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Abstract The cores of some small planetesimals, such as asteroid (16) Psyche, are thought to have
been exposed through collisions during the early solar system that removed their mantles. These small
bodies likely solidified from the top down representing a fundamentally different solidification regime to
that of Earth's core. Here we derive simplified models of the downward solidification of the metallic crust
and consider thermal convection and the potential for viscous delamination of the weak, warm base of the
crust to provide a buoyancy flux sufficient to drive a dynamo. Thermal buoyancy is very short lived
(∼1,000 years) and therefore cannot be the source of measured paleomagnetic remanence. In contrast,
viscous delamination is found to provide a long-lasting buoyancy flux sufficient to generate an intense,
multipolar magnetic field, while not greatly affecting the crustal solidification time. Our results suggest
that a Psyche-sized (150-km radius) body solidified in roughly 6.7–20 Myr and that delamination produced
a strong magnetic field over much of this time. Finally, including light, insoluble impurities, such as sulfur,
results in a partially solid mushy zone at the base of the crust. This further weakens the base of the crust
and results in smaller-scale delamination events. Despite a significant change in the dynamics of
delamination, the time to total solidification and the predicted properties of the magnetic field are broadly
comparable to the sulfur-free case, though we argue this may result in observable compositional
stratification of the body.

1. Introduction
Over the last decade, it has become increasingly apparent that some large (≳ 100-km-scale) asteroids were
capable of generating internal core dynamos and magnetic fields early in their history (e.g., Bryson et al.,
2015; Carporzen et al., 2011; Fu et al., 2012; Tarduno et al., 2012; Weiss et al., 2008). These are important
observations because they place strong constraints on the internal structures and thermal histories of such
bodies. For instance, because dynamos are generated within liquid iron cores, any asteroid generating a
dynamo must have undergone at least partial internal melting and differentiation. This must be true even
if the material recording the magnetic field is itself undifferentiated—presumably because it was close to
the surface and did not melt (Elkins-Tanton et al., 2011). Furthermore, the presence of a liquid iron core is
not, in itself, sufficient to guarantee a dynamo. In general, heat must be extracted at some minimum rate to
drive core convection and dynamo activity (e.g., Nimmo, 2009). Hence, the generation and properties of an
asteroid magnetic field may also be used to constrain heat fluxes throughout the body.

Broadly speaking, the thermal evolution of asteroid cores can be divided into three stages (Weiss &
Elkins-Tanton, 2013): heating and differentiation, cooling, and solidification.

Heating occurs mainly via the decay of 26Al, which is very energetic but has a half-life of only 0.7 Myr. As
long as an asteroid accreted early enough, sufficient energy is released to permit silicate and iron melting and
rapid differentiation (e.g., Ghosh & McSween, 1998; Hevey & Sanders, 2006). Early core formation (within
a few hundred thousand years of solar system formation) on some asteroids has been confirmed by analysis
of the Hf-W isotopic system (Kleine et al., 2009).

Core cooling depends on the ability of the overlying silicates to transfer heat away from the core. Heat trans-
fer is more rapid if the silicates are convecting (Tkalcec et al., 2013) or when heat is transferred by advection
of melt (Neumann et al., 2014), rather than simply by conduction. The ability of the near surface to con-
duct heat will be reduced if a high-porosity regolith is present at the surface of the body (Haack et al., 1990).
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On the other hand, some asteroids may have experienced high-energy impacts that removed large parts of
their mantles (Asphaug et al., 2006), thereby greatly facilitating subsequent core cooling. The cooling rates
of asteroid cores can be constrained from measurements of the size of the exsolution textures that form in
iron meteorites upon slow cooling and relatively low temperatures (775 K; e.g., Yang & Goldstein, 2006; Yang
et al., 2008, 2010). In particular, very rapid (up to 6600 K/Myr ) and variable cooling rates among different
members of the same iron meteorite group are most easily reconciled if the parent core lacks an insulating
silicate mantle (Yang et al., 2007) thus leaving an entirely metallic asteroid. Cooling rates are thus expected
to vary widely from body to body, depending on their impact histories.

Solidification of asteroid cores is complicated for two reasons. First, the location of the initial solidifica-
tion front is controlled by the relative slopes of the adiabat and the solidus. Both are sensitive to various
parameters. As a result, solidification can proceed either from the center outward or from the top down
(e.g., Williams, 2009). The fluid dynamics of how solidification proceeds in these two cases may be quite
different—see below and Hauck et al. (2006) and Rückriemen et al. (2014), for example. Second, solidifica-
tion behavior is strongly affected by the bulk sulfur content of the core (e.g., Williams, 2009). Unfortunately,
because S is an incompatible element in solid iron, S concentrations in iron meteorites are generally very
low, which makes the original bulk S concentration of the core hard to determine (e.g., Chabot, 2004).

However, one important observation is that some meteorite groups display a correlation between metallo-
graphic cooling rate (see above) and nickel concentration. Ni is also incompatible (albeit significantly more
compatible than S), which means that the Ni concentration in the solid increases as solidification proceeds.
The Ni compositions of iron meteorites from the same parent body can therefore be treated as a proxy for
the relative order in which the meteorites solidified. As a result, Ni composition-cooling rate correlations
can indicate either top-down or bottom-up solidification, depending on the sign of the correlation. In par-
ticular, the parent core of the IVA meteorites appears to have crystallized from the top down (Yang et al.,
2008), while the IVB body crystallized from the center outward (Yang et al., 2010).

Having examined the stages of asteroid thermal evolution, we now review models of dynamo activity within
these small bodies. These models generally fall into two classes: those in which dynamo activity is driven
purely by thermal convection and those in which compositional convection (in a variety of forms to be
discussed below) is important. Mechanical forcing of asteroid dynamos by either large impacts (Le Bars
et al., 2011) or precession (Dwyer et al., 2011) might occur occasionally but is unlikely to be a dominant
mechanism in asteroid-sized bodies.

Some theoretical investigations of asteroid dynamo activity have focused on core thermal convection, in
which the motion of the core is driven by extraction of heat into the overlying mantle (e.g., Elkins-Tanton
et al., 2011; Sterenborg & Crowley, 2013; Weiss et al., 2008). In these studies, dynamo activity ceases once
the heat flow out of the core falls below the adiabatic value; this typically occurs within the first few tens of
million years, because of the rapid cooling of small bodies.

Once the core starts to solidify, compositional convection can also arise. This mechanism is potentially
much more effective at generating a dynamo (Nimmo, 2009), essentially because the density contrasts asso-
ciated with solidification and light element rejection are typically much larger than those associated with
temperature variations. In detail, there are several different modes of compositional convection (Hauck
et al., 2006).

The most familiar is the terrestrial case: bottom-up crystallization of a light element depleted iron core,
resulting in the release of latent heat and buoyant fluid at the inner core boundary. This mode of crystalliza-
tion arises due to the pressure dependence of the freezing temperature in larger bodies, has been studied for
decades at terrestrial conditions, and has also been applied to small bodies such as the Moon (Laneuville
et al., 2014; Scheinberg et al., 2015) and asteroids (Bryson et al., 2015; Nimmo, 2009).

In contrast, for smaller bodies the pressure dependence of the freezing temperature is small so that solidifica-
tion may proceed from the top of the core, in which case at least two possibilities arise. One possibility is that
rapid surface cooling produces small, dense solid particles in the bulk liquid, an “iron snow,” which, being
dense, may descend. If this iron snow finds a relatively warm interior, the particles may remelt, releasing rel-
atively dense fluid, which can then descend further, potentially driving a dynamo as it does so (Christensen,
2015; Hauck et al., 2006; Rückriemen et al., 2014; Vilim et al., 2010). More recently Scheinberg et al. (2016)
have examined cumulate core solidification, which bears similarities to the iron snow hypothesis. The other
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Table 1
Parameter Values Used in This Study

Parameter Symbol Value Unit Reference
Thermal diffusivity " 4.5 × 10−6 m2/s Opeil et al. (2010)
Solid density #s 7,800 kg/m3 Bryson et al. (2015)
Liquid density #l 7,300 kg/m3

Density difference Δ# 500 kg/m3 Laneuville et al. (2014)
Heat capacity Cp 850 J·kg−1·K−1 Elkins-Tanton et al. (2011)
Latent heat L 2.7 × 105 J/kg Tarduno et al. (2012)
Melting temperature Tm ∼ 1810 K Ehlers (1972)
Eutectic temperature Te ∼ 1220 K Bryson et al. (2015); Tarduno et al. (2012)
Eutectic composition Ce ∼ 32 wt% Ehlers (1972)
Surface temperature Ts 200 K
Coefficient of thermal expansivity $ 10−4 K−1 Nimmo (2009)
Activation energy E% 3 × 105 J/mol Sterenborg and Crowley (2013)
Reference viscosity %s0 1017 Pa s Frost and Ashby (1982)
Liquid viscosity %f 10−2 Pa s Sterenborg and Crowley (2013); Weiss et al. (2010)
Rotational period p 15,120 s Hanus et al. (2013)
Magnetic diffusivity &m 1.3 m2/s Olson and Christensen (2006)
Solid fraction activation energy E' 25 Mei et al. (2002)
Asteroid radius R 150 km

possibility is that solidification produces a solid iron crust at the surface of the core that can be unstable
to viscous delamination, creating macroscopic dense solid aggregates (e.g., dendrites; Haack & Scott, 1992)
which, due to their large size, may not remelt as they descend. This second alternative has been raised as a
possibility (e.g., by Scheinberg et al., 2016), but the dynamics, and hence rate, of viscous delamination have
not been characterized. In either mechanism of inward solidification, the light fluid expelled during solidi-
fication will tend to pool and stagnate near the surface which provides a complicating factor not present in
terrestrial bottom-up solidification.

