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We consider the two-dimensional buoyancy driven flow of a fluid injected into a
saturated semi-infinite porous medium bounded by a horizontal barrier in which a
single line sink, representing a fissure some distance from the point of injection, allows
leakage of buoyant fluid. Our studies are motivated by the geological sequestration of
carbon dioxide (CO2) and the possibility that fissures in the cap rock may compromise
the safe long-term storage of CO2. A theoretical model is presented that accounts for
leakage through the fissure using two parameters, which characterize leakage driven
both by the hydrostatic pressure within the overriding fluid and by the buoyancy
of the fluid within the fissure. We determine numerical solutions for the evolution
of both the gravity current within the porous medium and the volume of fluid that
has escaped through the fissure as a function of time. A quantity of considerable
practical interest is the efficiency of storage, which we define as the amount of fluid
remaining in the porous medium relative to the amount injected. This efficiency scales
like t−1/2 at late times, indicating that the efficiency of storage ultimately tends to
zero. We confirm the results of our model by comparison with an analogue laboratory
experiment and discuss the implications of our two-dimensional model of leakage
from a fissure for the geological sequestration of CO2.

1. Introduction
Buoyancy driven flow of fluid through a layered porous medium occurs throughout

many environmental and industrial settings. Important examples include groundwater
flows and the contamination of aquifers, the motion of oil and natural gas in petroleum
reservoirs and the characterization of geothermal systems (see for example Bear 1972;
Phillips 2009). More recently, concern for the long-term fate of the Earth’s climate
has galvanized efforts to mitigate anthropogenic climate change. Approximately 27
gigatonnes of carbon dioxide (CO2) are released annually by mankind into the
atmosphere, likely leading to a precipitous rise in the average global temperature.
One of the most promising methods for combating this dangerous increase is through
carbon capture and storage (CCS). This process, in which large quantities of CO2

are captured and then stored within geological reservoirs, has generated much recent
interest in buoyancy driven flows in layered geological strata (Nordbotten, Celia &
Bachu 2005a; Vella & Huppert 2006; Bickle et al. 2007; Neufeld & Huppert 2009).
However, to be truly effective, storage requires relatively permeable formations in
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which to inject the CO2, without compromising the stability of the sequestered CO2

on 1000 year time scales. This latter requirement motivates the present investigation
of the efficiency of storage in reservoirs punctuated by fissures or faults.

The study of buoyancy driven flows, or gravity currents, within layered permeable
rock is well developed, including both flows in unconfined reservoirs (Barenblatt 1996;
Anderson, McLaughlin & Miller 2003; Lyle et al. 2005) and confined geometries
(Huppert & Woods 1995). Several studies, such as those reviewed in Huppert (2006),
have shown that in many situations the horizontal scale of the buoyancy driven flow
greatly exceeds the vertical scale and therefore pressure is approximately hydrostatic
in the vertical. In horizontal strata, it is the lateral gradients in the depth of the
fluid that drive flow, a simplification that leads to a nonlinear evolution equation
describing the sharp interface between buoyant and ambient reservoir fluids. When
such reservoirs are bounded by one or more impermeable barriers this evolution
equation generally admits similarity solutions which are a powerful tool with which
to quickly assess the characteristics of subsurface flows. For example, Bickle et al.
(2007) recently used a robust seismic estimate of the extent of a CO2 plume injected
beneath the North Sea along with the scaling laws developed by Lyle et al. (2005) to
infer reservoir properties as a function of depth within the formation.

These depth-integrated models have been extended to include the effects of both
diffuse and discrete leakage through the boundaries. Pritchard, Woods & Hogg (2001)
modelled the propagation of fluid over, and distributed drainage through, a relatively
thin lower permeability layer. They considered the limit where drainage is driven
solely by the hydrostatic pressure of the overriding fluid in both two-dimensional
and axisymmetric geometries. Acton, Huppert & Worster (2001) examined the related
problem of a two-dimensional viscous gravity current propagating over a deep porous
medium both experimentally and numerically. They considered drainage driven by
both the hydrostatic pressure of the viscous fluid, as well as the weight of fluid
within the underlying porous medium. Following this work, Pritchard & Hogg (2002)
considered the related problem of flow in a layered two-dimensional porous medium
using an identical drainage law. In the axisymmetric geometry, Spannuth et al. (2009)
observed experimentally that viscous currents spreading radially over an ideal porous
media are well characterized using the drainage law proposed by Acton et al. (2001).
Such diffuse drainage laws have been used by Neufeld & Huppert (2009) to model the
propagation of injected CO2 through the layered Utsira formation beneath the North
Sea. Finally, Farcas & Woods (2009) and Woods & Farcas (2009) have proposed a
model for capillary retention in layered formations, in which a critical fluid depth
must be exceeded before diffuse drainage can begin. They have applied this model to
both horizontal and sloping two-dimensional formations.

Models examining the effect of discrete leakage points through the boundary have
been motivated recently by the geological storage of contaminants or CO2. These
studies have chiefly examined the effect of the pressure field accompanying injection.
Nordbotten, Celia & Bachu (2004) and Nordbotten et al. (2005b) built on the work of
Avci (1994) who modelled leakage driven solely by the increased pressure associated
with injection into a confined aquifer. More recently, Nordbotten et al. (2009) have
proposed a method for incorporating the effect of buoyancy on leakage in a confined
aquifer. Finally, Pritchard (2007) has studied the buoyancy driven propagation of a
gravity current in a two-dimensional porous medium with a series of line sinks or
fissures spaced symmetrically about the injection point. That study provided both
numerical solutions of the full time-dependant problem, as well as an asymptotic
analysis of the long-term behaviour. Importantly, Pritchard (2007) found that the
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Figure 1. A current of density ρ + �ρ is input at constant rate at the origin. It spreads into a
porous medium of permeability k saturated with an ambient fluid of density ρ. At a distance
xf from the origin the current spreads over a fissure of permeability kf , through which it

drains, producing a marked difference in the length of the current to the right x+
N (t) and left

x−
N (t) as functions of time.

profile of the current quickly reaches a steady state governed principally by a non-
dimensional measure of the strength of the line sink.

