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We consider the buoyancy-driven flow of a fluid injected into a semi-infinite porous
medium bounded by a horizontal impermeable barrier through which a single localized
sink allows leakage of the injected fluid. Our study is motivated by the geological
sequestration of carbon dioxide (CO2), which is less dense than the ambient water,
and the possibility that fissures in the bounding ‘cap’ rock may therefore compromise
the long-term storage of CO2. A theoretical model is presented in which the leak-
age through the sink, or fissure, is driven by the hydrostatic pressure at the sink
of the injected buoyant fluid. We determine numerical solutions for the evolution of
the gravity current in the porous medium and for the quantity of fluid that escapes
through the sink as a function of time. A quantity of considerable interest is the
efficiency of storage, which we define as the flux of fluid that is stably stored relative
to the amount injected. At the later stages in the evolution of the current, the region
near the source and sink reaches a quasi-steady state. We find analytical solutions to
this asymptotic state which show that the efficiency of storage decreases to zero like
1/ ln t , where t is the time since initiation of the current, and predict a dependence on
the properties of the sink in agreement with our numerical results. The implications
of this result for the geological sequestration of CO2 are discussed.
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1. Introduction
The buoyancy-driven flow of fluids within porous media is a rich research field with

an enormous range of applications in the natural and industrial worlds. Important
examples include the flow of groundwater in aquifers, the migration of pollutants,
the motion of oil and natural gas in petroleum reservoirs and the characterization of
geothermal systems (see, for example, Bear 1972; Phillips 2009). More recently, interest
has been focused on the injection of carbon dioxide (CO2) into the Earth’s subsurface
as a means of mitigating emissions of this greenhouse gas due to human activity (Orr
2009). The proposed technology consists of capturing CO2 from stationary sources
such as power stations, compressing the gas, and injecting it into unused aquifers
or old oil and gas reservoirs. The CO2 is injected as a supercritical fluid which is
less dense than the ambient fluid and therefore rises to the top of the reservoir
until it encounters a relatively impermeable cap rock. Its vertical motion impeded,
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the CO2 then spreads beneath the mainly horizontal cap rock driven by the density
contrast between the two fluids. Such buoyancy-driven motion has spurred many
recent studies of migration within the subsurface (Huppert & Woods 1995; Lyle et al.
2005; Nordbotten & Celia 2006; Vella & Huppert 2006; Bickle et al. 2007; Hesse
et al. 2007; Farcas & Woods 2009; Neufeld & Huppert 2009; Woods & Farcas 2009).
Spreading currents of buoyant CO2 will sample a large areal extent of the bounding
cap rock, giving rise to concerns that they may encounter localized high-permeability
regions in the cap rock ultimately leading to leakage of CO2 back into the atmosphere.
The possibility of leakage motivates our study into the effect of leakage pathways on
the volume and propagation of buoyant currents in porous media.

Buoyancy-driven flows or gravity currents within a uniform and unconfined porous
medium have been studied by Barenblatt (1996), Anderson, McLaughlin & Miller
(2003) and Lyle et al. (2005). These studies, and others reviewed by Huppert (2006),
have shown that porous gravity currents quickly reach a state in which their horizontal
extent greatly exceeds their vertical scale so that the pressure is approximately
hydrostatic. Flow in horizontal strata is thus driven by gradients in the depth of
the current, which leads to the flow being described by a single nonlinear evolution
equation for the depth. In the absence of any fault or fracture, this evolution equation
admits a similarity solution from which the spreading of such subsurface flows can
be quickly and effectively evaluated (Lyle et al. 2005; Bickle et al. 2007).

Motivated by flows through heterogeneous formations, models of porous gravity
currents have been extended to include both diffuse and discrete leakage. Diffuse
leakage through a bounding surface of reduced, but non-zero, permeability has been
examined by Pritchard, Woods & Hogg (2001), who considered the limiting case
of a thin low-permeability layer. This work was subsequently extended to examine
two-dimensional drainage through a deep low-permeability layer (Pritchard & Hogg
2002) motivated by related studies on the flow of viscous fluids over a deep porous
medium (Acton, Huppert & Worster 2001). The effect of leakage through thin low-
permeability layers has also been investigated theoretically by Neufeld & Huppert
(2009) spurred by seismic images of a CO2 plume spreading at the Sleipner injection
site in the North Sea (Bickle et al. 2007). Experimental work on drainage from
axisymmetric currents into deep porous media has been performed by Spannuth
et al. (2009), and confirmed the theoretical models of drainage over a deep porous
medium. More recently, the effect of capillary forces between the injected and ambient
fluids has been incorporated into models characterizing diffuse leakage between layers
(Farcas & Woods 2009; Woods & Farcas 2009).

While there has been substantial research on drainage through uniform layers
of differing permeability, models of drainage through discrete fractures, fissures or
abandoned well-heads are in their infancy. Early work by Pritchard (2007) examined
two-dimensional flow in which there is leakage from active faults spaced symmetrically
on either side of a line of injection. Subsequent work by Neufeld, Vella & Huppert
(2009) examined the dynamics of leakage from a single line sink placed some distance
from the line of injection. Their study focused attention on the fraction of fluid that is
sequestered beneath the cap rock and not leaked. They also confirmed the validity of
these theoretical models using analogue laboratory experiments. In contrast to these
two works on leakage from gravity currents, Avci (1994), Nordbotten, Celia & Bachu
(2004) and Nordbotten et al. (2005) examined leakage from compressible currents in
confined aquifers. These models incorporated the compressibility of both the porous
medium and the injected fluid, but did not consider buoyancy-driven flow governed
by gradients in the height of the current.
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Figure 1. Illustration of the spreading of a dense current within a porous medium in which a
sink at (x, y) = (xS, 0) allows fluid to leak from the system. The left inset shows a planview of
the spreading current along with the position of the source and sink. The profile in the main
figure shows a cross-section through a typical current taken along the line y =0.

The present work extends the approach of Pritchard (2007) and Neufeld et al.
(2009) to examine the spread of a buoyant gravity current from a point source in a
porous medium with a horizontal boundary through which a cylindrical sink, of finite
radius, allows leakage through the bounding cap rock. In § 2, we begin by introducing
the geometry of the reservoir, the equations describing the propagation of the gravity
current and those describing leakage through the sink. The consequent evolution is
first evaluated numerically, from which we obtain the long-term efficiency of storage
in § 3. The behaviour of the numerical solutions in the long-time limit motivates an
asymptotic analysis of both the structure of the current and its effect on leakage,
which we present in § 4. We discuss the application of our analysis to the geological
sequestration of CO2 in § 5 and present some concluding remarks in § 6.