Due to the difficulty in determining the solidification direction in the cores of small bodies from
ground-based and satellite measurements, the mechanisms of inward core solidification and magnetic field
generation are poorly constrained. However, recent measurements of the IVA iron meteorites provide a
well-characterized solidification history of their parent core that could provide key constraints on the nature
of inward core solidification. Specifically, this meteorite group displays a wide range of cooling rates that
are uncharacteristically quick among iron meteorites (100–6600 K/Myr at ∼ 775 K; Yang et al., 2007) and a
negative cooling rate-Ni composition trend, all of which indicate that they originate from an inwardly solid-
ifying metallic crust at the surface of an exposed core. Recent paleomagnetic measurements found that the
IVA iron meteorites experienced intense (> 100%T) and directionally varying (timescale of 200 kyr) mag-
netic fields (Bryson et al., 2017). This solidification and thermal and magnetic history cannot be explained
by current theories of inward core solidification: Iron snow is capable of explaining the generation of a mag-
netic field but does not predict the existence of an inwardly solidifying crust, and the growth of an inactive,
stagnant crust explains the cooling rate-Ni composition trend but does not lead to long-lived dynamo gen-
eration. Here, we develop a model of a growing crust, the base of which can episodically delaminate and
descend, with the resulting stirring generating dynamo activity. Our model is capable of explaining both
the inward solidification of the crust and the generation of a magnetic field observed in the IVA meteorites.
Furthermore, we predict the properties of the field generated by this mechanism and compare them to the
measured field properties to verify our model. Our model is particularly relevant to the solidification of a
metallic asteroid such as Pysche with cold surface temperatures and rapid cooling that possibly facilitated
rapid crust formation. It is possible that slower-cooling, mantled inwardly solidifying cores (e.g., those in
Ganymede and the Moon) may be solidifying through a different mechanism (e.g., iron snow).

Although the solutions we derive are generic, we choose parameters that are specifically applicable to Psy-
che, which is thought to have similar physical properties, impact history, and thermal evolution to the parent
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Figure 1. Schematic diagram for a solidifying planetesimal.

core of the IVA iron meteorites. We base our model on the key experi-
mental constraints that this meteorite group originates from an inwardly
solidifying metallic crust and that this body generated magnetic fields
that were intense and directionally varying. Additionally, we require that
shallow depths within this body must have been cold enough (≲ 600 K)
to have recorded a paleomagnetic remanence of this field. The values of
the nominal parameters used in our model are summarized in Table 1.

Below we develop a model of the solidification and viscous delamina-
tion of a solid iron crust and show how and when the thermal and
solid buoyancy fluxes may drive convection in the liquid responsible for
observed dynamo activity. In section 2 we consider a warm liquid iron
interior, giving rise to the possibility of both thermal and solid buoyancy
fluxes. Importantly, we find that the temperature of the interior rapidly
approaches the freezing point and that the thermal buoyancy flux can
only play a role in driving the planetesimal dynamo for relatively short
times. In section 2.4 we consider how the solid buoyancy flux may give
rise to a much longer-lasting, yet still vigorous, planetesimal dynamo. In
section 3, we show that the inclusion of an incompatible element, for
example sulfur, naturally results in the formation of a mushy layer which
alters the rheology of the crust and hence the solid buoyancy flux. Finally,
we use the results to argue that delamination can drive a planetesimal
dynamo and give rise to the strong and directionally varying magnetic
fields inferred from paleomagnetic measurements of the IVA meteorites
(see below). Throughout we adopt somewhat simplified models capable
of analytical solutions. We do so partly because some of the governing

parameters (e.g., solid iron viscosity) are poorly known and partly because analytical solutions provide more
insight into the underlying physics.

2. Crustal Growth With Thermal Convection and Solid Delamination
Here we consider an exposed asteroid core that solidifies by the inward crystallization of an iron crust, the
base of which can delaminate. We assume, for simplicity, that the large surface radiative heat flux resulting
from the absence of a thick silicate mantle leads to the formation of a metallic crust that rapidly becomes
mechanically coherent. The radius of the asteroid is R, and its surface is radiatively cooled to a constant tem-
perature below the melting point of pure iron, Ts < Tm. This cooling drives the formation and growth of a
crust of thickness a(t) (see Figure 1). In the absence of significant concentrations of incompatible elements
the temperature at the base of the crust is fixed at the melting point of pure iron, Tm ≃ 1810 K. Surface cool-
ing may also result in thermally driven convection within the asteroid, and the resulting fluid motion not
only acts to mix the fluid interior to an average temperature T(t) > Tm but may also produce a significant
magnetic field. However, as discussed below, the timescale for magnetic field generation through thermal
convection alone is relatively short and therefore unlikely to explain the measured remanent magnetic fields.
The formation of a relatively dense (compared to the liquid) crust may also result in delamination and drip-
ping of the crust. We show that the descent of these iron diapirs may also generate sufficient fluid motion
to generate a magnetic field and argue that this process of delamination is active over far longer timescales
than thermal convection, which are comparable to the timescale for complete asteroid solidification.

The vigorous fluid motion driven by either thermal convection or the mechanical stirring induced by the
motion of solid diapirs would present a significant challenge to simulate in detail throughout the full
solidification history. Here we instead consider simplified models of both thermal convection and viscous
delamination of the iron crust in the framework of classical models of vigorous thermal convection (Howard,
1964) which use a diffusive model of the growth of thermal boundary layers to understand the heat flux
from a rapidly convecting interior liquid.

2.1. Diffusive Growth of the Thermal and Viscous Boundary Layers
In the classical conceptual picture of vigorous, high-Ra convection the heat and buoyancy fluxes across
an interface may be conceptually modeled by the episodic growth and advection of the thermal boundary.

NEUFELD ET AL. TOP-DOWN SOLIDIFICATION OF ASTEROIDS 4
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Figure 2. (a) The self-similar profile of temperature with depth through the solid crust and liquid core. (b) The full
implicit solution to (7) for &, which characterizes the solidification rate, is compared against the asymptotic expression
(dashed line) provided in (8).

In this picture, the thermal boundary layer grows diffusively to a critical thickness before becoming unsta-
ble, at which point it detaches and is advected into the fluid interior on a short timescale compared to the
diffusive growth. Models of this process, averaged over many such cycles, provide a quantitative estimate
of the heat or buoyancy flux. Here we additionally consider the solidification and growth of the solid iron
crust from the hot liquid interior whose temperature is initially above the melting temperature, T > Tm.
Solidification of a solid into a liquid above its melting point is a classical Stefan problem (Wettlaufer, 2001)
and forms the basis for our model of the thermal (liquid) and viscous (solid) boundary layers and hence the
buoyancy flux. For simplicity, we treat the specific heat and thermal conductivity of both solid and liquid
phases as equal and solve for the diffusion of heat in the crust and thermal boundary layer,

)T
)t = " )

2T
)z2 , (1)

where z is the depth from the surface and " = #cpk is the thermal diffusivity, written here in terms of the
density #, specific heat cp, and thermal conductivity k which for simplicity we take to be equal between
phases (and in later sections independent of impurity concentration). For simplicity we adopt a Cartesian
description here; while there are analytical solutions for the spherical case (Riley et al., 1974) these are much
more complicated, without adding any physical insight. Accordingly, these expressions become increasingly
inexact as solidification nears completion. Growth of the boundary layers is driven by the cold surface tem-
perature, Ts, and we additionally require that the solid-liquid interface is in thermodynamic equilibrium,
T = Tm, and impose conservation of energy at the interface by the Stefan condition,

#L)a
)t = k )T

)z
||||a−

− k )T
)z

||||a+
, (2)

written here in terms of the latent heat L per unit mass. Within the liquid core, the temperature decays to
the slowly time-varying, well-mixed temperature of the asteroid interior, T(t), well outside the viscous and
thermal boundary layers, as illustrated by the solutions in Figure 2a. Hence, the boundary conditions are

T = Ts z = 0, (3a)

T = Tm z = a(t), (3b)

T → T(t) z → ∞. (3c)
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There are no obvious, externally imposed length scales since the thermal and solid boundary layers are
assumed to be much smaller than the radius of the asteroid, R. Hence, we may expect that the thermal field
within the solid crust is a function of the similarity variable

* = z
2
√
"t

, (4)

which can be deduced from a scaling analysis of equation (1), along with a characteristic temperature dif-
ference which we take to be that between the melting point and the surface, ΔT = Tm − Ts. Importantly,
this immediately also indicates that the crustal thickness is given by

a = 2&
√
"t, (5)

where & is a constant determining the rate of growth.