In the present work we expand the model of Pritchard (2007) to consider the
propagation of a two-dimensional gravity current within a porous medium with an
asymmetric geometry more typical of geological reservoirs. We consider the effect
of a single line sink or fissure some distance from the injection point. A model of
drainage through the fissure is formulated in § 2, which incorporates both flow driven
by hydrostatic pressure as well as the weight of the fluid within the fissure itself, which
was neglected by Pritchard (2007). This model is coupled to the standard equations
governing flow of a thin buoyant fluid within a porous medium. In § 3 we show that
the system approaches a steady state and we compare numerical computations and
asymptotic expressions for the efficiency of storage. These models are then tested
against the results of an analogue Hele-Shaw cell experiment in § 4. In § 5 we consider
the relevance of our predictions for the geological sequestration of CO2 and the
storage of contaminants. We conclude with some possibilities for future research and
a discussion in § 6.

2. Theoretical development
2.1. Geometry

Consider injection, at constant volume flux q , of a fluid of density ρ + �ρ flowing
into a semi-infinite porous medium of permeability k saturated with fluid of density
ρ as depicted in figure 1. The semi-infinite medium is bounded by an impermeable
horizontal barrier through which a fissure of width W and permeability kf allows
leakage of the injected fluid centred at a distance xf from the injection point. For
clarity, we term the current between the source and the fissure the ‘interior current’.
Fluid which flows past the fissure forms the ‘downstream current’ while that which
leaves the source moving away from the fissure forms the ‘upstream current’ as
depicted in figure 1. The sharp interface between injected and ambient fluids is
described by the thickness h(x, t), which evolves with time t and is a function of the
distance from the injection point x. We note that when the depth of the reservoir
greatly exceeds the typical thickness of the current the pressure associated with
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injection is negligible and the flow is driven principally by the density difference.
Such gravity currents typically have much greater horizontal than vertical extent.
Flow within the current is predominantly horizontal and therefore the pressure is
effectively hydrostatic. Crucially, we note that the quantitative behaviour of such
currents is identical for the case of a dense fluid released above a leaky barrier (as
shown in figure 1 and in the experiments of § 4) or for a buoyant fluid released
below a cap rock, as is the case for the geological sequestration of CO2. Finally, for
simplicity we consider only the case where the two fluids have equal viscositiy ν,
although we note that for CO2 sequestration the kinematic viscosity of the brine is
10–20 times that of the CO2 at representative reservoir temperatures and pressures
(Bachu & Bennion 2008). This viscosity contrast would likely lead to a more diffuse
interface which we neglect to simplify our analysis.

2.2. Drainage and propagation

We consider a general form of drainage through the fissure motivated by both the
variety of geological reservoirs, and by the experiments of § 4 which show clearly
that drainage through the fissure is driven both by the hydrostatic pressure within
the current and by the weight of the fluid within the fissure itself. We use the form
of drainage proposed by Acton et al. (2001) and used successfully to model the
drainage of a viscous current over a porous bed in two-dimensions (Acton et al.
2001), in three dimensions (Spannuth et al. 2009) and within layered porous media
(Pritchard & Hogg 2002; Neufeld & Huppert 2009). For a fissure of width W � xf

and permeability kf , spanning the depth b of an impermeable layer the Darcy velocity
within the fissure is primarily vertical, and given by

vf (x, t) = −kf

μ

�ρg(h + b)

b
= −φγ

kf

k

[
1 +

h(x, t)

b

]
, |x − xf | < W/2, (2.1)

where γ ≡ k�ρg/φμ is the characteristic velocity within the reservoir, φ is the porosity
of the matrix which, for simplicity, is assumed equal between the reservoir and the
fissure and g is the local acceleration due to gravity. We assume that the depth of
the fissure b is at least the same order as h(xf , t). The evolution of the height of the
buoyant current is therefore governed by

∂h

∂t
− γ

∂

∂x

(
h

∂h

∂x

)
= −γ

kf

k

(
1 +

h

b

)
F(x, xf , W ), (2.2)

where

F(x, A, B) ≡
{

0 |x − A| > B/2
1 |x − A| < B/2

is a Boxcar centred on A, with width B and unit magnitude and which mathematically
describes the localized nature of drainage through the fissure. To (2.2) we add three
boundary conditions, [

γ h
∂h

∂x

]x=0+

x=0−
= −q,

[
γ h

∂h

∂x

]
x=x

±
N

= 0, (2.3a, b, c)

which describe the constant flux input at the origin and the requirement that there be
zero flux through the two noses of the current, respectively. Here x+

N and x−
N denote

the distance from the source to the nose of the downstream and upstream currents
respectively, as depicted in figure 1.
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2.3. Non-dimensionalization

The propagation of a gravity current past a fissure or line sink, defined by (2.2) with
boundary conditions (2.3a–c), can be made non-dimensional in the following manner.
We note that the presence of the fissure introduces a natural horizontal length scale
X, such that the problem is readily scaled by

X ≡ xf , H ≡ (xf q/γ )1/2 and T ≡
(
x3

f /qγ
)1/2

, (2.4a, b, c)

where H is the vertical length scale and T the time scale. It is clear from the form of
the drainage law that the fissure can now be characterized by three parameters. The
strength of the fissure is characterized by

