9 ± 0.03 9.85 3.53 0.13 stable
280106B 4.7 ± 0.1 5.1 ± 0.1 9.2 ± 0.2 9.85 3.53 0.12 stable
280106C 4.7 ± 0.1 2.11 ± 0.01 22.2 ± 0.05 9.85 3.53 0.12 stable
280106D 4.7 ± 0.1 8.6 ± 0.2 5.4 ± 0.1 9.85 3.53 0.12 stable
300106A 8.6 ± 0.6 3.94 ± 0.03 22 ± 0.2 10.00 3.58 0.15 unstable
300106B 8.6 ± 0.6 4.55 ± 0.04 19 ± 0.1 10.00 3.58 0.04 unstable
300106C 8.6 ± 0.6 2.280 ± 0.009 38 ± 0.3 10.00 3.58 0.19 unstable
300106D 3.86 ± 0.09 7.58 ± 0.07 5.1 ± 0.1 10.00 3.58 0.18 stable

Table 2. Summary of experiments in which a shear flow was applied. Growth velocities were
measured prior to the application of the external flow. The presence of the channel pattern
upon application of an external flow of velocity U∞ is indicated by stable/unstable and results
in the channelling pattern typified by the results shown in figure 10(b).

experiments, the planform reveals a homogeneous mushy layer; evidence that the
mushy layer mode of convection is absent prior to initiation of the shear flow. Any
changes in the morphology of the mushy layer upon application of the external
flow are recorded and can be systematically correlated with the strength of the
external current. For sufficiently weak shear flows growth of the mushy layer remains
unaffected and the observed planform remains homogeneous. These experiments in
which the mushy layer is homogeneous in the presence of flow are denoted ‘stable’
in table 2. In contrast, application of an external flow of sufficient magnitude results
in a dramatic series of dark striations that form perpendicular to the applied flow, as
shown in figure 10(b). These striations are regions of zero solid fraction, or crevasses,
through which the black base plate can be clearly seen. Regions of zero solid
fraction within the mushy layer reveal the influence of flow leading to dissolution and
solidification through advection of heat and solute. The presence of these crevasses,
whose spacing is commensurate with the depth of the mushy layer, is consistent
with the patterns of dissolution and solidification produced by forced convective rolls
aligned perpendicular to the applied flow. We therefore interpret these crevasses as the
nonlinear manifestation of the forced mushy layer mode of convection. Experiments
in which this pattern of crevasses are clearly visible are denoted ‘unstable’ in table 2.
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(a)

(b)

(c)

Figure 10. Images from experiment 300106B (see table 2) showing a planform view of the
mushy layer (a) prior to onset, (b) after an external flow of Ũ∞ = 8.6 cm s−1 has been applied
from left to right in the photos and (c) several minutes after the flow has been applied. Note
that the dark patterns are regions of zero solid fraction through which the black base plate
can be seen.

The subsequent evolution of these crevasses in the continued presence of the
external shear flow is typified by the planform shown in figure 10(c). This image
shows the breakdown of the crevasses into a series of point regions of zero solid
fraction referred to as chimneys in § 1. Continued growth of the mushy layer results
in a decrease in the number density of these chimneys, a result first observed in the
absence of an external flow by Tait & Jaupart (1992) and Huppert et al. (1993).
Finally, we note that the formation of the pattern of crevasses is re-entrant; that is,
once the external flow has ceased, the mushy layer returns to the homogeneous state
through further crystal growth.

A quantitative comparison between the experimental results and the stability
analysis of § 3 is made in the following manner. The simplified theoretical analysis
outlined in § 3, and presented in more detail by Neufeld & Wattlaufer (2008), shows
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Parameter Symbol Value

concentration ratio C 10.2 ± 0.3
Stefan number S 3.6 ± 0.1
superheat θ∞ 0.18 ± 0.07
Prandtl number Pr 10

Table 3. Average non-dimensional parameters used in the theoretical comparison with the
suite of experiments listed in table 2. Errors quoted are ±1 standard deviation.

10–3
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Figure 11. Comparison of theoretical prediction of the stability threshold given by (3.20)
with the experimental results. Squares indicate experiments in which the externally applied
shear flow had no discernible effect on the mushy layer and circles indicate experiments in
which corrugations became apparent upon application of the external flow. A value for the
dimensional permeability Π̃0 = 1.75 × 10−3 cm2 was used. See text for details.

that the dominant parameter controlling the interaction of an external flow with
solidification of a mushy layer is the permeability of the crystal matrix. The key result
of the linear stability analysis presented in § 3 is therefore the power-law relationship
(3.20) between the magnitude of the critical external flow Uc

∞ and the permeability of
the mushy layer, as characterized by the Darcy number Π0. This relationship separates
regions that are stable to the forced convective mode from ones that are unstable
and therefore prone to development of crevasses. The experimental observations
of the absence/presence of crevasses, as indicated in table 2 by stable/unstable,
are compared to this theoretical prediction in the following manner. We first note
that there are no adjustable parameters in the power-law relationship. However, in
constructing the dimensionless groups characterizing the experiments we note that
while the growth rate V and dimensional external flow rate Ũ∞ are experimentally well
constrained, previous estimates of the dimensional permeability Π̃0 vary by orders
of magnitude within the literature. Because each experiment has been conducted
using fixed thermodynamic parameters, C , S and θ∞ (summarized in table 3) we
anticipate that a single dimensional permeability characterizes the entire suite of 27
experiments. Using this dimensional permeability as a fitting parameter we find good
agreement between our linear stability analysis and the experimental data as shown in
figure 11. Here the matching power-law behaviour gives us confidence in our analysis,
and confirms the central role of the external shear U∞ and permeability Π0 in the
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forced instability and the relative insensitivity to the porous Rayleigh number Rm as
predicted in figure 4. Finally, a comparison of the magnitudes represents the following
fit of the dimensional mushy layer permeability:

Π̃0 = 1.75 × 10−3 cm2. (5.1)

This estimate compares quite favourably with a theoretical estimate obtained in the
following manner. We estimate the depth-averaged solid fraction by integration of the
steady-state solid fraction profile over the depth of the mushy layer. For the typical
experimental parameters C = 10.2, S = 3.6 and θ∞ = 0.18 we find

φ0 =
1

ζ0

∫ ζ0

0

φ0 dz

=
θ∞

ΛC

[
1

ζ0θ∞
− 1

]

� 0.03. (5.2)

We estimate the permeability of the mushy layer using the Kozeny–Carman relation
and an inter-dendrite spacing between δdendrite � 0.03 and 0.05 cm given by Worster
(2000) and Chen & Chen (1991) respectively. This yields a theoretical estimate of the
mushy layer permeability of

Π̃0,theory = 4.2 − 11.7 × 10−3 cm2, (5.3)

in good agreement with the experimentally determined value. We note that these
estimates of NH4Cl mushy layer permeability are much larger than the estimates of
previous authors. In particular, we note that the estimate given by Chen & Chen (1991)
of Π̃0 = 2.41 × 10−5 cm2 is based on measurements of the solid fraction obtained by
CT scans of an NH4Cl mushy layer two days after the experiments exhibiting the fully
developed mushy layer mode, including the presence of chimneys, were conducted.
First, their estimate of the permeability was derived using the Kozeny–Carman
relationship, with a typical dendrite spacing of δdendrite = 0.05 cm. Secondly, the more
recent in-situ MRI measurements of sucrose mushy layers conducted by Aussillous
et al. (2006) indicate that the mushy layer mode of convection tends to increase the
depth-averaged solid fraction of the mushy layer. It is therefore not surprising that
our results indicate a higher mushy layer permeability. Our experimentally determined
value of the permeability of an NH4Cl mushy layer therefore presents a relatively
rare dynamical estimate of this important parameter. It is more commonly the case
that such quantities are measured without reference to a critical condition such as
this, where the system is operating near a stability threshold.

This dynamical approach has been successful in characterizing the onset of the
mushy layer mode (see Wettlaufer et al. 1997a , b) and we hope that it can provide a
context for further studies of the forced mode. In analogy with the work of Wettlaufer
et al. (1997a) figure 11 can therefore be considered as an empirical marginal stability
diagram separating regimes that are unstable to the forced mushy layer mode from
those that are stable. In the case of forced convection the reduced analytic model
indicates the existence of a scaling relationship between the external flow velocity
U∞ and the Darcy number Π0. Figure 11 therefore not only supports the scaling
relationship, and hence the underlying theory, but as a result provides a measure
of the underlying dimensional permeability. This last result is of great importance
because flow within a mushy layer is dominated by the permeability of the matrix.
Therefore, the resulting comparison between theory and experiment has implications
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not only for problems of externally forced flows in mushy layers, but to any problem
in which flow within the mushy layer plays an important role.

6. Conclusion
The interaction of an external flow with the solidification of a growing mushy layer

has been investigated both theoretically and experimentally. The full numerical linear
stability analysis of Neufeld & Wettlaufer (2008), and the reduced model presented
here, reveal that the presence of a sufficiently vigorous external shear can force flow
within the mushy layer in the form of rolls aligned perpendicular to the external
shear. The linear stability analysis further predicts that this motion will lead to
patterns of solidification and dissolution caused by, and transverse to, this forced flow.

These theoretical predictions were tested using an aqueous ammonium chloride
solution which was solidified at constant rate within a laboratory flume. We observe
the formation of a striking pattern of crevasses, regions of zero solid fraction, aligned
perpendicular to the external shear. The presence/absence of these crevasses was
compared with the linear stability analysis and in so doing a highly constrained
dynamical estimate of the permeability of the mushy layer was obtained.

This combination of theoretical and experimental approaches reveals that the
interaction of an external flow with the growth of a dendritic array of crystals can
lead to dramatic changes in the morphology of the resultant solid. Furthermore,
we have shown the central role that the permeability of the mushy layer plays in
the forced convective instability. The physical mechanisms demonstrated here may
therefore be important to a host of geophysical and industrial systems. For example,
measurements of the speed of tidal currents performed by Widell, Fer & Haugan
(2006) have been correlated with salt fluxes from warm, and therefore permeable,
sea ice. These oceanic flows may therefore alter the nature of heat and salt fluxes
from sea ice thereby changing both the properties of the overlying ice as well as
the hydrography of the polar oceans. The feedback may continue to influence the
system by modification of the mechanical properties, such as bending rigidity, and
hence the deformation patterns of the ice cover (Vella & Wettlaufer 2007). Our results
also suggest that the presence of an external flow could enhance the colonization of
sea ice because the decreased solid fraction provides both the nutrients and habitat
necessary for polar organisms. Such an idea has been investigated more qualitatively
by Krembs, Tuschling & von Juterzenka (2002) in which flow over a prescribed bottom
topography was found to affect the spatial distribution of the colonization of sea ice.
In industrial applications the suite of experiments reported on here demonstrates the
possibility of tailoring materials using external flows. Moreover, the role of such flows
on the solidification textures of the Earth’s inner core is thought to be related to its
elastic anisotropy (Aubert et al. 2008) although the issue is not without continuing
and exciting controversy (Belonoshko et al. 2008). Thus, the theoretical treatment and
experimental methods outlined here therefore provide a guide for future studies on
the interaction of external flows with a wide range of systems.
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