Solutions to this Stefan problem are well known (see, e.g., Wettlaufer, 2001) and are given in the solid and
liquid by

T = Tm + (Tm − Ts)
[

erf*
erf& − 1

]
0 < z < a(t), (6a)

T = Tm + (T − Tm)
[

1 − erfc*
erfc&

]
z > a(t), (6b)

respectively (see Figure 2a).

The rate of growth of the solid crust is determined by the Stefan condition and is a function of the Stefan
number,

 = L
cpΔT ,

which characterizes the relative importance of the release of latent heat to secular cooling. For latent heat
L = 2.7 × 105 J/kg, specific heat cp = 850 J·kg−1·K−1, and for Ts = 200 K and Tm = 1810 K (Bryson et al.,
2015; Tarduno et al., 2012), and hence ΔT = 1610 K, the Stefan number is  = 0.2. The Stefan condition
therefore reduces to an implicit equation for &,

√+&e&2 erf& = 1 − , erf&
erfc& , (7)

as a function of only the Stefan number and the superheat, , = (T−Tm)∕(Tm−Ts), with the full dependence
shown in Figure 2b.

When the interior of the asteroid is nearly at the melting point, T ≃ Tm, this corresponds to & ≃ &0( =
0.2) = 1.06, implying that the thermal boundary layer and crust grow at comparable rates. An excellent
approximation of the full dependence of & on the interior temperature is given by

&(T) =
√
+

2, +
√
+∕&0

, (8)

as shown in Figure 2b, where in general one must find the end point &0() as a function of  by solving
equation (7) in the limit , → 0 (T → Tm). This approximation is likely unimportant except in the very early
stages of growth where a large superheat may be present (T ≫ Tm), in which case & ∼

√
+∕2,.

We can now assess the stability of the diffusively growing thermal boundary layer and viscous crust, pro-
viding both timescales for instability and an estimate of the associated buoyancy flux averaged over many
cycles of diffusive growth and instability leading to advection.
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2.2. Thermal Boundary Instability and the Thermal Flux
We begin with a review of thermal convection, driven by the temperature difference between the solid-liquid
interface and the liquid interior using a boundary layer analysis. In order to calculate the long-term con-
vective fluxes, we adopt the boundary layer argument of Howard (1964) to model the diffusive growth,
instability, and advection of the thermal and viscous boundary layers. We focus first on the thermal bound-
ary layer, that is, the low-viscosity liquid region at the top of the convecting, molten interior. Following
Howard's original analysis, we note that the thickness of the boundary layer increases diffusively and is of
order ./ ∼ 2

√
"t. This results in a dense thermal boundary layer, and for small variations in the tempera-

ture we may use a linear equation of state # = #l[1 − $(T − Tm)]. A (local) characteristic Rayleigh number
for the thermal boundary layer may be defined as

Raf,bl =
#lg(r)$(T − Tm).3

/

"%/
, (9)

based on the time-dependent boundary layer thickness, .f (t), where the fluid density #l = 7, 300 kg/m3,
coefficient of thermal expansion $ = 10−4 K−1, liquid viscosity %f = 10−2 Pa s, and thermal diffusivity " =
4.5 × 10−6 m2/s (Opeil et al., 2010; see Table 1). It is important to note that the boundary layer experiences
the local gravitational acceleration,

g(r) = 4+G
r2 ∫

r

0
#(x)x2dx ≃ 4

3+G#0r ≡ g0
r
R (10)

at radius r = R − a(t), where G = 6.67 × 10−11 m3·kg−1·s−2, and we take the fluid density as uniform and
equal to #0. For an asteroid of radius R = 150 km, the surface gravitational acceleration g0 = 0.33 m/s2,
which is the largest gravitational acceleration felt by the growing boundary layer.

In the classical picture of boundary layer growth and instability the boundary layer grows until the local
Rayleigh number becomes supercritical, Raf,bl ≥ Rac, which defines a critical time over which the boundary
layer grows before detaching

t⋆/ =
.⋆2
/

4" ≃ 1
4"

(
"%/Rac

#0g(r)$(T − Tm)

)2∕3

. (11)

For values representative of a solidifying asteroid, and for critical Rayleigh number Rac ≃ 103 and superheat
T − Tm = 10K the timescale for delamination of the thermal boundary layer is very rapid, t⋆/ ∼ 37 s.

The thermal instability is therefore rapid and provides an active buoyancy flux into the interior, but only
while significant superheat remains (T − Tm). Modeling the detailed diffusive growth and instability of the
thermal boundary layer on such short timescales is an impossibly daunting numerical task. Here, we instead
average the diffusive thermal flux from the start of boundary layer growth to instability to approximate the
thermal flux into the base of the solid layer above. In detail, the thermal flux may be approximated by the
diffusive thermal flux across a boundary layer of thickness .⋆/ ,

FT ≃ k T − Tm
.⋆/

, (12)

and hence we find that the thermal flux

FT||r=R−a = k
(#0g$
"%/

1
Rac

)1∕3
(T − Tm)4∕3

= kΔT
R

(
1 − a

R
)1∕3(Ra/

Rac

)1∕3
,4∕3,

(13)

where the gravitational acceleration is evaluated at the base of the crust, g = g(R − a), and where for con-
venience we recall the definition of the reduced temperature and define a reference fluid Rayleigh number,

, =
T − Tm
ΔT , Ra/ ≡ #0g0$ΔTR3

"%/
, (14)
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Figure 3. Profiles of (a) the thermal field (equation (6a)), (b) the viscosity %(T(z)) (equation (17)), and (c) the boundary
Rayleigh number, Rabl(z), (equation (20)) through the crust. The full self-similar solution is given by the solid line, the
approximate solution is given by the dashed line (equation (16)), and the (approximate) critical boundary layer depth is
given by the solid black line (equation (21)) in panel (c).

respectively. Given the values quoted previously for an asteroid of radius R = 150 km, then initially for very
thin crust (a → 0) Raf ≃ 2 × 1023. We may already anticipate that the consequence of such vigorous thermal
convection, since Raf ≫ 1, is to rapidly drive the temperature of the interior of the asteroid to the melting
point, T → Tm, thereby removing the driving for thermal convection.

2.3. Crustal Growth and Viscous Delamination
The growth of the crust is driven by the low surface temperature, Ts ≪ Tm, and is limited by the release
of latent heat on solidification and, to a lesser extent (as we shall see below) the heat flux from the cooling
interior for T > Tm. Anticipating that the initially vigorous thermal convection will rapidly drive T →
Tm, we treat the growth of the crust before delamination as a classical Stefan problem. The bottom of the
crust is hot and will therefore be unstable to delamination and downwelling if it can flow on a timescale
comparable with the rate of solidification. We therefore employ an analysis similar to that considered above
for the thermal boundary layer to now model the delamination of the viscous crust. For moderate crustal
thicknesses, a(t), the temperature within the crust is given by

T ≃ Tm + (Tm − Ts)
[

erf(z∕2
√
"t)

erf(&) − 1
]
, (15)

≃ Tm − 2&2(Tm − Ts)(1 − z∕a)
[
1 + &(1 − z∕a)

]
, (16)

where z is a coordinate from the surface toward the interior (see Figure 3a for the full and approximate
solutions). Taking an Arrhenius viscosity model for the solid iron crust, we may write that

%s = %s0 exp
[E%

Rg

(
1
T − 1

Tm

)]
≃ %s0 exp

[E%

Rg

Tm − T
T2

m

]
, (17)

which provides a good approximation to the viscosity near the base of the crust where T ≃ Tm. Equivalently,
using equation (16), we can write

%s ≃ %s0e2(1−z∕a)[1+&(1−z∕a)], (18)

where %s0 ≃ 1017 Pa s (Frost & Ashby, 1982) is the solid viscosity at the melting temperature, E% = 3 ×
105 J/mol, Rg is the molar gas constant, and the number of e-foldings across the solid crust is given by

2 = 2&2 E%ΔT
RgT2

m
≃ 8.0 (19)

for the values in this study.