λ ≡ kf

k

1

b

(
x3

f γ /q
)1/2

, (2.5)

while the vertical extent and width of the fissure are given by

β ≡ b(γ /xf q)1/2 and ε ≡ W/xf , (2.6a, b)

respectively. Equations (2.2)–(2.3) are non-dimensionalized using the scales (2.4a–c)
and become

∂h

∂t
− ∂

∂x

(
h

∂h

∂x

)
= −λ (β + h) F(x, 1, ε), (2.7)

[
h

∂h

∂x

]x=0+

x=0−
= −1,

[
h

∂h

∂x

]
x=x

±
N

= 0. (2.8a, b, c)

Finally, we note that the form of drainage given by (2.1) is similar to that used by
Pritchard (2007) when the height of the current above the fissure is much greater than
is vertical extent h(1) � β . We shall see in § 3 that in the long time limit h(1) ∼ 1/(ελ).
Therefore, h(1) � β corresponds to the dimensional limit of a narrow fissure defined
by

W � k

kf

q

γ
. (2.9)

A direct comparison of (2.7) can be made with the analysis of Pritchard (2007) by
integrating the drainage across the width of the sink,

0 =

∫ 1+ε/2

1−ε/2

∂h

∂t
dx =

[
h

∂h

∂x

]1+ε/2

1−ε/2

− ελ(β + h), (2.10)

where

h ≡ 1

ε

∫ 1+ε/2

1−ε/2

h dx (2.11)

is the average height above the fissure. We therefore see that the width-averaged
leakage flux is given by λ(β + h) where

λ ≡ ελ =
kf

k

W

b
(xf γ /q)1/2. (2.12)

This parameter λ is precisely that derived by Pritchard (2007) for leakage from fissures
placed symmetrically about an injection well.
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Figure 2. Schematic diagram showing the three regions observed at long times. The current
approaches a steady shape in 0 <x < 1. The heights at x = 0 and x = 1 are therefore constant
so that trapped currents form in the regions x < 0 and x > 1. Such currents must have a volume
∼ t1/2 and an extent ∼ t1/2, as indicated by extending a calculation of Huppert & Woods
(1995).

3. The approach to steady-state leakage
We follow the approach of Pritchard (2007) who noted that the leakage from the

current, being driven to a large extent by the height of the fluid above the fissure,
always tends to a steady state in which the flux of fluid injected into the reservoir is
matched by that leaking out through the fissure. This unexpected final state can be
anticipated by noting that, for currents fed by a constant flux, the height increases
over time leading to a concomitant increase in leakage. We note that in the steady
state the height above the injection point, as well as that above the fissure, are
constant. To sustain such steady heights, the analysis by Huppert & Woods (1995)
shows that the volumes which flow into the regions x < 0 and x > 1 must both scale
like t1/2. For this reason the horizontal extent of the trapped currents must also grow
like t1/2. A schematic picture of this scenario is shown in figure 2. Here we begin by
considering analytically this scenario. In what follows we confirm this picture with
numerical solutions to the full problem described by (2.7)–(2.8) which compare very
favourably with our analytical solutions for the asymptotic state.

3.1. The interior current (0 <x < 1)

In the region 0 <x < 1 we look for a solution of the form h(x, t) = h0(x) + t−1/2

h1(x) + O(t−1). Substituting this form into (2.7), we find that, at leading order in time,

h2
0 = A0 + B0x, (3.1)

for constants A0 and B0. Applying the flux condition at the origin (2.8a), we find
that B0 = −2. Since the leakage flux equals the input flux in the final steady state
we can determine that λ[β + h0(1)] = 1. The profile between the source and fissure is
therefore given by

h0(x) =
[
2 + (λ

−1 − β)2 − 2x
]1/2

, (3.2)

which recovers the steady-state profile presented by Pritchard (2007) in the limit β → 0.
To calculate the asymptotic behaviour of the leakage fluxes in the other regions it is
also necessary to calculate the next order term, which satisfies

h0h1 = A1 + B1x. (3.3)

The constant B1 will be determined by conserving flux at the origin and therefore
requires the calculation of the flow in the region x < 0.
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3.2. The upstream current (x < 0)

To leading order in time, the height above the injection point is constant. The current
in the region x−

N < x < 0 will therefore have a flux proportional to t−1/2 (see Huppert
& Woods 1995, § 3). Furthermore, the natural similarity variable in this region is
ζ ≡ −x/t1/2 and we therefore pose a series solution of the form

h(x, t) = H −
0 (ζ ) + t−1/2H −

1 (ζ ) + O(t−1). (3.4)

At leading order in time (2.7) then gives

−ζ
dH −

0

dζ
=

d2H −
0

2

dζ 2
. (3.5)

The boundary conditions governing solutions to (3.5) at leading order are found
as follows. From the form of the two-dimensional similarity solution, where volume
increases as t1/2, we anticipate that the nose of the current is given by x−

N ∝ t1/2.
Therefore, in the similarity coordinates, the position of the nose is given by ζ = ζ0, a
constant. Thus, writing the constraint h(x−

N , t) = 0 and using the similarity variable,
we find that

H −
0 (ζ0) = 0. (3.6)

The kinematic condition,

dx−
N

dt
= −∂h

∂x

∣∣∣∣
x−

N

, (3.7)

becomes

−ζ0

2
=

dH −
0

dζ

∣∣∣∣
ζ0

. (3.8)

Finally, at the origin the height of the current equals the steady-state solution (3.2)
for 0 <x < 1, and therefore