2. Formulation
2.1. Geometry

We consider the spread of a fluid of density ρ +�ρ injected at a constant volume flux
q into a semi-infinite porous medium of permeability k, saturated with fluid of density
ρ, as illustrated in figure 1. Fluid is injected at the origin and the resultant flow is
bounded below by a horizontal impermeable seal at z = 0 of thickness b along which
the current spreads. The behaviour of such density-driven flows is identical when
dense fluid is injected at the base of a porous medium (as shown in figure 1) or when
light fluid is injected at the top of an aquifer beneath an impermeable seal, as would
be the case in a typical scenario for geological sequestration of CO2; for clarity, we
describe the case of a dense fluid above an impermeable seal, but emphasize that all
our results would apply equally to the case of a buoyant fluid below an impermeable
seal. Leakage through the impermeable seal occurs only in a localized region centred
on (x, y) = (xS, 0), where a cylindrical sink of radius rS and permeability kS allows
for leakage from the reservoir. A sink of this geometry might model, for example, an
abandoned well that penetrates the cap rock.
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Since the porous medium is assumed semi-infinite, the pressure gradients associated
with displacement of the ambient fluid are much less than those in the gravity current,
and flow in the ambient fluid plays no dynamic role. A similar argument would apply
to a finite-depth porous layer provided the depth of the gravity current is much less
than that of the layer.

For simplicity, we assume that the interface between the injected and ambient
liquid is sharp and can be described by z = h(x, y, t), where h is the depth of the
current. Thus, we neglect the effects of dispersion, of any interfacial energy between
the injected and ambient fluids, and of any differences in viscosity, which can all act
to create a transition zone of mixed phase (e.g. Bolster, Dentz & Carrera 2009). This
assumption is unlikely to be strictly valid either for the injection of CO2 into saline
aquifers or for the injection of water or CO2 into oil reservoirs, which will likely
lead to multiphase currents whose saturation (of CO2) varies with depth. Variations
in saturation are reduced in density-dominated flows such as those considered here
(see Lake 1989, for example). Hence, we still expect the methodology outlined below
to capture the form of leakage when the flow is driven principally by the density
contrast between injected and ambient fluids. Moreover, we anticipate that though
multiphase effects will affect some of the quantitative details of the flow, they will not
significantly affect the qualitative form of the current, and the additional complexity
of the model would obscure the analysis and the interesting effects of geometry.

2.2. Leakage and propagation

We assume that the pressure drops from the hydrostatic overpressure �ρgh at the
mouth of the sink to the ambient reservoir pressure over a vertical distance b, which
we imagine would typically be the thickness of the cap rock. Therefore, following
the approach of Pritchard (2007) and Neufeld et al. (2009), the rate of leakage is
proportional to the excess weight of the fluid above the sink region. The vertical
Darcy velocity within the sink is therefore given by

vs(x, y, t) = −kS

µ

�ρgh

b
, |ζ − ζS | < rS, (2.1)

where kS is the permeability of the sink, g is the acceleration due to gravity and
ζ = x + iy is a representation of the point (x, y) in the complex plane. (In this
representation the centre of the sink is given by ζS ≡ xS .) For simplicity, we neglect
the weight of the fluid within the sink itself and note that this additional effect
can be incorporated in a relatively straightforward manner (Neufeld et al. 2009). In
particular, incorporating the weight of fluid within the sink would lead to a somewhat
greater effective sink strength.

Within the remainder of the current, flow is predominantly horizontal and therefore
the pressure is effectively hydrostatic. We note that when the thickness of the porous
medium or reservoir greatly exceeds that of the current, the spread of the current is
driven principally by the density contrast, �ρ, between injected and ambient fluids,
except in the immediate vicinity of the injection and leakage points (see Lyle et al.
2005). The horizontal gradients of the hydrostatic pressure �ρgh drive a flow with
Darcy velocity k�ρg∇h/µ in the current over a height h. Applying mass conservation
and noting that the interface moves with the pore velocity, we find that

∂h

∂t
− γ ∇ · (h∇h) = −γ

kS

k

h

b
F(ζ ; ζS, rS) (2.2)

(Lyle et al. 2005; Neufeld et al. 2009), where γ = k�ρg/φµ is the characteristic
buoyancy velocity within the reservoir, the right-hand side of (2.2) represents leakage
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through the sink, and

F(ζ ; ζS, rS) ≡
{

0, |ζ − ζS | > rS,

1, |ζ − ζS | < rS

(2.3)

describes a circular sink situated at ζ = ζS with radius rS . The evolution of the current
described by (2.2) is subject to the boundary conditions

lim
r→0

[
2πrγ h

∂h

∂r

]
= −q, [n · (γ h∇h)]rN

= 0, (2.3a,b)

which describe respectively the constant flux q input at the origin and the requirement
that there be no loss or gain of fluid at the nose of the current. Here rN = (xN, yN ) is
the curve defining the footprint or outer edge of the current and n is the normal to
this curve.

2.3. Non-dimensional formulation

The introduction of a sink at a distance xS from the source introduces a natural
length scale to the problem. Hence, we do not expect a similarity solution and instead
non-dimensionalize the problem as follows. We scale all horizontal lengths with xS ,
and the current thickness and the time by the scales

H ≡ (q/γ )1/2 and T ≡ x2
S

(qγ )1/2
, (2.4a, b)

respectively. Using dimensionless variables from now on, we write (2.2) as

∂h

∂t
− ∇ · (h∇h) = −λhF(ζ ; 1, ε), (2.5)

where

λ ≡ kS

k

x2
S

b(q/γ )1/2
. (2.6)

is the dimensionless strength of the sink, and ε = rS/xS is its dimensionless radius.
The boundary conditions are

lim
r→0

[
2πrh

∂h

∂r

]
= −1, [n · (h∇h)]rN

= 0. (2.7a, b)

The drainage law (2.1) can be averaged over the area of the sink to provide a
measure of the total flux of fluid leaking from the system. By relating the total flux
leaking from the system to the average height above the sink, we write the leakage
flux as Λh̄, where