A consequence of equation (19) is that the viscosity is least viscous at the solid-liquid interface and increases,
approximately exponentially, toward the surface so that only a fraction of the boundary layer is unstable
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to delamination, the rest being too viscous to convect. A quantitative, and physically motivated, criterion
for the thickness of the boundary layer that delaminates can be made by constructing a boundary Rayleigh
number,

Rabl =
(a − z)3Δ#g
"%(T(z)) , (20)

where we note that g = g(R − a). This expression for Rabl both increases with the thickness of the delami-
nating layer considered, (a − z), and decreases due to the increasing viscosity with decreasing temperature,
%(T(z)). Profiles of the thermal and hence viscosity structures within the crust are plotted in Figure 3 which
also shows that the boundary layer Rayleigh number is sharply peaked near the solid-liquid boundary. Here
we assume that the thickness of the delaminating boundary layer corresponds to the depth of the maxi-
mal Rayleigh number, )Rabl∕)z||zc

= 0 as indicated in Figure 3c. Physically, the maximum in the boundary
Rayleigh number, Rabl, corresponds to the depth at which viscous dissipation and the potential energy
released are equal. For the approximate thermal structure, equation (16), and viscosity structure, equation
(18), the critical depth of delamination may be found analytically, so that the thickness of the delaminating
layer is

.s = a − zc = a
(
−1 +

√
1 + 24&∕2
4&

)
= a

2e
≃ 0.24a, (21)

for the values in this study (i.e., 2e ≃ 4). We note that, to leading order, the thickness of the delaminating
boundary layer derived in this fashion is always comparable to the e-folding length of the viscosity scale,
.s = a∕2e ∼ a∕2 , here modified by the curvature of the thermal profile near the solid-liquid interface.
Ultimately, this suggests that only a small fraction of the crust (∼ 24%) is unstable to viscous convection.

A complementary and analogous view of the viscous instability of the crust is as a Rayleigh-Taylor instability
of a dense viscous layer (the mobile solid iron crust) overlying a relatively light inviscid layer (the liquid iron
core), or equivalently as the convective instability of a fluid with highly temperature-dependent viscosity.
Following Molnar et al. (1998), who examined the case of an exponentially varying Newtonian viscosity
structure, the minimum timescale for the onset of the Rayleigh-Taylor instability is given by

3RT ≈ 7 %s0
Δ#g.s

, (22)

where the numerical prefactor is based on the maximum calculated dimensionless growth rate of 0.28.

Our previous analysis of the growth by solidification of the iron crust gives the crustal thickness a, and
hence, using equations (5), (8), and (21), the timescale for solidification of the weak lower crust is

3S = a2

4&2"
−

(a − .s)2

4&2"
≃

a.s
2&2"

=
.2

s 2e

2&2"
. (23)

This result highlights that it is the thermal gradient in the crust which drives regrowth of the weak lower
layer, so that for a thinner low-viscosity layer the growth timescale is longer (3S increases with increasing 2).

The Rayleigh-Taylor instability becomes significant once 3RT < 3S, so setting the two timescales equal up
to an (1) numerical prefactor, KT = 3S∕3RT , we can derive an expression for the critical boundary layer
Rayleigh number at which the crust delaminates,

Ras,bl =
g(R − a)Δ#.3

s
"%s0

= 14&2

2eKT
, (24)

and hence an expression for the critical thickness of the crustal boundary layer, .⋆s , where Ras,bl > Rac =
14&2KT∕2e. The timescale for onset of the viscous instability is therefore

t⋆s =
2e.⋆

2
s

2&2"
≃

2e
2&2"

(14&2KT
2e

%s0"
Δ#g(r)

)2∕3
, (25)

where Δ# = #s − # ≈ 500 kg/m3 is the density difference between solid crust and liquid iron, and in general
& = &(,) depends on the degree of superheat within the asteroid interior. For reasonable estimates of the
physical constants given above (and for KT ≃ 0.4 as discussed below) t⋆s ∼ 33 kyr, which, while much longer
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than the timescale for thermal instability, is still much less than the anticipated timescale for solidification
of the asteroid. Taking the growth model (equation (5)) for the initial growth of the crust, and recalling that
the boundary layer thickness .(t) = a(t)∕2e, this implies that for the first ∼ 68 kyr of solidification the crust
is too thin to delaminate and that thereafter the weak lower crust of characteristic thickness .⋆s ≃ 1.6 km
delaminates episodically. We consider that the delamination of this weak, thin boundary layer, for which
.⋆s ≪ R, occurs episodically around the crust, the net effect of which is to produce an effective buoyancy
flux when considered on timescales longer than t⋆s .

In an analogous manner to the treatment of the thermal flux, we average the repeated growth and delam-
ination of the viscous crust, on timescales much longer than t⋆s , to produce a model for the solid flux,

Fs = Δ#
.⋆s
t⋆s

. (26)

Hence, using equations (21) and (25), we find that

Fs||r=R−a = 2"Δ#
(

&4

14KT22
e

)1∕3(Δ#g(r)
%s0"

)1∕3
, (27)

= "Δ#
R

(
2&2

2e

)2∕3(
1 − a

R
)1∕3( Ras

7KT

)1∕3
, (28)

where for convenience we define

Ras ≡ Δ#g0R3

"%s0
. (29)

Equation (28) shows that the flux increases with the (solid) Rayleigh number, as expected. It also increases
with higher diffusivity (because the crust grows more rapidly), and decreases with larger 2e, because less
mass is advected when a thinner layer delaminates. Given representative values for an iron asteroid (Table 1)
we find Ras ≃ 1.2 × 106.

The related case of the convective flux from convection in a fluid with a highly temperature-dependent rhe-
ology has been studied previously in a suite of careful laboratory experiments using Golden Syrup (Davaille
& Jaupart, 1993). They found that a stagnant thermal boundary layer developed along the cooled upper sur-
face and that the thermal flux due to convection scales with an “effective viscous temperature scale” set by
the variation of viscosity at the base of the stagnant region,

FDC = Ak
(

$g
%s0"

)1∕3[
−

%(Tm)
(d%∕dT)Tm

]4∕3

, (30)

where the term in square brackets is equivalent to ΔT∕2 , and report an experimental value of A = 0.47 ±
0.03. Importantly, this dependence on ΔT∕2 confirms the dependence on the rheological parameter 2 in our
expression for the solid flux (equation (28)). This experimental relationship (equation (30)) also provides
a value of the prefactor, the magnitude of which provides an experimental estimate for the ratio of solidi-
fication to delamination timescales, KT = 3S∕3RT ≃ 0.4. In the classical theory of high Rayleigh number,
isoviscous convection (Howard, 1964) this prefactor is small, KT ≪ 1, which suggests that the delamination
timescale is negligible compared to the timescale of boundary layer growth. In the present context, such a
limit would imply that negligible solidification would occur during delamination. As a result, a steady state
balance would soon be reached over a cycle of crustal growth and delamination between solidification of
the crust and viscous delamination leading to no net crustal growth. Such a balance between growth and
delamination would set in rapidly after the first delamination events, leading to a thin, steady state crust
whose thickness was of order .⋆s . This process would continue until the growth of the core through consol-
idation of these aggregates extended out to the thin crust. Such a thin crust would be unlikely to retain a
measurable paleomagnetic signature and so is unlikely given the observational constraints in this context.
In contrast, when the prefactor is (1) (as is the case here) the timescales of growth through solidification
and delamination are comparable, a result which implies that significant solidification and crustal growth
can occur even as delamination proceeds. We therefore proceed to use an argument of energy conservation,
averaged over the cycle of growth through solidification and delamination, to model the long-term growth
of the crust, as described in the following section.
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2.3.1. Growth of the Crust and Inner Core and the Evolution of Thermal and Viscous
Buoyancy Fluxes
The models developed above, of the thermal and delamination fluxes from the crust to the interior of the
asteroid, can be readily used to model the large-scale, top-down solidification of the planetesimal and the
possibility of their generating an observable magnetic field. The growth of the crust is driven by cooling from
the surface and is limited by the release of latent heat on solidification, the heat flux from the superheated
planetesimal interior associated with thermal convection, the specific heat required to cool the thermal
boundary layer, and the specific heat required to cool the viscous base of the crust between delamina-
tion episodes. Energy conservation, averaged over many thermal and delamination cycles, can therefore be
written as

[
#L + #cp(T − Tm)

] )a
)t = k )T

)z
||||a−

− FT − cp

(Tm − Tc
2

)
Fs, (31)

where Tc ≃ Tm − ()T∕)z)a.s is the temperature at the boundary between the mobile and stagnant crust.
The terms in equation (31) correspond (from left to right) to the latent heat of solidification, the specific
heat associated with cooling the thermal boundary layer from T to Tm, heat conduction through the lid,
the thermal flux from the liquid interior to the crust associated with vigorous convection, and the average
specific heat lost from the boundary during viscous delamination of the solid crust, respectively.