H −
0 (0) = h0(0) = [2 + (λ

−1 − β)2]1/2. (3.9)

The system composed of (3.5) together with boundary conditions (3.6) and (3.8)
can be solved by introducing the scaled variable

χ ≡ 1 − ζ/ζ0, (3.10)

and letting

ϕ(χ) ≡ H −
0 /ζ 2

0 . (3.11)

Equation (3.5) then becomes

d2ϕ2

dχ2
= (1 − χ)

dϕ

dχ
. (3.12)

Solutions to (3.12) are to be found subject to the boundary conditions

ϕ(0) = 0, ϕ′(0) = 1/2, (3.13a, b)

which are the rescaled versions of boundary conditions (3.6) and (3.8). The numerical
solution of (3.12) subject to (3.13a–b) provides a value of the height of the upstream
current at the origin, and therefore determines ζ0 through boundary condition (3.9),

ζ0 =
[2 + (λ

−1 − β)2]1/4

ϕ(1)1/2
. (3.14)
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We may now determine the value of B1. Balancing the fluxes at the origin, we write

−1 =

[
h

∂h

∂x

]x=0+

x=0−
=

B0

2
+ B1t

−1/2 + t−1/2H −
0

dH −
0

dζ

∣∣∣∣
ζ=0

+ O(t−1), (3.15)

and find that at O(t−1/2)

B1 = −H −
0 (0)

dH −
0

dζ

∣∣∣∣
ζ=0

= ζ 3
0 ϕ(1)ϕ′(1). (3.16)

From numerical integration of (3.12) we find that ϕ(1) = 0.383 and ϕ′(1) = 0.275. This
completes the description of the upstream extent of the current and the magnitude of
the flux towards the fissure (through the specification of B1) to leading order.

3.3. The downstream current (x > 1)

We now turn our attention to the region beyond the fissure 1 <x <x+
N . The analysis

here is much the same as in the case of the upstream current and so we present only
a brief outline of the solution. For x > 1 we define the natural similarity variable
ξ ≡ (x − 1)/t1/2 and expand h(x, t) as

h(x, t) = H+
0 (ξ ) + t−1/2H+

1 (ξ ) + O(t−1).

Our choice of similarity variable recovers the form of the ordinary differential equation
governing the height of the upstream current,

−ξ
dH+

0

dξ
=

d2H+
0

2

dξ 2
, (3.17)

along with boundary conditions

H+
0 (ξ0) = 0,

ξ0

2
=

dH+
0

dξ

∣∣∣∣
ξ0

. (3.18a, b)

Repeating the rescalings in (3.10) and (3.11) we recover the system (3.12)–(3.13), the
solution of which now provides the height of the downstream current at the fissure.
This therefore determines the constant ξ0, given by

ξ0 =

[
λ

−1 − β

ϕ(1)

]1/2

. (3.19)

3.4. The leakage flux

While the quantities in (3.14) and (3.19) allow us to track the progress of both the
upstream and downstream currents as a function of parameters λ and β , a more
practically relevant quantity is the flux that leaks out of the reservoir through the
fissure. The evolution of the leakage flux can now be evaluated, to leading order, as
the difference between the flux of fluid injected into the reservoir and the fluxes of
fluid into the upstream and downstream currents. We first note that the leakage flux
is simply given by the jump in flux between the interior current (0 <x < 1) and the
downstream current (x > 1):

qf (1, t) =

[
h

∂h

∂x

]x=1+

x=1−
= t−1/2H+

0 (0)
dH+

0

dξ

∣∣∣∣
ξ=0

−
[
B0

2
+ t−1/2B1

]
+ O(t−1)

= 1 − t−1/2ϕ(1)ϕ′(1)
[
ξ 3
0 + ζ 3

0

]
+ O(t−1). (3.20)
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Perhaps more pertinently, by integrating this flux over the lifetime of injection into
the reservoir we can estimate a long-term efficiency of storage, defined by

Es ≡ Vcurrent

Vinjected

. (3.21)

Thus,

Es = 1 − 1

t

∫ t

0

qf (1, t ′) dt ′

= 2ϕ(1)ϕ′(1)
[
ξ 3
0 + ζ 3

0

]
t−1/2 + O(t−1), (3.22)

which shows that in the long-term limit the efficiency of storage decays to zero as
t−1/2.

3.5. Approach to the asymptotic state

The full time-dependent behaviour of the trapped currents defined by (2.7)–(2.8) has
been calculated numerically using the method detailed in Appendix A. For each
simulation the currents are initiated with zero height everywhere. At time t =0 fluid
is introduced at the origin and initially the current follows the similarity solution
described by Huppert & Woods (1995) until the current reaches the fissure at x =1.

Numerically, drainage at the fissure is implemented using a non-dimensional
analogue of (2.1) given by

vf = λ[β(1 − e−δh) + h(1)], (3.23)

where we have chosen δ = 25 � W/h to preserve the physical limit vf → 0 as h → 0 and
note that this choice does not affect the behaviour of the solutions once h(1) � δ−1.
Numerically, the fissure width ε is taken to be the grid spacing �x at time t =0 so
that λ= �xλ.