Λ ≡ πε2λ (2.8)

is an effective sink strength,

h̄ ≡ 1

πε2

∫ 2π

0

∫ ε

0

hr̃ dr̃ dθ (2.9)

is the mean depth of the current above the sink, and r̃ is the local radial coordinate
within the sink. The effective sink strength Λ is the radial analogue of the width-
averaged sink strength used by Pritchard (2007) and Neufeld et al. (2009) and
combines both the permeability and areal extent of the sink. When ε � 1, the
behaviour of the system is characterized by the single dimensionless parameter Λ, and
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Figure 2. Contour plots of the height of the current at (a) t = 1 (b), t =10 (c) t = 100 and
(d ) t = 1000 for Λ= 20 and ε =0.036. These correspond to (a) just after the end of the early
self-similar stage, (b) an intermediate stage and (c, d ) late stages in the current’s evolution.
Horizontal dimensions in each figure have been rescaled by t−1/2 to highlight the increasing
importance of leakage as time increases. To aid the eye, the edge of the current is demarcated
by the solid white curve. The corresponding axisymmetric similarity solution, in the absence
of leakage, is shown by the dashed white curve.

therefore in what follows we report our results in terms of Λ and direct the reader to
Appendix B for a more detailed description of the local behaviour within the sink.

3. Numerical results for a spreading current
The evolution of a gravity current within a porous medium from which the fluid

can escape through a finite-size sink as described by (2.5) and (2.7) was found
numerically using an alternating-direction implicit scheme as outlined in Appendix A.
Fluid was injected at the central grid cell and the spreading was calculated using
a flux-conservative scheme assuming symmetry about the line y = 0. The drainage
law (2.1) was applied over 20 cells centred about (x, y) = (1, 0), with grid resolution
�x =�y = 1/101 and an effective sink radius ε ≈ 0.04 (see Appendix A for details).
The evolution, illustrated by the contour plots in figure 2, can be subdivided into
three stages: an early, self-similar regime, an intermediate regime in which the sink
has a leading-order effect on the planview of the current, and a long-time regime in
which the current has spread well beyond the source–sink region.
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At early times, t < 0.75, before the edge of the current reaches the sink where
leakage takes place, the current spreads in a self-similar manner. Chen, Goldenfeld &
Oono (1991) and Lyle et al. (2005) found that, for axisymmetric porous currents fed
by a constant flux, the maximum radial extent is given by

rN = ηNt1/2, (3.1)

where ηN � 1.155. The vertical profile of the current can be described in terms of a
similarity variable η = rt−1/2 or a normalized similarity variable ξ ≡ η/ηN by

h(r, t) = η2
Nf (ξ ), (3.2)

where f (ξ ) satisfies

(ξff ′)′ + 1
2
ξ 2f ′ = 0 and f (1) = 0. (3.3a, b)

As we shall see in § 4, an important feature of the solution is that

f ∼ [−A ln ξ ]1/2 as ξ → 0, (3.4)

where A is a constant, found numerically to be about 0.179.
The self-similar early-time stage is followed by an intermediate stage initiated when

the current first reaches the sink, as illustrated in figure 2(a, b). The impact of the
sink on the form and evolution of the current is immediate. Once the current has
propagated over the sink, fluid begins to leak out of the system, giving rise to an
asymmetry of the current; the extent of the current is strongly reduced in the direction
of the sink, but remains largely unaffected on the other side of the source.

In the late stages of the current’s evolution, the extent of the current becomes very
much larger than the distance between the source and the sink, and in this limit the
outer profile (far from the source–sink pair) becomes effectively axisymmetric once
again (figure 2c, d ). This outer current is fed from a quasi-steady inner region in
which flow from the source is partly balanced by leakage through the sink, leaving a
residual flux which propagates into the outer current (see figure 5). Indeed the form
of the outer solution retains much of the character of the initial self-similar spreading
as shown by the profiles in figure 3(a). Observations of the profiles in figure 3 contain
the genesis of the asymptotic method which we describe in the following section.

A quantity that is of considerable interest from a practical point of view, and is
characteristic of the approach to this asymptotic state, is the ‘efficiency of storage’
which measures the difference between the flux into the reservoir and the leakage
flux, with this difference normalized by the input flux. The efficiency of storage is a
measure of the fluid that can be permanently stored. In dimensionless variables, the
input flux is 1 and the leakage flux is Λh̄. We therefore define the efficiency of storage
as

ES ≡ 1 − QL = 1 − Λh̄ = QR, (3.5)

where the dimensionless residual flux QR is the flux of the fluid that passes into
the far field and hence is retained within the porous medium. The instantaneous
efficiency of storage is plotted in figure 4 for various values of Λ, which shows the
essential character of the system: as the strength of the sink (characterized by Λ)
is increased, the efficiency of storage declines more rapidly. However, for Λ 	 1 the
efficiency of storage becomes independent of the strength of the sink. To gain further
insight into these numerical results, we now consider the long-time behaviour of the
system using asymptotic methods which are related pedagogically to those used in
the two-dimensional case by Pritchard (2007) and Neufeld et al. (2009).
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Figure 4. Time-dependent efficiency of storage, ES , for Λ= 0.2 (dash-dotted), 0.4 (long
dashed), 1 (short dashed), 2 (dotted) and 20 (solid) and ε = 0.036. In each case, ES = 1
until t =0.75, at which point the current reaches the sink and drainage begins.

4. Long-time asymptotics
We consider the behaviour of the system at long times with the primary aim of

determining the asymptotic efficiency of storage. In the long-time limit, we show that
the system reaches a quasi-steady state in the region close to the source–sink pair.
The quasi-steady state is characterized by a unit input flux and a flux QL into the
sink. The quasi-steady inner region feeds an evolving axisymmetric gravity current in
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the outer region. In turn, the evolution of the flux QR into the outer current drives
the slow evolution of QL =1 − QR . In what follows, we first solve for the structure
of the inner source–sink region analytically, and then discuss the axisymmetric outer
region and the matching procedure. This analysis provides the asymptotic behaviour
for such geophysically relevant quantities as the efficiency of storage.