The model of planetesimal solidification is completed by statements of solid mass conservation and of global
heat conservation in the liquid. Viscous delamination creates solid aggregates of characteristic size .s which
therefore sink rapidly toward the center of the planetesimal, creating a cold, inert core. For aggregates of
characteristic size .s(t⋆s ) ≃ 1.6 km, given by equations (21) and (25), the thermal equilibration time is much
greater than the transit time from crust to core,

.2
s
"

≫ R
cD(Δ#g.s∕#/ )1∕2 (32)

for drag coefficient cD ∼ 1, and hence advection of cold aggregates contributes little to the cooling of the
iron liquid in the interior during their descent. As a result, a statement of global conservation of heat within
the liquid core can be written as

#cp
4
3+

[
(R − a)3 − b3] )T

)t = −4+(R − a)2FT , (33)

where b(t) is the radius of the stagnant, cold core. The reduction of superheat in the liquid iron core is entirely
through the convective heat flux toward the iron crust. Likewise, conservation of solid mass constrains the
radius of the core, b(t), and is given by

#s4+b2 )b
)t = 4+(R − a)2Fs. (34)

Growth of the inner core is driven solely by the solid flux produced by viscous delamination from the base
of the solid iron crust.

Equations (31), (33), and (34) specify completely the evolution of the asteroid. Here we further simplify the
analysis by approximating )T∕)z|a ≃ 2&2(Tm − Ts)∕a, in keeping with equation (6a), and by writing the
equations for asteroid evolution in terms of two nondimensional parameters

T ≡
(Ra/

Rac

)1∕3
≃ 2.3 × 107,

S ≡ Δ#
#

(
2&2

2e

)2∕3( Ras
7KT

)1∕3
≃ 3.31,

(35a,b)

characterizing the thermal and solid fluxes, respectively. The equations for conservation of energy at the
solid-liquid interface and for the evolution of the temperature of the liquid interior and the radius of the
core are therefore

( + ,))a
)t = 2&2 "

a − "
RT(1 − a∕R)1∕3,4∕3 − 2&2 "

R (1 − a∕R)1∕3 S
22e

, (36)
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Figure 4. Representative numerical solutions (a) of the crustal thickness, a, and core radius, b, and (b) of the superheat,
,, in each case plotted for initial superheat ,0 = 0.1 (red dash-dotted line), 0.01 (blue dashed line), 0.001 (green dotted
line), and 0.0001 (black solid line), and for R = 150 km and representative values as indicated in Table 1. Overlain are
the asymptotic solutions in (a) for the crustal thickness from (39) (red dots) and the inner core radius from (44) (black
dots), and in (b) the asymptotic expression for the superheat from (41) (black dots) calculated for ,0 = 0.1.

),
)t = −3"R

(R − a)2

[(R − a)3 − b3]
(1 − a∕R)1∕3T,4∕3, (37)

)b
)t = "

R
(R − a

b
)2S(1 − a∕R)1∕3, (38)

where we have reintroduced the reduced temperature , = (T − Tm)∕ΔT of the liquid core.

The behavior of the full numerical solutions is shown in Figure 4. Growth of the crust is, at all times, driven
by conductive cooling through the crust and limited by, variously, the release of latent heat at the interface,
a convective heat flux from the interior, and the delamination of the viscous crust. At very early times, when
the crustal thickness a ≪ R, the primary balance is between conductive heat losses and latent heat release,
and growth of the crust is well approximated by the classical model of Stefan growth

a = 2&
√
"t, (39)

with & ≃ 1.06 for  = 0.2. After the initial Stefan growth, a steady state balance is conceivable between
conductive cooling and viscous delamination that would result in a constant crustal thickness. However,
this occurs only when

"
a = "

R (1 − a∕R)1∕3 S
22e

(40)

is satisfied which requires a value S∕(22e) ≥ 44∕3∕3 ≃ 2.1, whereas for the representative values aboveS∕(22e) ≈ 0.41. In contrast, given the strength of the initial convective thermal flux, ("∕R)T,4∕3, it is
likely that a balance exists between conductive cooling and convective heating from the interior at inter-
mediate times (see Figure 4a). The balance leads to a pause in crustal thickening at relatively thin crustal
thicknesses a ≃ 2&2R∕T,

4∕3
0 at early times t1 ≃ (R2∕")(&∕T,

4∕3
0 )2, similar to the pause in the crustal

growth of magma chambers (Huppert & Worster, 1992). This balance between conductive cooling and
convective heating leading to a pause in crustal thickening persists until the superheat of the planetesimal
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Figure 5. Reduced model (no superheat, , = 0) showing the growth of the
crust, a(t) (red solid line), and inner core, b(t) (blue dashed line). Also
shown for comparison are the asymptotic solutions for the thickness of the
crust from equation (39) (solid dots) and the inner core radius from
equation (44) (circles).

interior is exhausted. Since the crust is thin while the superheat is
exhausted, a ≪ R, we may write, to excellent approximation, that

, = ,0

[
1 + T,

1∕3
0

"t
R2

]−3
= ,0

[
1 +

(Ra/ ,0

Rac

)1∕3
"t
R2

]−3

, (41)

where ,0 is the initial superheat, and a comparison to the full numerical
solution is shown in Figure 4b. This indicates that any superheat within
the planetesimal interior will be rapidly exhausted by conduction through
the iron crust. The timescale for the rapid decrease in superheat can be
estimated as

t2 ≃ R2

"

( Rac
Ra/ ,0

)1∕3
. (42)

For example, when the initial liquid interior temperature is T = Tm + 20
K, and hence ,0 = (T −Tm)∕(Tm −Ts) = 0.0125, the time at which super-
heat begins to rapidly decay is approximately 31 years. For unmantled

planetesimals, superheat can therefore be expected to play a negligible role in the evolution of the planetes-
imal crust and growth of the solid core. Mantled cores, however, would not display this insensitivity to the
initial superheat.

Perhaps more importantly, the rapid decay in superheat implies that the solid crust will be too thin to pre-
serve any magnetic record from this epoch. As a result, any observed remnant magnetism is unlikely to be
caused by a thermally driven dynamo but must instead rely on the buoyancy flux associated with delamina-
tion. Given the separation between thermal growth of the crust and viscous delamination, the leading-order
feedback between the solid flux and the radial growth is the dependence of the gravitational acceleration on
gravity, given by equation (28). The solid flux may therefore be well approximated by

Fs ≃
"Δ#

R

(
2&2

2e

)2∕3(
1 −

2&
√
"t

R

)1∕3( Ras
7KT

)1∕3
, (43)

with implications for driving the generation of a persistent magnetic field as discussed in the following
section.

The relatively small estimates of the delamination flux, S ≪ 1, and the rapid decay of superheat for times
t ≥ t2 imply a return to the balance between thermal conduction through the crust and the release of
latent heat. Hence, the crustal growth is given, to good approximation at late times, by equation (39). Thus,
for the nominal parameters considered here delamination is a minor contributor to the growth of the solid
crust—but it nonetheless controls whether or not a dynamo occurs (see below).

The decoupling of crustal growth from delamination allows us to integrate equation (38) directly to find an
expression for the core radius with time,

b = R
( 27S

260&2

)1∕3⎡
⎢
⎢⎣
1 −

(
1 −

2&
√
"t

R

)10∕3 (
1 +

20&
√
"t

3R

)⎤
⎥
⎥⎦

1∕3

. (44)

The solution to equations (36) and (38), neglecting superheat at all times, , = 0, is shown in Figure 5 and
shows reasonable agreement between the simple Stefan growth model of the crust (equation (39)) and the
full core growth model including the effects of crustal delamination (equation (44)).

In general, solidification of the asteroid is complete when the sum of the crustal thickness and core radii
equal the planetesimal radius, a + b = R. In Figure 6 we show the numerically determined final thickness of
the crust, a∞, and the time to solidify, t∞, by the solid blue curve and find that a(t → ∞) = a∞ ≃ 62.1 km, forS = 3.31 and R = 150 km. The curves also show that two regimes are possible, depending principally on the
size of the planetesimal. When the scaled solid flux S = S(R) ≪ 1, roughly equivalent to R ≪ 100 km, the
growth of the crust and core are as described above. In contrast, whenS ≫ 1 or R ≫ 1,000 km, delamination
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Figure 6. (a) The fractional final crustal thickness as a function of the scaled solidification flux (solid blue) along with
approximate expressions for S ≪ 1 and S ≫ 1 (dotted black line, equation (45)) along with a composite expression
(dashed red line, equation (46)). (b) The total time taken for solidification for representative parameter values and as a
function of the asteroid radius, R, (solid blue line) is shown along with approximate expressions for S ≪ 1 and S ≫ 1
(dotted black line, (47)) along with a composite expression (dashed red line, equation (48)). The values for a
planetesimal with radius R = 150 km are marked with a black dot and are S = 3.31, a∞ = 62.1 km, and t∞ = 6.7 Ma.

may balance crustal growth leading to a constant crustal thickness. The two limits on crustal thickness are
therefore

a∞
R =

{
1 −

(
9S∕65

)1∕3 S ≪ 1,
22e∕S S ≫ 1,

(45)

as shown by the dotted black lines in Figure 6a. A composite expression, giving the final crustal thickness
to within 0.1%, is

a∞
R =

1 − (27S∕(260&2))1∕3 + b1 2∕3
S

1 + b2 1∕3
S + b3 2∕3

S + b4S + b5 4∕3
S + b1 5∕3

S ∕(22e)
, (46)

where b1 = 0.13, b2 = 0.01, b3 = 0.07, b4 = 0.15, and b5 = −0.06, as shown by the dashed red curve in
Figure 6a.