The evolution of both the currents and the leakage flux depends greatly on the
width-averaged strength of the fissure λ as shown in figure 3 for β = 0. We find that
for λ=0 the similarity solution is recovered. As λ is then increased the asymmetry
in the lateral extents of the current also increases. This is seen most dramatically in
figure 4 where we plot the ratio of the extents x+

N/x−
N as a function of t for various

λ, again for β = 0. Most importantly, the efficiency of storage defined as the ratio
between the volume retained in the current and the volume of fluid injected (3.21),
can be calculated. Figure 5 shows the numerical calculations of reservoir efficiency as
a function of λ for β =0 (solid curves) along with the asymptotic predictions of (3.22)
(dashed lines). We see that for small values of λ the numerical solutions converge
relatively slowly to the asymptotic expressions given by (3.22), while for large λ the
approach is quite fast. Finally, in figure 6 we show the comparison between numerical
and asymptotic values of Es for λ= 1 and two values of β . We find that as the
non-dimensional vertical extent of the fissure β is increased, the efficiency of storage
is decreased. This is because fluid escapes the reservoir far more quickly when the
fissure is deeper (β greater), thus enabling the buoyant fluid within the fissure to exert
a stronger pull on fluid within the reservoir. In our analysis of the late-time behaviour
this is reflected in an increase in the effective value of λ when β > 0.

4. Experimental analogue
A series of five experiments were performed in a Hele-Shaw cell as a test of

the numerical and asymptotic analysis of the two-dimensional source-sink problem.



248 J. A. Neufeld, D. Vella and H. E. Huppert

1

22

3

t

x± N

1 10 102 103 10410–1

1

10

102

103

Figure 3. A measure of the asymmetry of the resultant currents. We plot the extent of the
upstream (x−

N ) and downstream (x+
N ) currents as a function of time for varying strengths of

the fissure λ in the limit in which buoyancy is negligible within the fissure (β → 0). In each
case, the downstream current propagates farther than the upstream current, i.e. x+

N <x−
N , with

the difference becoming more dramatic as λ is increased. When the fissure strength is reduced
to zero, λ= 0, and before any current has reached the fissure, the classic similarity solution

(x±
N ∼ t2/3, bold solid) is recovered. For λ= 0.2 (dash-dot), λ= 1 (dashed) and λ= 5 (dotted)

the influence of drainage through the fissure becomes increasingly important. Note that the
currents initially propagate as t2/3 before subsequently relaxing to the long-time asymptotics
∼ t1/2.
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Figure 4. Ratio of the downstream (x+
N ) to upstream (x−

N ) extents of the current for β = 0,

and a variety of λ.

These experiments directly test the validity of both the functional form of the drainage
velocity and its inclusion within the lubrication approximation as a flux jump across
the fissure.

The experimental apparatus consisted of a vertical Hele-Shaw cell of cross-sectional
width d =0.48 cm, length 196.4 cm and height 30 cm as depicted in figure 7. Fluid
was injected at the centre of the cell (x = 0 cm) using a Watson Marlow 505U
peristaltic pump from a reservoir whose mass was recorded as a function of time
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Figure 5. Efficiency of storage Es defined in (3.21) for β = 0 and a variety of λ. Full numerical
solutions of (2.7) are shown as solid curves and the asymptotic solutions (3.22) are shown by
the dotted lines.
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Figure 6. Efficiency of storage Es for λ= 1 with β = 0 and β = 1. Full numerical solutions of
(2.7) are shown as solid curves and the asymptotic solutions (3.22) are shown by the dotted
lines.

using a digital mass balance. This provided a precise measure of the constant flux of
fluid injected during each experiment. A total of five experiments were conducted, as
reported in table 1. For each experiment the viscosity and input flux were measured
independently.

The fissure consisted of a gap of width W = 1.1 cm and vertical extent b = 2.1 cm
in the base of the Hele-Shaw cell located a distance xf = 11 cm from the injection
point. The mass of fluid which drained from the sink was also recorded digitally as a
function of time and compared with the results of § 3. The extent of the current both
in the direction towards the sink (x+

N ) and away from the sink (x−
N ) was recorded at 5 s

intervals. The profile of a typical current is shown in figure 8. Initially, fluid spread
symmetrically about the injection point following the similarity solution outlined
by Huppert & Woods (1995). As shown by the photograph of a representative
experiment in figure 8, once the current reached the fissure a definite asymmetry
developed between the upstream and downstream currents. This was accompanied
by a jump in the slope of the free surface associated with the leakage flux through
the base of the tank.
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Figure 7. Geometry of the analogue Hele-Shaw cell experiments. Input and leakage fluxes
were measured with digital mass balances and the profiles recorded with a digital camera.

Experiment q(cm2 s−1) ν (cm2 s−1) H (cm) T (s) λ β Symbol

1 4.066 ± 0.004 7.85 ± 0.08 4.32 11.68 0.626 0.486 �
2 6.995 ± 0.005 7.4 ± 0.2 5.50 8.65 0.491 0.382 �
3 5.90 ± 0.01 5.9 ± 0.1 4.51 8.41 0.599 0.466 �
4 5.021 ± 0.003 7.0 ± 0.1 4.53 9.93 0.596 0.464 �
5 6.914 ± 0.007 6.4 ± 0.1 5.08 8.09 0.531 0.413 �

Table 1. A total of five experiments were conducted in which the flux q and viscosity
ν were varied. The corresponding vertical scale H and temporal scale T along with the
non-dimensional parameters λ and β are given, as defined by (2.4b–c), (2.12) and (2.6a),
respectively. These parameters are estimated using the global fit of drainage data to constrain
kf = 9 × 10−3 cm2.

x = 0 x = xf

Figure 8. Profile of a viscous current within a Hele-Shaw cell with a fissure located a
distance xf = 11 cm from the source.