We note that the quasi-steady inner solution depends to some extent on the structure
of the flow near a sink of finite radius ε. Since ε � 1, we make the simplifying
assumption that variations in the height of the flow above the sink are negligible.
This completes the description of the steady inner region. The overall structure of the
flow, and hence the efficiency of storage, is then determined by the coupling between
inner and outer regions. Finally, we point the interested reader to Appendix B, where
we relax the assumption that variations in the height of the flow above the sink
are negligible. We find that this distinction somewhat improves the accuracy of the
long-term estimate of the efficiency of storage, but does not change the fundamental
point that the overall structure is governed by the coupling between inner and outer
regions.

4.1. Inner solution

In the long-time limit, an inner region around the source and sink becomes quasi-
steady. The flux from the source either flows into the sink or flows outward into the
spreading current. Therefore, we expect the inner region to obey the steady version
of (2.5) for the surface height, namely

1
2
∇2h2 = 0, (4.1)

with a source of strength Q =1 at the origin and a quasi-steady sink strength QL(t).
Critically, (4.1) is a linear equation for h2 and we may use superposition to construct
a model for a source–sink pair. For a single source of strength Q located at r = 0, the
expected profile would be given in radial coordinates by

1

2
h2 = − Q

2π
ln r + c, (4.2)

where c is a constant. For a source–sink pair with a source of strength Q = 1 at z =0
and a point sink of strength QL = 1−QR at ζ = 1, as shown schematically in figure 5,
we might try the superposition

1

2
h2 = − 1

2π
ln |ζ | +

1 − QR

2π
ln |ζ − 1| + c, (4.3)

though this expression gives negative values of h2 sufficiently close to ζ = 1. However,
we are interested in a finite-size circular sink centred on ζ = 1 rather than a point
sink at ζ = 1. We can use the method of images to adapt (4.3) slightly so that the
height takes a uniform value h1 at the edge |ζ − 1| = ε of the sink, and thus obtain

1

2
h2 =

1

2π
ln

∣∣∣∣ζ − (1 − ε2)

εζ

∣∣∣∣ − QR

2π
ln

|ζ − 1|
ε

+
1

2
h2

1 in |ζ − 1| > ε. (4.4)

The image system here consists of a point sink of strength 1 at ζ = 1 − ε2 and a point
source of strength QR at ζ =1, both of which are within the perimeter of the actual
physical sink. Similar image systems occur in problems in inviscid hydrodynamics,
such as a line vortex outside a cylinder, and in electrostatics.
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Q is balanced by a slowly evolving sink flux QL(t) and residual flux QR(t). This residual flux
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Anticipating that we will match the outer limit of the inner profile (4.4) to a model
of a spreading axisymmetric current (derived in § 4.2), we note that in the limit |ζ | 	 1

1

2
h2 ∼ −QR

2π
ln |ζ | +

1 − QR

2π
ln

(
1

ε

)
+

1

2
h2

1 + O

(
1

ζ

)
. (4.5)

Equations (4.4) and (4.5) are completed with a model of flow within the sink that
determines the height, h1, at the edge. We focus our attention on this problem in § 4.3.

We conclude by noting the analogy between the steady-state flow in the inner
region and an electrostatic field, which arises from the fact that (4.1) is equivalent to
Laplace’s equation for an effective electric potential ϕ ≡ h2/2. Under this analogy, in
the present problem the source of flux corresponds to a line charge of strength Q =1
while the sink corresponds to a cylindrical conductor with a constant potential and
a total charge of strength QL. The solution in electrostatics is then analogous to that
given in (4.4) (see, for example, Bleaney & Bleaney 1976). The analogy can be applied
in other geometries where the electrostatic problem is amenable to solution (see Vella
et al. 2010).

4.2. Outer solution

We now turn our attention to the outer spreading gravity current that is fed from the
inner region (figure 5). Both the numerical solutions and the form of (4.5) suggest
that, at long times and large distances from the source–sink pair, the current is
axisymmetric at leading order. From (4.5), the height where the current matches to
the inner region depends on time only through the evolution of the flux QR(t).

We first note that the similarity solution (3.2) for a gravity current fed by a constant
flux has a height that is independent of time at a fixed value of the similarity coordinate
ξ . However, a fixed radius r corresponds to a decreasing value of ξ and hence, from
(3.4), the near-source height of a constant-flux current varies logarithmically with
time. This observation suggests that the solution for a spreading outer current fed by
a source region of the form (4.5) can be found by assuming that the source flux QR

also varies logarithmically with time. Importantly, logarithmic variations are much
slower than the t1/2 diffusive spreading, and this allows for an asymptotic solution.
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We seek a solution to
∂h

∂t
=

1

r

∂

∂r

(
rh

∂h

∂r

)
, (4.6)

subject to the boundary condition

−2πr h
∂h

∂r
→ QR as r → 0, (4.7)

where QR is an algebraic function of ln t . Since QR is only slowly varying, we posit
that the solution resembles the self-similar solution for a constant flux, and make a
change of variables

h ≡ QR(s)1/2f (s, η), (4.8)

where

s ≡ ln t and η ≡ r

QR(s)1/4t1/2
. (4.9a, b)

We substitute (4.8) and (4.9) into (4.6) and (4.7) to obtain, without approximation,

η

2

∂f

∂η
+

1

η

∂

∂η

(
ηf

∂f

∂η

)
=

(
f

2
− η

4

∂f

∂η

)
1

QR

∂QR

∂s
− ∂f

∂s
(4.10)

and

−2πηf
∂f

∂η

∣∣∣∣
η→0

= 1. (4.11)

The factor t1/2 in (4.9b) accounts for most, but not all, of the time-dependence in f .
Thus, the right-hand side of (4.10) is O(1/s) as t → ∞ and may therefore be neglected
at leading order by comparison with the left-hand side. The remaining problem for f

is independent of the time-like variable s and the left-hand side of (4.10) is identical
to (3.3a). The solution is thus the same as the similarity solution for a constant-flux
current as summarized in (3.1)–(3.4), though with the radial similarity coordinate
normalized to give unit flux rather than unit radius. Hence, the solution of (4.6) and
(4.7) with slowly varying QR is given at leading order by the similarity solution for
the instantaneous value of QR; the variation of QR only appears through O(1/ ln t)
corrections. The form of QR(t) is determined by matching at leading order to the
inner region.