Similarly, the time to fully solidify a planetesimal may be written as a function of the radius and displays two
regimes; either solidification time is determined by crustal growth (S ≪ 1 or equivalently R ≪ 100 km)
or by the growth of the inert inner core (S ≫ 1 or equivalently R ≫ 1,000 km). The two limits on the
solidification time are given by

t∞
R2∕"

=
{

1
4&2

[
1 −

(
27S∕(260&2)

)1∕3]2 S ≪ 1,
1∕(3S) S ≫ 1,

(47)

as shown by the dotted black lines in Figure 6b. A composite expression, giving the solidification time to
within 0.1%, is

t∞
R2∕"

=
[1 − (27S∕(260&2))1∕3]2∕(4&2) + c1S

1 + c2 1∕3
S + c3 2∕3

S + c4S + c5 4∕3
S + c6 5∕3

S + 3c1 2
S

, (48)
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where c1 = 0.04, c2 = 0.001, c3 = −0.02, c4 = 0.20, c5 = 0.05, and c6 = 0.08, as shown by the dashed red
curve in Figure 6b. It is worth noting that the composite expressions, equations (46) and (48), are written
using the nondimensional solid delamination flux, S, and so are equally valid for different estimates of
the physical parameters listed in Table 1. Finally, it is worth noting that for a planetesimal of radius R =
150 km (for which S = 3.31 given the parameter values listed in Table 1), the final crustal thickness is
a∞ = 62.1 km which forms over a time t∞ = 6.7 Ma as indicated by the black dots in Figure 6.

2.4. Dynamo Generation
Empirical scaling relationships can be used to estimate the expected properties of the magnetic field from the
buoyancy flux predicted by the evolution model outlined in the previous section. Here we use relationships
that have been derived from numerical simulations with Earth-like geometries, that is, a growing inner
core that eventually occupies the entire core radius and no inward solidification. While there is currently
some debate as to their efficacy, and indeed equivalent relationships have yet to be derived for top-down
solidification, they currently provide the best means of assessing magnetic field properties so we choose to
use modified versions of the equations presented in Bryson et al. (2015), based on those from Nimmo (2009)
and Olson and Christensen (2006).

First, due to the large heat flux out of an unmantled body and the fast core cooling rate, we might expect that
thermally driven convection of core liquid would be more likely on the IVA parent body than within man-
tled bodies (Nimmo, 2009). However, once solidification starts and the evolution of the core is governed by
the balance between latent heat and cooling, the liquid quickly becomes isothermal at the liquidus temper-
ature Tm (see section 2.3.1). Since the liquid at the base of the crust remains at this temperature, there is no
driving thermal buoyancy flux driving convection, and so we can discount thermal convection as a possible
long-lived dynamo-driving mechanism.

The solid flux (equation (28)) was used to calculate the properties of compositionally driven convection due
to sinking delaminated material. From this parameter, a buoyancy flux can be calculated as

Fb = 4
3+g(R − a)Fs

#
=

g0"
R

4+
3 S(1 − a∕R)4∕3. (49)

It is worth noting at this stage that the values of Fb in this study are significantly greater than those calculated
for other studies on small bodies (Bryson et al., 2015; Elkins-Tanton et al., 2011; Nimmo, 2009; Weiss et al.,
2010) reflecting the large heat flux out of an unmantled body and the large density contrast between the solid
diapirs and core liquid. For example, using representative values (see Table 1), we find a maximum buoyancy
flux at the surface (a = 0 km) to be Fb = 1.4× 10−10 m2/s3. Field intensity is expected to scale with buoyancy
flux (Olson & Christensen, 2006), so these large predicted Fb values are consistent with the field properties
inferred from experimental studies of type IVA asteroids (Bryson et al., 2017). Other previously identified
dynamo-driving mechanisms are unlikely to produce these large values of Fb, reinforcing delamination as
a plausible dynamo-driving mechanism on the IVA parent body.

The buoyancy flux was then used to calculate the flux-based Rayleigh number,

RaQ =
Fb

d2Ω3
R

a + b =
g0"
Ω3R3

4+
3 S

(1 − a∕R)4∕3

(1 − a∕R − b∕R)2(a∕R + b∕R) , (50)

where d = R − a − b is the distance over which the solid can sink and hence drive fluid motion, Ω = 2+∕p
is the rotation frequency of the parent body, and p = 15, 120 s is the rotation period (Hanus et al., 2013).
This value is taken as that of the present-day period of the asteroid 16 Psyche, the largest metallic body in
the asteroid belt.

From the flux-based Rayleigh number, the key properties of the magnetic field can be estimated. For exam-
ple, the magnetic Reynolds number, which dictates whether convection will result in a magnetic field, is
expressed as

Rm = 0.85ΩdR
&m

Ra2∕5
Q ,

= 0.85ΩR2

&m

( g0"
Ω3R3

4+
3 S

)2∕5 (1 − a∕R − b∕R)1∕5(1 − a∕R)8∕15

(a∕R + b∕R)2∕5 ,
(51)

where &m = 1.2 m2/s is the magnetic diffusivity (Weiss et al., 2010). For values of Rm > 10, magnetic fields
have been predicted to result from convection on small bodies (Weiss et al., 2010), a regime applicable for
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Figure 7. (a) The predicted magnetic Reynolds number across the period of solidification. The predicted critical value
for small bodies (Rm = 10; Weiss et al., 2010) and Earth-sized bodies (Rm = 40; Olson & Christensen, 2006) are
included. (b) The local magnetic Rossby number, Rol (solid blue line), is plotted along with the boundary between
dipolar and multipolar dynamos (Rol > 0.12, black dashed line).

the entire period of solidification predicted by our model. Magnetic fields have been predicted for values of
Rm > 40 on Earth-sized bodies (Olson & Christensen, 2006), which is predicted for nearly the complete
period of solidification (see Figure 7a).

The local Rossby number, which dictates the polarity of the field, can be expressed as

Rol = 0.58
Ra1∕2

Q

E1∕3
k

(
Pr

Prm

)1∕5
,

= 0.58
( g"
Ω3R3

4+
3 S

)1∕2(ΩR2

4

)1∕3(&m
"

)1∕5 (1 − a∕R)2∕3

(1 − a∕R − b∕R)1∕3(a∕R + b∕R)1∕2 ,

(52)

where Ek = 4∕Ωd2 is the Ekman number, Pr = 4∕" is the Prandtl number, Prm = 4∕&m is the magnetic
Prandtl number, and 4 = %f ∕# = 10−6 m2/s is the nominal kinematic viscosity of the liquid (Weiss et al.,
2010). This empirical relationship was derived from numerous numerical models of dynamo generation,
which tended to display magnetic reversals during the multipolar regime and during the dipolar regime
near the dipolar-multipolar transition. We therefore use the local Rossby number as a proxy for likelihood
of generating a directionally unstable magnetic field and predict directional instability in the magnetic field
across the entire period of solidification. For Rol > 0.12 a multipolar field is predicted, which, again, is the
case for the entire period of solidification (Figure 7b).

These results suggest that the buoyancy flux created by delamination events is therefore sufficient to produce
a strong, long-lasting, and multipolar magnetic field consistent with paleomagnetic measurements of IVA
asteroids (Bryson et al., 2017).

3. The Effects of Composition
A potential complication to this relatively straightforward approach is the distribution of incompatible ele-
ments within a solidifying planetesimal, a possibility which has been raised previously by Scheinberg et al.
(2016). In general, the presence of any number of light, incompatible elements may alter both the density of
the liquid interior and the local freezing temperature through the phase diagram. In large planetary systems,
the rejection of light impurities on solidification of the planetary core from the bottom up is a significant
driver of convection and hence of the generation of planetary magnetic fields. In contrast, the rejection of
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light impurities during top-down solidification produces a stratified compositional layer, whose principal
effect is to produce a stagnant, partially solid (or mushy) crust, the dynamics of which we explore below.