Experiments, typified by the image in figure 8, were analysed in the following
manner. First, the validity of the drainage law given by (2.1) was assessed, and the
permeability of the fissure quantified, by correlating the measured output flux to the
height above the fissure. Digital images of the current above the sink (taken every two
seconds) were processed in Matlab to provide an automated estimate of the height
above the sink, h(xf ). Simultaneously, the digital mass balance recorded the mass of
fluid leaving the sink, from which a drainage velocity vf was calculated. The results
of five experiments were fitted to a drainage velocity of the form used in (3.23),

vf = −γ
kf

k

[
1 − exp (−5h/W ) +

h

b

]
, (4.1)
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Figure 9. Experimental measurements and the corresponding fit of the theoretical model for
the non-dimensional drainage velocity through the fissure as a function of the observed height
above the fissure. Experimental data (symbols) are for the five experiments as described in
table 1. The drainage model (4.1) is fit to the experimental data using a globally fitted fissure
permeability, kf = 9 × 10−3 cm2.

as shown in figure 9. This provided a universal measure of the permeability of the
fissure of

kf = 9 × 10−3 cm2. (4.2)

This value can be compared with the theoretical estimate given by Happel & Brenner
(1991) for a rectangular channel of cross-section d × W which is

kf = d2 + W 2

− 8

π5dW

∞∑
n=1

1

(2n − 1)5

[
d4 tanh

(
2n − 1

2

πW

d

)
+ W 4 tanh

(
2n − 1

2

πd

W

)]

= 13.9 × 10−3 cm2. (4.3)

The discrepancy in these values is likely due to one of four factors. Flow within
the rectangular fissure may not fully realize the description of Happel & Brenner
(1991) within its length b; irregularities in the rectangular channel may decrease
the effective permeability; pressure at the outlet may not be strictly the ambient (a
central assumption of our drainage model); and finally, the three-dimensional flow
structure around the fissure may reduce the effective permeability. The values of λ
and β derived from the system parameters and the universal fit for kf (given in (4.2))
for each experimental run are given in table 1.

Our estimates of the parameters presented in table 1 enable us to predict the profile
of the current for each experimental realization. A comparison is made between the
measured extents of both upstream (x−

N ) and downstream (x+
N ) currents in figure 10.

Here care must be taken to account for flow within the Hele-Shaw cell. As detailed
in Appendix B, when h � d , the width-averaged equations governing flow within
the Hele-Shaw cell provide an exact analogue to dispersionless flow within a porous
media with a permeability given by

k =
d2

12
. (4.4)
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Figure 10. Representative comparison between the experimental extents of the current and the
theoretical predictions, here for experiment 5 (see table 1 for parameters). The experimentally
measured upstream extent (x−

N , squares) and downstream extent (x+
N , circles) are shown along

with the numerical predictions both including the effects of bottom friction (solid) and
neglecting the effects of the bottom boundary of the Hele-Shaw cell (dashed). The effect of
bottom friction was incorporated using an effective permeability, keff (h), with dimensionless
cell width d/H = 0.094 (see Appendix B for details).

However, when the thickness of the current is comparable to the width of the
tank, h ∼ d , the effect of friction at the base of the Hele-Shaw cell can become
significant. This effect is particularly striking in our asymmetric gravity currents since
the upstream current is typically much thicker than the downstream current that
propagates past the fissure. We therefore use an effective permeability keff , whose
derivation is detailed in Appendix B. This effective permeability is now a function of
the ratio of current height to the cross-sectional width of the tank, keff = keff (h/d), and
it provides a much more satisfactory account of the extent of the spreading current.
The difference in predictive power is striking. In figure 10 the numerical predictions
including the added effect of bottom friction in the Hele-Shaw cell are shown by the
solid curves, while those neglecting bottom friction are shown by the dashed curves.
Clearly much of the reduction in extent, along with the dramatic asymmetry between
upstream and downstream currents, observed experimentally can be attributed to the
role bottom friction has in further retarding the advance of thinner currents.

Finally, the observable of primary interest is the storage efficiency Es , shown for
all five experiments in figure 11. Data points are shown using the symbols found in
table 1 and are bounded by the numerical predictions for the largest and smallest
values of the parameter governing fissure strength, λ. We find that for all experiments
in which λ∼ O(1), the drainage efficiency decreases to approximately 50 % within a
time less than 20 T , as shown by the dashed line in figure 11.

5. Leakage from geological reservoirs
The propagation of buoyancy driven fluids within a porous medium has many

applications within both industry and the environment. The societally important
problem of CO2 sequestration is of particular relevance to the present work. In
typical carbon capture and storage schemes CO2, a greenhouse gas, is first captured
and then compressed and injected into subsurface reservoirs at depths typically greater
than 1000 m where it behaves as a supercritical liquid. Since CO2 is buoyant compared
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Figure 11. Efficiency of storage as defined by (3.21) for the five experiments detailed in table
1. Theoretical curves for the maximum (λ= 0.626, experiment 1) and minimum (λ= 0.491,
experiment 1) values of the strength of the sink are compared to experimental measurements of
the efficiency of storage for experiment 1 (�), 2 (�), 3 (�), 4 (�) and 5 (�). The horizontal dashed
line indicates a storage efficiency of 50 % which was reached in approximately 20 T � 200 s.

to the ambient brine it typically rises through the pore space and is trapped, especially
at early times, by an impermeable seal at the top of the reservoir. Efforts to reduce
significantly atmospheric levels of this greenhouse gas (and the concomitant climate
change) rely on stable sequestration of CO2 on time scales greater than 1000 years.
In other words, the efficiency of storage must remain high over these time scales.