As η → 0 the solution of (4.10) and (4.11) obeys

f ∼ (− ln η/π)1/2. (4.12)

Thus, the inner limit of the outer spreading current is given by

1

2
h2 = −QR

2π
ln

(
r

Q
1/4
R t1/2

)
, (4.13)

and it is this height that must now be matched to the quasi-steady inner profile
described in § 4.1 to complete our model of the long-time structure of the current.

4.3. Asymptotic efficiency of storage

The long-time behaviour of the efficiency of storage and the profile of the current
can now be calculated by matching the inner quasi-steady profile to the axisymmetric
spreading outer profile. By equating (4.5) with (4.13) we find

QR

2

[
1

2
lnQR + ln t

]
= (1 − QR) ln

(
1

ε

)
+ πh2

1. (4.14)
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To complete our analysis of the long-term efficiency of storage, we require a model
of the height at the edge of the sink. Motivated by the simplicity of the resulting
analysis, we approximate the profile within the sink by its average value, h, given in
(2.9). The flux through the sink is thus Λh1 � Λh and we therefore find that

h1 =
QL

Λ
=

1 − ES

Λ
. (4.15)

We substitute this model for the height at the sink into the matching condition
(4.14) between inner and outer regions, and use the fact that the efficiency of storage
is defined by ES = 1 − QL =QR . In this way, the desired equation for the efficiency of
storage

ln t = 2
(1 − ES)

ES

ln

(
1

ε

)
+

2π

Λ2

(1 − ES)
2

ES

− 1

2
lnES (4.16)

is obtained, which gives ES implicitly as a function of time and the two dimensionless
parameters that describe the sink size and strength.

In the very-long-time limit of large ln t , (4.16) predicts that ES � 1 and we can
simplify further to

ES =
cS

ln t
+ O

(
E2

S ln ES

)
, (4.17)

with the constant cS defined explicitly in terms of the geometry and strength of the
sink as

cS = 2 ln

(
1

ε

)
+

2π

Λ2
. (4.18)

The very-long-time behaviour in (4.17) clearly requires ln t 	 cS for ES � 1. For
ε = 0.036 and Λ = 1, for example, this gives ln t 	 12.9 and, even as Λ → ∞, we
require ln t 	 6.6. It follows that the approach to the asymptotic (4.17) is slow,
occurring on a very much longer time scale than the O(1) time scale for the flow to
reach the sink. It is worth emphasizing that the efficiency of storage does decay to
zero as t → ∞, as was the case in the two-dimensional geometry studied by Neufeld
et al. (2009). However, it is interesting that the logarithmic decay of ES found here
is significantly slower than the algebraic decay observed in two dimensions or with a
line sink (see Vella et al. 2010). Because of the slow approach to (4.17), we use (4.16),
which requires only t 	 1, to estimate efficiencies in our application to storage of CO2

in § 5.
A comparison of the predicted coefficient cS with the results of the full numerical

calculations is shown in figure 6, and is constructed in the following way. We first
note that though the numerical calculations are typically run to t ∼ 104, the time
at which ES � 1 may be large and so higher-order terms may still play a significant
role. Motivated by (4.16) we fitted the numerically calculated efficiency of storage (as
shown in figure 4) to a function of the form

ln t =
m1

ES

+ m2 + m3 ln(ES) + m4ES. (4.19)

This enables us to extract the asymptotic nature of the solution and test the long-
time limit (4.17) while accounting for leading-order corrections to the behaviour at
intermediate times. As is clear from the comparison in figure 6, the assumption of
constant height above the sink, while apparently rather crude, is able to predict
accurately the dominant asymptotic behaviour as a function of Λ. Thus, a model
that roughly captures drainage at the sink, but provides an accurate matching of the
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Figure 6. The coefficient of storage cS as a function of Λ for ε = 0.036. The coefficients fitted
from numerical solutions to the full evolution equations (2.5)–(2.7) are shown by circles. The
dotted curve shows the prediction using a uniform sink height as in (4.16) while the solid curve
shows the prediction of Appendix B, in which the profile within the sink is resolved. The limit
Λ → ∞, in which h1 → 0, is shown by the dashed line and is given by cS = 2 ln(1/ε), as shown
by (4.18).

quasi-steady source–sink flow to the evolving axisymmetric current, produces a viable
model of the efficiency of storage in underground reservoirs.

To determine the importance of the profile immediately above the sink, a quasi-
steady model resolving an axisymmetric profile within the sink has also been
constructed (details can be found in Appendix B). The results of this more detailed
model are also shown in figure 6. We find that the difference in the estimated efficiency
of storage between the simple sink-averaged theory and the detailed model is always
less than 6.5 % for the values of Λ and ε considered here. This gives us confidence
that the solution presented above captures the essential details of the process and is
relatively insensitive to the details of the dynamics within the sink itself. Therefore,
while the specifics of the near-sink region may merit further study, we do not expect
these to unduly affect the results detailed here.

5. Discussion of leakage from geological carbon-dioxide storage sites
Recently, the storage of large volumes of CO2 within the subsurface has received

much attention as a possible means of mitigating anthropogenic emissions of this
greenhouse gas leading to climate change (Pacala & Socolow 2004). In typical carbon
capture and storage (CCS) schemes, CO2 is first captured at a stationary source such as
a coal-fired power station, and then compressed for injection into the subsurface. The
CO2 is typically injected at depths greater than 1000 m where, under representative
reservoir temperatures and pressures, it is a supercritical liquid. The injected CO2 is
typically much less dense than the ambient fluid within the reservoir (often brine in
saline aquifers) and therefore rises vertically through the available pore space until
it reaches a relatively impermeable layer or cap rock, where it spreads horizontally
due to the buoyancy contrast with the surrounding fluid. Thus, in the early stages of
injection, it is the presence of an impermeable cap rock which enables stable storage
of CO2 within the subsurface.

As injection proceeds, and indeed once injection has ceased, a number of secondary
processes may become important in immobilizing the CO2 on time scales of order
a thousand years. These processes include, but are not limited to, dissolution of
CO2 into the ambient reservoir fluid leading to dense (and therefore stably stored)
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CO2-saturated fluid, residual trapping of CO2 within the small pore spaces of the host
rock due to the effects of surface tension, and the ultimate mineralization of injected
CO2 through reactions with the host rock. However, as all these processes require
some time before the stably trapped volume of CO2 is comparable with the volume
injected, it is the integrity of the cap rock that determines the efficiency of storage on
short time scales. Our calculations therefore address the effect of imperfections in the
bounding impermeable barrier on the ability of the reservoir to sequester CO2 long
enough for secondary processes to immobilize the injected CO2 permanently.