The model developed in the preceding sections can be adapted to incorporate the distribution of sulfur, a
relatively abundant light element within most planetesimal cores. As with the previous study of Scheinberg
et al. (2016), we use the simplified iron-sulfur phase diagram of Ehlers (1972), approximating the depression
of the melting temperature along the liquidus as

TL(C) = Tm − mC, (53)

for moderate sulfur concentration, C, where we take Tm = 1810 K as before and the slope of the liquidus
as m = 18 K/wt%. The rejection of a light impurity, such as sulfur, leads to constitutional supercooling at
the solid-liquid interface, R − a, and the formation of a partially solid crust, often referred to as a mushy
layer (Worster, 1997). In this region the constitutional supercooling is relieved by the growth of a porous
solid, of solid fraction ', bathed in a sulfur (or light element)-rich liquid of liquid fraction 1 − '. Due
to the high surface area of contact within the porous matrix, the composition of this interstitial fluid lies
along the liquidus to excellent approximation. Since the composition is then enriched in sulfur and, to good
approximation, the fluid density is more strongly a function of composition than temperature, this produces
a (compositionally) stably stratified fluid within the porous mushy layer.

An important consequence is that during solidification, the sulfur rejected on solidification remains trapped
within a stably stratified mushy layer save for a negligibly small diffusive flux into the liquid core. The impact
of the inclusion of sulfur on the much larger-scale cooling of the planetesimal and the putative generation
of a magnetic field is then chiefly to alter the rheological properties of the solidifying iron crust by further
weakening the base of the convecting, now partially solid, boundary layer. The thermal argument described
in the preceding sections therefore remains largely the same, though with a correction accounting for the
weakened rheology of the mushy crust. The solidifying crust contains a porous, and therefore rheologically
weak, lower boundary layer the rheology and thickness of which is now determined both by the thermal
structure within the crust and the solid fraction within the mushy base. This weak lower boundary layer
periodically delaminates to form diapirs which descend through the liquid outer core to form an inner core
of radius b. A potential complication of compositional variations is that the mushy boundary layer now also
contains compositionally enriched fluid. If that fluid remains within the mushy layer during delamination
and subsequent foundering to form the core, the bulk composition of the liquid remains unchanged through-
out the planetesimals evolution. If instead the interstitial fluid is expelled, which seems likely, it will drive
a secular variation in the bulk composition of the liquid, with implications for the evolution of the mushy
layer porosity and rheology.

In this latter scenario, compaction of the mushy layer is most likely to occur either during the delamina-
tion of the boundary layer or in the subsequent formation of the core. If compaction predominantly occurs
during delamination, the expelled interstitial liquid would be released at the top of the liquid core, poten-
tially stratifying the liquid, with implications for the evolving rheology of the crust, but with an otherwise
negligible role in driving the magnetic field due to the lack of compositional convection. In contrast, if com-
paction primarily occurs when mushy diapirs of crustal material coalesce to form the core (Scheinberg et al.,
2016), the release of compositionally buoyant interstitial fluid at the base of the liquid core could enhance,
or drive, fluid motion resulting in a stronger magnetic field as well as a general increase in the bulk compo-
sition of the liquid. The details of these processes are sufficiently complex that we leave them for later study
but instead proceed with a parameterized model which captures the rheological effect of the mushy crust
on magnetic field generation through solid delamination and the secular evolution of the bulk composition
through compaction.

To model simply the formation of a partially molten, or mushy, base of the crust, we assume that the thermal
structure is much the same as that determined in the absence of light impurities. In practice, the thermal
structure is slightly altered as the release of latent heat occurs throughout the mushy zone rather than simply
at a planar solid-liquid interface. However, we leave such a detailed study to future work.

Within the mush layer, the stratification of light, incompatible elements leads to a stagnant interstitial fluid.
Conservation of composition may therefore be expressed as

(1 − '))C
)t = (C − Cs)

)'
)t , (54)

NEUFELD ET AL. TOP-DOWN SOLIDIFICATION OF ASTEROIDS 17



Journal of Geophysical Research: Planets 10.1029/2018JE005900

Figure 8. Profiles through the crust of (a) the temperature T, (b) the solid fraction ', and (c) the viscosity %(T,') for
C̄ = 0.1 with the profiles (solid blue line) and approximate solutions (dashed red line) shown. (d) The boundary layer
Rayleigh number, which exhibits two maxima at z∕a = 0.9997 (dashed line) and z∕a = 0.78 (solid line) corresponding
to modes of delamination controlled by the solid fraction variation and thermal structure, respectively.

where '(z, t) is the bulk solid fraction and Cs ≃ 0 is the concentration of light impurity within the solid.
Within the stagnant mushy layer, the interstitial composition C is closely tied to the temperature through
phase equilibrium so that we can integrate equation (54) to show that the composition within the mushy
layer is that of the bulk liquid, (1 − ')C = C̄. Hence, the liquid fraction may be written

1 − ' = C̄
C , (55)

where C̄(t) is the bulk concentration of soluble impurities in the liquid core. Again, within the mushy layer
temperature and composition are constrained to lie along the liquidus, and we may approximate the thermal
field as

T ≃ TL(C̄) − 2&2(TL(C̄) − Ts)(1 − z∕a)
[
1 + &(1 − z∕a)

]
,

= Tm − mC̄ − 2&2(ΔT − mC̄)(1 − z∕a)
[
1 + &(1 − z∕a)

]
,

(56)

so that near the mush-liquid interface the liquid fraction is

1 − ' = C̄
C = mC̄

mC̄ + 2&2(ΔT − mC̄)(1 − z∕a)
[
1 + &(1 − z∕a)

] . (57)

We use a simple extension of the Arrhenius model for the viscosity of the solid crust (equation (17)) to
account for the variations in solid fraction,

%s = %s0 exp
[E%

Rg

(
1
T − 1

Tm

)
− E'(1 − ')

]
, (58)

≃ %s0 exp
[

E%(Tm − T)
RgT2

m
−

E'mC
Tm − T

]
, (59)

which provides a good approximation to the viscosity near the base of the crust where T ≃ Tm − mC̄ and
incorporates the expected reduction in viscosity with increasing melt fraction (Mei et al., 2002). Equivalently,
using equations (56) and (57), we can write

%s ≃ %s0 exp
[
2/ (, z∕a) −

E'
/ (, z∕a)

]
, (60)

where 2 ≃ 8.0 is defined as in equation (19) and

 = mC̄
2&2ΔT and / (, z∕a) =  + (1 − 2&2)(1 − z∕a)

[
1 + &(1 − z∕a)

]
. (61)
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Figure 9. (a) Profiles of the Rabl for a sequence of bulk liquid compositions, C̄ = 0, 0.01, 0.1, 0.5, 1, 2, 5, 10, 20 wt%
( = 0.00014, 0.0014, 0.0069, 0.014, 0.028, 0.069, 0.14, 0.49), along with the approximate points of maximal
Rabl, (.s,Rabl), for the thermal mode (squares) and for the mushy mode of delamination (circles). (b) The numerically
determined boundary layer depth corresponding to the maximal Rabl (points) is plotted with the thermal limit
(red line), porosity limit (blue line), and eutectic limit (green line) as given in (64).

Note that, for the parameters in this study, the composition scale 2&2ΔT∕m ≃ 71.4 wt%. Again, we con-
struct a boundary Rayleigh number, as in equation (20), now with contributions from the thermal structure
and profile of solid fraction in the crust

Rabl(z) =
gΔ#'(z)(a − z)3

"%(T(z),'(z)) . (62)

A representative example is shown in Figure 8, which shows the profiles in temperature, solid fraction,
viscosity, and Rabl for the case  = 0.002, (C̄ = 0.14wt%). The profiles demonstrate the effect that a small
boundary of high-porosity (high melt fraction) crust has on the viscosity structure which gives rise to two
modes of convection: a mushy mode of delamination governed by the rheologically weak, but narrow, mushy
(low solid fraction) base of the crust, and the other thermal delamination mode determined by the broader,
warm region at the base of the crust (replicating the structure shown in Figure 3 when ' ≃ 1). This is
reflected in the structure of Rabl(z), as plotted in Figure 8d, which shows a maximum in Rabl associated
with the narrow boundary layer in porosity (at z∕a = 0.9997) and the broad thermal boundary layer (at
z∕a = 0.83). An expansion of Rabl, plotted with a logarithmic scale that highlights these two competing
modes of convection for varying C̄ is shown in Figure 9a. The relative magnitudes of these thermal and
porosity boundary layers may be determined as a function of the nondimensional bulk liquid composition,
C̄. We can find approximate expressions for the maxima in Rabl, and hence the depth of the delaminating
boundary layer, by finding the roots of

)Rabl
)z

||||z=zc

= 0 = 
/ 2

(1 − z∕a)3

e/
/
z − 3(1 − ∕/ )(1 − z∕a)2

e/ − /
z
(1 − ∕/ )(1 − z∕a)3

e/ , (63)
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which provides an estimate of the boundary layer thickness as

.s,'∕a = 2−1
e,' =

⎧
⎪
⎨
⎪⎩

.s,'1 =
(
−1 +

√
1 + 24&∕2

)
∕4& 0 <  < ⋆,

.s,'2 = 3∕(E' − 6) ⋆ <  < E,

.s,'3 =
(
−1 +

√
1 + 24&∕2

)
∕4&  > E.