The largest industrial scale CO2 sequestration project to date is the Sleipner project
located in the North Sea. The Norwegian company Statoil has been removing CO2

from a commercial natural gas stream and re-injecting the compressed CO2 into
the base of the Utsira formation since 1996. Seismic images taken over the course
of injection have shown that the buoyant CO2 rises and pools beneath a series of
9 thin shale layers spaced throughout the formation (Arts et al. 2004; Bickle et al.
2007). While these shale layers were never intended to act as long term barriers,
they provide an ideal setting to test the ideas developed in this paper. Although it is
clear from seismic images that fluid leaks through these relatively low permeability
layers, it is unclear whether it does so in a relatively diffuse, spatially uniform, manner
(Neufeld & Huppert 2009) or whether leakage is dominated by flow through a series
of thin fissures. We shall assume the latter possibility and take b � 1.5 m based on
the seismically determined thickness of individual shale layers.

Our calculations directly address this issue when the typical height of the gravity
current is much less than the thickness of the reservoir. A convenient means for
estimating our model’s applicability is thus to compare the steady-state height at the
injection point with the vertical extent of the reservoir.

Our model can be used to estimate the efficiency of storage in a saline aquifer
possessing properties similar to those estimated for the Sleipner site. We consider a
line of injection wells located a distance xf from a fissure through an impermeable
layer of thickness b. At Sleipner, Bickle et al. (2007) have made estimates of the
average reservoir permeability, k ≈ 3.05 × 10−12 m2, the density and dynamic viscosity
of injected CO2, ρCO2

≈ 515 kg m−3 and μ ≈ 4 × 10−5 Pa s, and the density of the

ambient brine ρbrine ≈ 1020 kg m−3. Since it began operating in 1996 approximately 1
megatonne of CO2 has been injected annually (q ≈ 0.062 m2 s−1) into the reservoir
where the inter-shale spacing is typically tens of metres. All of the parameters in our
model are therefore reasonably well determined save for the fissure width W , and
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Figure 12. (a) Width-averaged strength of the fissure and (b) steady state height at the
injection point shown in metres as functions of the distance from the fissure to the injection
point in metres, for reservoir properties typical of the Sleipner site. In both cases, calculations
are for a range of fissure widths: W = 0.1 m (solid), W = 1 m (dotted), W = 10 m (dashed) and
W = 100 m (dash-dot).

position of the fissure xf . Figure 12(a) shows the non-dimensional strength of the

fissure λ as a function of the distance of the fissure from the injection point xf for
four differing fissure widths W . The corresponding steady-state height at the origin
is shown in figure 12(b). Thus, we see that for fissures separated from the injection
point by much greater than 100 m, flow within the aquifer becomes confined, and the
model proposed in § 2 is not applicable.

We can further assess the efficiency of storage for a representative fissure of
width W = 1 m penetrating shale layers that are b =1.5 m thick. In figure 13 the
efficiency of storage is plotted as a function of time (in days) for a fissure of
distance xf = 10, 100 and 1000 m from the injection point. We see that inter-shale
layer efficiency declines to 50 % in τ = 13, 44 and 458 days, respectively. The ultimate
steady-state height at the injection point, where the current is thickest, for these
representative parameter values is h(0) = 12, 32 and 99 m, respectively, indicating that
for xf = 100 and 1000 m our assumption of an unconfined reservoir may become
invalid at late times.

In summary, we have shown that the model expressed by (2.7) can be used to assess
the effectiveness of a reservoir for CO2 sequestration. Using estimates for reservoir
properties typical to the Sleipner site, we have shown that the efficiency of storage can
decline dramatically in the presence of long fissures aligned parallel to the injection
front. Furthermore, our analysis suggests that this decline in efficiency at each shale
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Figure 13. Efficiency of storage Es as a function of time (in days) for fissures of permeability
equal to the host reservoir and width W = 1 m for xf = 10, 100 and 1000 m (left to right). The
numerical solutions to (2.7) are plotted (solid) alongside the results of the asymptotic analysis
(dotted). All parameters taken from Bickle et al. (2007) as discussed in the text.

layer happens over the course of, at most, 1 year, a prediction in keeping with the
seismically observed vertical extent of CO2 within the formation (Bickle et al. 2007).

6. Discussion and conclusion
We have assessed the spreading of a two-dimensional gravity current in a porous

medium over an impermeable base punctuated by a single, discrete fissure located
a distance xf from the injection point. The model outlined in § 2 allows both for
drainage driven by the hydrostatic pressure above the fissure, and the weight of
fluid within the fissure itself. The model presented here therefore differs from that
of Pritchard (2007) in two important respects. First, the situation we consider is
asymmetric about the input point rather than the symmetric case that Pritchard
(2007) considered. Surprisingly, we find that even in the asymmetric case, where the
current may propagate away from the fissure, the efficiency of storage is limited, and
ultimately decreases as t−1/2. Second, the law governing the leakage flux incorporates
the driving force due to the weight of fluid filling the fissure. In our notation, Pritchard
(2007) considered only the limit β = 0. We find that including the weight of fluid within
the fissure itself only increases the rate of leakage, and can be asymptotically modelled
by replacing 1/λ with 1/λ − β .