We can begin to assess the impact of a sink on the efficiency of storage in a variety
of reservoirs by considering the time, t90, taken for the efficiency to fall to 90 %. An
estimate of this time scale can be readily constructed by combining the simple model
in which there is a constant fluid depth above the sink with the asymptotic behaviour
as Λ → ∞. At the efficiency of storage ES = 0.9 we find the dimensionless estimate

t90 = (10/9)1/2ε−2/9 exp(π/45Λ2) � (10/9)1/2ε−2/9 (5.1)

from (4.16), which agrees with our full numerical results to within 16 % for Λ � 0.5.
We note that for ε � 1, t90 is much larger than the time taken for the current to reach
the sink.

The worst-case scenario is Λ 	 1 given by the inequality above, in which case there
is negligible resistance to flow within the sink, and leakage rates are determined by
the flux of fluid through the current to the border of the sink. Such a situation may
arise if an abandoned well-head some distance from the point of injection allows
rapid leakage, and possibly decompression of CO2 as it escapes from the reservoir.
In this limit of rapid leakage (Λ → ∞), the efficiency of storage reaches 90 % at a
dimensional time

t̃90 ≈ x
20/9
S

r
2/9
S

(
φµ

qkg�ρ

)1/2

. (5.2)

We can estimate the magnitude of t̃90 for representative reservoir conditions in
the following way. The viscosity and density differences do not vary appreciably
between aquifers. For example, values typical of the large-scale demonstration project
at Sleipner are µ = 4.5 × 10−5 Pa s, g = 9.81 m s−2, �ρ = 505 kgm−3, φ = 0.03 and
q = 1 MTyr−1 � 0.062 m3 s−1 (see Bickle et al. 2007). However, the permeability can
vary by orders of magnitude, and similarly the position of any leakage points with
respect to the injection well will vary greatly from one site to another. Figure 7 shows
the lower bound (5.2) for the dimensional time log10(̃t90) (days) as a function of the
permeability k (m2) of the host reservoir and distance to the leakage point xS (m). We
see that the time over which the efficiency of storage decays to 90 % varies greatly
with distance to the injection well, from 10–105 days, for distances from 100 m to
10 km.

The utility of the leakage calculations is immediate: an estimate can quickly be
made of the magnitude and time scale for leakage from the subsurface. Moreover,
by examining (5.2), or more generally (4.16), we can estimate the extent of the cap
rock xS that must be free from fissures of typical extent rS to ensure an efficiency of
storage greater than ES over a time scale t . In this way, calculations of the long-time
storage efficiency can be used to estimate the extent of leakage and to guide site
selection. Such estimates are essential given the total volume of CO2 which needs to
be sequestered within the subsurface to have a significant effect relative to current
anthropogenic emissions. These large volumes will undoubtedly sample much of the
subsurface during the lifetime of any injection project, and in so doing may encounter
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Figure 7. A contour plot showing log10(̃t90[days]), the time scale over which the efficiency of
storage ES = 0.9, as a function of the permeability of the host reservoir k (m2) and the distance
from the source to the sink xS (m) as given in (5.2). Calculations assume a typical sink size
for a large bore hole, rS � 0.5 m. For comparison, we plot estimates of the permeability of the
Sleipner reservoir (vertical solid line) and the Alberta basin (vertical dashed line).

faults, fractures, previously drilled wells and any other geological feature which allows
leakage through the bounding cap rock.

6. Conclusions
We have analysed the buoyancy-driven propagation of fluid within a porous medium

bounded by an impermeable layer and calculated the rate at which it may escape
through a single localized sink. The dimensionless governing equations for buoyancy-
driven flow through the reservoir and leakage through the sink presented in § 2 were
solved both numerically and analytically and the results are reported in §§ 3 and
4. The behaviour of such currents can be characterized by an efficiency of storage
ES . We find that the efficiency of storage is dependent on only two dimensionless
parameters: the characteristic size of the sink ε and the strength (or permeability) of
the sink Λ defined by (2.8).

Importantly, we find in both our numerical results and our analysis that the
efficiency of storage obeys

ES ∝ 1

ln t
(6.1)

in the long-time limit, with the constant of proportionality cS(ε, Λ) depending only on
the characteristic size and strength of the sink. In practice, this implies that leakage
from a reservoir with a point source and sink decays much more slowly than in the



406 J. A. Neufeld, D. Vella, H. E. Huppert and J. R. Lister

analogous two-dimensional problem (Neufeld et al. 2009), where

ES,2d ∝ t−1/2. (6.2)

Furthermore, the results of § 5 suggest that the time needed to reach 90 % efficiency
within a typical reservoir vary greatly with distance between the injection point and
the sink (see figure 7).

Finally, we note the utility of the approach outlined here to a number of related
studies. In particular, the asymptotic analysis presented in § 4 is based, at its heart,
on the realization that, for currents in which leakage occurs, a quasi-steady inner
region develops, which is coupled to a slowly spreading outer region. A number of
implications for more complex cases, which may be found within the environment,
follow. Because the inner region is in a quasi-steady state, and therefore governed by
a linear equation (4.1) for the surface profile, the present analysis can be extended
in a straightforward way to include multiple leakage wells, a case which may be of
relevance to such geological settings as the Alberta basin (Nordbotten et al. 2009).
The method has also been brought to bear on the related problem of injection from a
point source and leakage through a linear fracture or fault by Vella et al. (2010) where
the efficiency of storage was found to decay algebraically in time (ES ∝ t−2/5). Future
extensions of this work on leakage will address the finite depth of geological reservoirs,
and the finite period over which injection is anticipated. However, in addition to CO2

sequestration, there are a number of other applications where this technique may be
usefully applied. In particular, we note that the analysis above, focusing on the spread
of a buoyant fluid within a porous medium, may also be applied to the flow of viscous
fluids on a surface with leakage. Therefore, the methodology not only provides an
effective tool for evaluating leakage in geological carbon sequestration projects but
also provides the method with which to study a series of related porous and viscous
problems within the environment and industry.
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Leverhulme Early Career Fellowship. D.V. is supported by a research fellowship from
the 1851 Royal Commission and an Oppenheimer Early Career Research Fellowship.
Partial support of the research of H.E.H. comes from a Wolfson Royal Society merit
award. We are grateful to all these funding agencies.

Appendix A. Numerical method
The numerical solutions to (2.5) were computed using the following finite-difference

scheme. A rectangular, but non-uniform, grid was used to divide the computational
domain into an array of rectangular cells. The point source was approximated by a
single cell and the circular sink by a cluster of 20 cells centred on (1, 0), as shown
schematically in figure 8. The effective sink radius εe was estimated from its area as

εe =

(
40∆2

0

π

)1/2

≈ 0.036, (A 1)

where ∆0 ≈ 0.01 is the uniform size of the square cells in this region.
The height of the current was represented by the values at the centre of each cell,

but the diffusivity h in the nonlinear diffusion operator ∇ · (h∇) was evaluated at the
edges of the cells using linear interpolation between the central values. Equation (2.5)
was thus discretized in a flux-conservative manner by considering the fluxes across
each cell edge, and in the source and sink, during each time step.



Leakage from a localized sink. Part 1 407

x = 0

y = 2

y = 0
1 2

Figure 8. A schematic representation of the grid spacing around the source–sink pair. The
sink is resolved by a 20 cell pattern arranged to roughly approximate a cylindrical fissure
in the cap rock. Note that distances are not to scale, and the number of grid cells is only
illustrative.

Time-stepping was performed using the alternating-direction-implicit (ADI) method
of generalizing the Crank–Nicolson scheme to two dimensions (see Press et al. 1997,
§ 19.3). The nonlinear diffusivity was estimated at the middle of the time step by
first taking a predictor time step with the present diffusivity, and then averaging
the present and the predicted diffusivity for the actual time step. Except above
the sink, where the leakage was evaluated fully implicitly, the time-stepping was
thus second-order accurate. The time step was chosen adaptively using a criterion
based on the sum of squared differences between a full time step and two half time
steps.

In order both to resolve the structure of the profiles around the source and sink
and to simulate a spreading current with ever-increasing radius, we implemented a
variable spatial resolution (figure 8). A uniform and constant grid spacing ∆0 ≈ 0.01
was used in the region |x|, |y| � 2. Outside this region, the grid spacing was increased
smoothly in each of the x- and y-directions using a functional stretching of the
form

∆i = ∆0 + c

[
1 + tanh

(
i − 51

10

)]
, (A 2)

where i = 1, 2, . . . , 100 is an index in the relevant direction beyond |x| =2 or |y| =2.
The constant c determines the magnitude of the stretching of the grid, and the smooth
variation allows the spatial differencing also to be second-order accurate. In order
to simulate a spreading current over many decades of evolution in time, we doubled
the size of c, thus increasing the domain size, whenever the extent of the current
reached within 75 % of the edge of the domain. On each such occasion, the current
was interpolated onto the new grid using a scheme that conserved the local volume.
The outer part of the grid stretches in proportion to the radial extent of the current
and thus maintains an appropriate resolution of the self-similar outer solution, while
the inner part maintains resolution near the source and sink. The numerical solutions
reported were based on a grid of about 600 × 300 cells (with symmetry about y = 0);
sample calculations with different resolution, and with variation of the time-step
control, exhibited negligible differences.
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Appendix B. Resolving the current profile above the sink
B.1. Axisymmetric profile above the sink: small Λ

The long-term efficiency of storage depends on the behaviour of the flow above the
sink and in general is given by (4.14). We found in § 4.3 that an average of the profile
above the sink adequately predicts the efficiency of storage (as shown in figure 6).
Here we introduce a model that resolves the profile above the sink assuming the
form of drainage given by (2.1). We consider radially symmetric, quasi-steady leakage
driven by the height of the fluid layer above the sink. This approximation neglects the
weak azimuthal variation around the sink, and therefore the magnitude of leakage is
given by

λh =
1

r̃

d

dr̃

(
r̃h

dh

dr̃

)
, (B 1)

where r̃ is the local radial coordinate centred on the sink. Equation (B 1) must be
solved subject to the conditions

h′(0) = 0 and 2π

∫ ε

0

r̃λh dr̃ = QL. (B 2a, b)

These conditions correspond to axisymmetry (about the axis of the sink) and impose
a fixed total leakage QL, respectively.

The solution of (B 1) and (B 2a, b) can be rescaled using h0, the as-yet-unknown
height at r̃ =0, onto a universal function that describes the profile above the sink.
An auxiliary condition then determines the value of h0 from QL, ε and Λ. We define
R = r̃/

√
h0/λ and H (R) ≡ h/h0 so that

H =
1

R

d

dR

(
RH

dH

dR

)
, (B 3)

H (0) = 1 and H ′(0) = 0. (B 4a, b)

The solution H (R) of (B 3) subject to (B 4a, b) does not involve any of the governing
parameters and as such is a universal function. The numerical solution is shown in
figure 9(a) along with the asymptotic behaviour for large and small R,

H ∼
{

1 + R2/4, (R � 1),

R2/8, (R 	 1),
(B 5a, b)

which reproduces the behaviour of H (R) very well in the appropriate limits.
The total flux condition (B 2b) may be rewritten using (B 1) in terms of the boundary

flux. After scaling, we have

2
√

πh
3/2
0 H (RS)H

′(RS) =
QL√

Λ
, (B 6)

where

RS =
ε√
h0/λ

=

(
Λ

πh0

)1/2

(B 7)

is the rescaled radius of the sink. In this form (B 6) implicitly determines h0 from
QL and Λ. We can further use the asymptotic behaviour (B 5a, b) to ascertain two
limiting forms for h0. For RS � 1 the profile above the sink is relatively constant, and
thus to leading order

h0Λ = QL, (B 8)
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Figure 9. (a) The rescaled profile within the sink H (R) as a function of the scaled radial
position. The solid curve shows the numerical solution of (B 3), the dotted curve shows the
asymptotic result (B 5a), valid for R � 1, and the dashed line shows the asymptotic result
(B 5b), valid for R 	 1. (b) The profile scaled by the height h0 at the centre of the sink as a

function of the grouping ΛQ
−1/2
L . The limit ΛQ

−1/2
L � 1 is shown by the dashed line and the

upper bound ΛQ
−1/2
L = 4π1/2, at which a dry spot forms in the middle of the sink, is shown by

the dotted line.