By a combination of numerical and asymptotic investigations we have shown
that the current ultimately reaches an asymmetric steady state, in which the flux at
the injection point is exactly balanced by that leaking through the fissure. This is
analogous to the situation found by Pritchard (2007). However, Pritchard (2007) did
not study the efficiency of storage as defined by (3.21). Making use of (B7) from
Pritchard (2007) we may calculate the efficiency of capture in the symmetric case, and
find, in our notation,

Es,p = 2
ϕ′(1)

ϕ(1)1/2
λ̄−3/2t−1/2. (t � 1) (6.1)

We note, therefore, that in both symmetric and asymmetric two-dimensional
geometries the efficiency of storage decays like t−1/2 for t � 1. To compare our results
with those of Pritchard (2007), it is convenient to consider the coefficient of t−1/2

and so we introduce es(λ) ≡ Est
1/2. An examination of (6.1) and (3.22) demonstrates
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Figure 14. Dependence of efficiency of capture prefactor es ≡ Est
1/2 on the fissure parameter

λ̄ (here β = 0). Here the asymptotic results from both Pritchard’s model, (6.1), (solid line) and
the present model (3.22) (dashed curve) are plotted along with the limiting value es � 0.4437
given by (3.22) in the limit λ� 1 (dotted line).

that for large λ, es is bounded below in the asymmetric geometry while it decreases
indefinitely in the symmetric geometry considered by Pritchard (2007) as shown in
figure 14. From this we conclude that in the limit of very strong fissures, the presence
of asymmetry considerably increases the efficiency of storage. This leads on to the
important question ‘what happens for a point fissure in a three-dimensional situation?’
This is a question we intend to address in the near future.

Experimental models of the system have confirmed both the initial evolution
predicted by (2.7) and the form of the drainage law given by (2.1). Importantly, this
provides experimental confirmation of the assumption, made both in this work and
the work of Pritchard (2007), that leakage from a line fissure can be approximated
by a jump in flux through a porous medium gravity current.

Finally, we note the relevance of such studies to the timely problem of CO2

sequestration. The methodology presented in the present work provides a means both
to assess the long-term efficacy of sequestration in a known reservoir and to address
questions of uncertainty in the characterization of new reservoirs. These methods may
prove critical in the regulation of industrial sequestration sites, where a detailed fully
resolved numerical reservoir simulation encompassing all possible leakage routes may
be computationally impractical. Such methods are therefore being brought to bear on
the problems of radially spreading gravity currents in the presence of point fissures,
as well as the two-dimensional and radial flow of CO2 in confined aquifers. Finally, it
is important to recognize that while the presence of an impermeable (or in this case
semi-permeable) cap rock provides the principal means for geological sequestration
on short to intermediate time scales, processes such as residual trapping, mixing of
CO2 with the host brine, and mineral formation may play an important role in the
medium to longest time scales. The findings presented here therefore present the
worst case scenario, an important first step in assessing the feasibility of long term
geological storage as a means to combat anthropogenic climate change.
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Appendix A. Numerical method
The nonlinear evolution equation describing the profile of the gravity current

propagating past a fissure (2.7) was solved using a volume conservative, semi-implicit
Crank–Nicholson scheme with adaptive time-stepping and adaptive grid size. Each
time step was accomplished in two discrete iterations. In the first iteration the
nonlinear terms in (2.7) were first estimated at the current time, and the profile was
advanced forwards a full time step. During the second iteration, the nonlinear terms
were estimated by the average of both current and future profiles. The drainage law
given by (3.23) is implemented at a single grid cell centred at x = 1. For large λ and
h(1) � 1 the drainage model given by (3.23) can result in a leakage flux through
the fissure which exceeds that provided by the current to the grid cell at x = 1. We
therefore require that the leakage flux through the grid cell located at x = 1 be the
minimum of the flux input from the neighbouring grid cells and the leakage flux
calculated by (3.23). Practically, this ensures that at each time step leakage through
the fracture can at most reduce the height of the current above the fracture to h � 0.

Appendix B. The effect of bottom friction in a Hele-Shaw cell
To account for the effects of basal drag on the propagation of a gravity current

in a Hele-Shaw cell, we assume that the profile of the current varies on a much
larger spatial scale than either the dimensional plate spacing d or the dimensional
current thickness h. In this limit, we may solve the Stokes equation for the horizontal
velocity u, subject to the boundary conditions u(z =0) = 0 (no slip at the base) and
uz(z = h) = 0 (free slip at the free surface) by separation of variables as detailed in
Happel & Brenner (1991). We find that

u =
1

2μ

dp

dx
y(y − d) +

∞∑
m=1

Am sin
mπy

d
cosh

mπ(z − h)

d
, (B 1)

where

Am = − 2d2

m3π3μ

dp

dx

cos mπ − 1

coshmπh/d
(B 2)

correcting a factor of 2 from Happel & Brenner (1991). The volume flux is given by

Q ≡
∫ h

0

dz

∫ d

0

dy u = − d3h

12μ

dp

dx

{
1 − 96

π5

d

h

∞∑
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(2n − 1)5
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d

]}
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(B 3)
and the effective permeability of the Hele-Shaw cell is therefore

keff =
d2

12

{
1 − 96

π5

d

h

∞∑
n=1

1

(2n − 1)5
tanh

[
(2n − 1)πh

d

]}
(B 4)

as illustrated in figure 15. We observe that in the appropriate limits

keff ∼ d2

12
×

{
1 − 93

π5 ζ (5)d/h, d � h

4h2/d2, d � h
, (B 5)
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Figure 15. The dependence of the effective permeability of the Hele Shaw cell, keff , as a
function of the height of the current measured relative to the width of the cell, h/d . Results
from the computation of the infinite sum in (B 4) (solid curve) are reproduced very well by the
limiting forms found in (B5) (dashed curves). The inset shows the interval [0, 2] over which
the change between the asymptotic limits in (B5) occurs.

where ζ (5) ≡
∑∞

m= 1 m−5 ≈ 1.037 is the Riemann zeta function of degree 5. This
reproduces the standard permeability of a Hele-Shaw cell, d2/12, for the case
of currents that are very deep compared to d . In the limit d � h we expect the
current to behave as a viscous gravity current, a result consistent with an effective
permeability keff ∼ h2/3. In all comparisons between the experimental results and
numerical simulations the value of keff was computed correct to within 1% of its
value as given by (B4).
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