while for RS 	 1 we find that

Λ = 4
√

πQL. (B 9)

This implies that the height at the centre of the sink decreases towards zero until
condition (B 9) is met and a dry spot develops in the midst of the sink. We emphasize
that this dry spot is not due to the effects of surface tension but simply reflects an
insufficient boundary flux QL to maintain drainage over the entire sink. Figure 9(b)
shows the rescaled height at the centre of the sink h0/Q

1/2
L as a function of an effective

sink strength, which we define as

Λe ≡ Λ

Q
1/2
L

. (B 10)

B.2. Large Λ: dry spot

The results above suggest that there are no solutions with h0 �= 0 for Λe > 4π1/2 � 7.1
and we conclude that a dry spot must develop, i.e. there is a radius rd such that h =0
for r < rd . Here we calculate the radius of the dry spot rd and the current depth for
rd < r < ε. Again, the profile of the current is governed by (B 3), now with boundary
conditions

h(rd) = 0, 2πh(rd)h
′(rd) = 0, and 2π

∫ ε

rd

λhr dr = QL, (B 11a, b, c)
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Figure 10. (a) The rescaled profile within the sink outside a dry spot H (R). Here, the solid
curve shows the numerical solution of (B 3) with boundary conditions (B 13a, b). The dotted
curve shows the asymptotic result (B 14a), valid for R − 1 � 1, and the dashed line shows the
asymptotic result (B 14b), valid for R 	 1. (b) The dependence of the radius of the dry spot,
R−1

S = rd/ε, on Λe . Again, the numerical solution is shown by the solid curve while the dotted
line shows the critical value at which a dry spot first appears (B 16) and the dashed curve
shows the large Λe asymptotics (B 17).

which defines the radius of the dry spot, requires zero fluid flux across the inner radius
of the dry spot and requires the total flux to be equal to QL respectively. Inspired by
the previous calculation of a completely wet sink, we now let

R ≡ r/rd and H ≡ h/λr2
d . (B 12)

With these rescalings, (B 1) again becomes (B 3) but now with boundary conditions

H (1) = 0 and 2πH (1)H ′(1) = 0. (B 13a, b)

These two conditions both define the edge of the dry spot and require zero flux across
the radius of the dry spot, respectively. A numerical solution of this system may easily
be determined and reproduces the asymptotic results

H ∼
{

(R − 1)2/6, (R − 1 � 1),

R2/8, (R 	 1),
(B 14a, b)

both of which are shown in figure 10(a). Having found the height of current above
the sink, we now turn our attention to the radius of the dry spot.

The requirement that the flux through the sink be equal to QL (B 11) can now be
written as

2

π
R−3

S H (RS)H
′(RS) =

QL

Λ2
, (B 15)
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where the scaled radius of the sink is defined as RS ≡ ε/rd . We note that when the
radius of the sink is far greater than the radius of the dry spot, RS 	 1, we again
recover

Λ = 4
√

πQL. (B 16)

That is, the dry spot appears continuously at the critical value at which the completely
wet solution disappears. In contrast, for RS −1 � 1 the radius of the dry spot is nearly
coincident with the radius of the sink. In this limit we find, through application of
(B 14a) to (B 15), that the radius of the dry spot is given by

R−1
S =

rd

ε
= 1 −

(
9πQL

Λ2

)1/3

= 1 −
(

9π

Λ2
e

)1/3

. (B 17)

These two asymptotic results are shown along with the full numerical solution in
figure 10(b).

B.3. The height at the edge of the sink

The calculations presented in §§ B.1 and B.2 now provide a model that resolves the
current profile above the sink. Two distinct regimes were found: one in which sufficient
fluid is advected towards the sink such that the sink remains completely covered and
the other in which a dry spot develops at the centre of the sink. The transition
between these regimes depends both on the strength of the sink and the flux of fluid
towards it. However, we note from § 4.3 that it is the height at the edge of the sink,
h1, which enables us to calculate the long-term efficiency of storage. This height can
be calculated numerically as a function of Λe and in the limits of both Λe � 1 and
Λe 	 1 analytically.

As we have already seen when Λe � 1 the profile within the sink is effectively
constant. Thus, the height at the edge of the sink in the limit Λe � 1 is h1 Q

−1/2
L ∼ Λ−1

e .
In contrast, when Λe 	 1 the majority of the sink is free from liquid with only a thin
rim producing the required leakage flux. In this limit, we recall that the profile of the
current is asymptotically given by (B 14a) with the scaled radius of the edge of the
sink given by (B 17). Thus, we find that the height at the edge of the sink in the limit
Λe 	 1 is given by h1/Q

1/2
L ∼ (3/8πΛe)

1/3. We may summarize these results as

h1

Q
1/2
L

∼

⎧⎪⎨
⎪⎩

Λ−1
e , Λe � 1,

1

2

(
3

π

)1/3

Λ−1/3
e , Λe 	 1.

(B 18a, b)

This result completes our description of the efficiency of storage as defined by (4.14)
and is plotted in figure 11. Furthermore, the resolved model of the sink provides a
highly refined model of the profile within the inner region. The comparison of the
inner region between the resolved model, the constant profile within the sink and the
numerical solutions as shown in figure 12 highlight the excellent agreement that can
be found between the numerical solution and these asymptotic expressions even after
a moderately short time (t = 100).

Finally, this more detailed model of the height at the edge of the sink enables a
revised estimation of the coefficient cS describing the efficiency of storage for varying
model parameters. The results, shown in figure 6 by a solid curve, indicate that the
specific model of the sink geometry does not greatly influence the long-term efficiency
of storage.
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Figure 11. Logarithmic plot of the effective sink height, h1Q
−1/2
L , as a function of the effective

value of Λ, Λe ≡ Λ/Q
1/2
L . The results of numerical computations (solid curve) compare well

with the asymptotic expressions (B 18a) in the limit Λe � 1 (dotted) and (B 18b) in the limit
Λe 	 1 (dashed).
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Figure 12. A comparison of the profiles within the quasi-steady inner region for Λ= 2 and
t = 100. Numerical results (circles) resolving the sink with 8 grid points across (20 grid points
in total) compare with both the model of constant height above the sink (dashed) and the
model resolving the profile above the sink (solid). The inset shows an expanded view of the
region within the sink.
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