(64)

The thickness of the delaminating solid boundary layer, .s,', is determined by the location of the maxi-
mum in the boundary Rayleigh number, Rabl, which switches discontinuously between thermal and porosity
modes. We find that for small bulk compositions,  < ⋆, the solid boundary layer thickness is determined
by the thermal boundary layer and the effects of porosity weakening are negligible, while for larger bulk
compositions,  > ⋆, the effects of porosity weakening become dominant and delamination is dominated
by the low-porosity boundary layer. The critical concentration at which the dominant mode switches is⋆ ≃ 3.4× 10−4 (for the parameters used in this study C̄⋆ = 0.014 wt%) and may be found by solving for the
composition where Rabl(.s,'1,⋆) = Rabl(.s,'2,⋆).

The physical consequence of this behavior is that there is a discontinuous switch from the thermal mode
of convection to the porosity-dominated mode of convection as the bulk liquid concentration increases and
hence a discontinuous jump in the convective flux. It is also worth noting that the mushy lower boundary
of the crust that is significantly weakened by the presence of melt is typically very narrow, and hence the
boundary layer thickness which delaminates is significantly smaller. For example, for a bulk composition
C̄ = 0.01 wt%,  = 1.4 × 10−4 and .s = 0.247a, which, for a ≃ 10 km implies .s = 2.47 km, while for
C̄ = 0.1 wt%,  = 1.4 × 10−3 and .s = 2 × 10−4a or .s = 2 m for an equivalent crustal thickness. It is also
worth noting that for temperatures below the eutectic, T < Te, the crust is solid, ' = 1, which occurs at a
position

zE∕a = 1 −
−1 +

√
1 − 4&( − E)∕(1 − )

2& , E =
Tm − Te
2&2ΔT , (65)

as reflected in the profiles of Rabl(z) depicted in Figure 9. Here E ≃ 0.8 (CE = 32 wt%) for the parameters
used in this study.

We may now straightforwardly extend the previous model to include the presence of light impurities. The
depth of the unstable boundary layer, .s,', is now given by equation (64) which delaminates over a timescale

t⋆s,' =
2e.⋆

2
s,'

2&2"
≃

2e
2&2"

(14&2KT
2e,'

%s0,e"
Δ#g(r)

)2∕3
, (66)

where for simplicity we take a discontinuous end point viscosity

%s0,e =
⎧
⎪
⎨
⎪⎩

%s0 0 <  < ⋆,
%s0e2 ⋆ <  < E,
%s0e2E  > E.

(67)

This end point viscosity increases with increasing concentration following the depression of the freezing
point as determined by the phase diagram (equation (53)) evaluated at the mush-liquid interface where
C = C̄. It is worth recalling that the full temperature- and liquid fraction-dependent viscosity is given by
equation (60).

The solid flux is now

Fs,' = '̄Δ#
.⋆s,'
t⋆s,'

≃ '̄ "Δ#
R

(
2&2

2e,'

)2∕3
(1 − a∕R)1∕3

(Ras
7C

%s0
%s0,e

)1∕3
, (68)

where we have calculated the averaged solid fraction over the porous boundary layer,

'̄ = 1
.s,' ∫

a

a−.s,'

'(z)dz ≃ 1 − 2
1 −  ln

(
1 + 1 − 

2
)
, (69)
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Figure 10. The magnitude of the solid delamination flux, s,' (blue solid line); the average solid fraction, '̄ (red
dash-dotted line); the inverse boundary layer thickness, 2e (orange dashed line); and the effective viscosity, %s,e∕%s,0
(purple dotted line) are plotted as a function of the bulk composition C̄, where, for the values used in this study,
C̄⋆ = 0.14 wt% and C̄E = 32 wt%.

using equation (57). A representative example of C̄ = 1 wt%, for which  = 0.014 we find that the mean
solid fraction '̄ ≃ 0.74 and that a boundary layer of characteristic thickness .⋆s,' ≃ 80 m delaminates on a
timescale of t⋆s ≃ 375 kyr.

Hence, including the effect of light impurities, the conservation of energy at the delaminating boundary
may be written as (cf. equation (31))

#L'̄ )a
)t = k )T

)z
||||a−

− cp

(TL(C̄) − Tc
2

)
Fs,', (70)

where as before Tc represents the temperature at the top of the delaminating layer and now TL(C̄) is the
temperature at the mush-liquid interface. We may also rearrange to find the equivalent energy conservation
equation (analogous to equation (36)) incorporating the nonzero melt fraction at the base of the crust,

'̄ )a
)t = 2&2 "

a − 2&2 "
R (1 − a∕R)1∕3 s,'

22e,'
, (71)

where now the magnitude of the solid delamination flux is

s,' = '̄Δ#
#

(
2&2

2e,'

)2∕3( Ras
7KT

%s0
%s0,e

)1∕3
, (72)

where Ras and KT are as defined previously. This equation makes it clear that there are three modes of
delamination. For very small concentrations ( < ⋆) '̄ ≃ 1; the viscosity, and hence the boundary layer
depth as characterized by 2e,', is determined by the thermal structure, and the delamination flux approaches
the pure case (C̄ = 0 wt% as discussed in section 2). For larger compositions (C̄ > C̄⋆) the much weaker,
thin, high-porosity mushy zone at the base of the crust dominates delamination. While delamination events
are more frequent, they also carry significantly less mass so that the mass flux, s,', is significantly reduced.
Finally, for eutectic compositions (C̄ = CE) the crust is again solid, '̄ = 1, and the delamination flux becomes
larger, comparable to the pure value, modified slightly as the viscosity is larger at the eutectic temperature,
TL(CE). These trends in the magnitude of the solid delamination flux, s,', the average solid fraction, '̄, the
inverse boundary layer length, 2e, and the effective end point viscosity, %s,e∕%s,0, are shown in Figure 10 as
a function of the bulk liquid composition, C̄.

The evolution of the concentration of light impurity in the liquid interior, C̄(t), is difficult to constrain with-
out a simplifying model of the growth and deformation of the mushy crust. The interstitial fluid may remain
within the mushy layer during delamination and subsequent foundering, with the implication that the bulk
liquid composition remains unchanged throughout planetesimal solidification, C̄ ≃ constant. In this case,
while the formation of a mushy layer alters the rheological properties of the crust, and hence the solid flux,
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Figure 11. (a) The evolution of the crustal thickness, a(t) (solid line), and core radius, b(t) (dashed line) for initial bulk
liquid compositions C̄(0) = 10−4 wt% (blue), 10−2 wt% (green), 0.024 wt% (red), 1 wt% (black), and 30 wt% (pink).
(b) The evolution of the bulk liquid concentration from the initial value, C̄(0), to the eutectic value, C̄E (indicated by
the dashed horizontal lines). Note that C̄ → C̄E extremely rapidly, within ∼ 400 years, for C̄(0) = 30 wt%.

these properties remain constant through the planetesimal evolution such that the dynamics are broadly
comparable to the case of pure solidification, C̄ = 0 wt%. Conversely, when the interstitial fluid is expelled
from the mushy layer either on delamination or through compaction during solid core growth, the bulk
composition of the liquid evolves. Here we assume (for illustrative purposes) that all the interstitial fluid is
expelled from the mushy layer throughout the deformation process and that this compositionally enriched
fluid is rapidly mixed throughout the fluid core. If the mushy diapirs compact, expelling their buoyant
interstitial fluid as they form the core, then we may model the growth of the compacted core by

#s4+b2 )b
)t = 4+(R − a)2Fs, (73)

or, written in a manner analogous to equation (38), by

)b
)t = "

R
(R − a

b
)2

(1 − a∕R)1∕3S,'. (74)

The light, compositionally enriched material released on compaction readily mixes with the bulk liquid
driving an evolution of the bulk concentration, C̄(t). If all the light incompatible elements are efficiently
rejected on compaction, and rapidly stirred by delamination events, then the bulk concentration may be
simply related to its initial value by

4
3+

[
(R − a)3 − b3] C̄(t) = 4

3+R3C̄(0), (C̄ < CE) (75)

or equivalently as

C̄ =
{

C̄(0)∕
[
(R − a)3 − b3] (R − a)3 − b3 > C̄(0)∕CE

CE (R − a)3 − b3 < C̄(0)∕CE
. (76)

Here we note that when the liquid concentration C̄ → CE the solid formed is again pure (and of the eutectic
concentration), and the dynamics of delamination are described by those discussed in section 2. The results
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Figure 12. (a) The final crustal thickness as a function of the initial bulk concentration, C̄(0), and (b) the total time for
solidification. All calculations are for radius R = 150 km. The colored dots indicate the exemplar solutions for
C̄(0) = 10−4, 10−2, 0.024, 1, 30.

of the compacting core model are shown in Figures 11 and 12. Figure 11a shows the fractional thickness of
the crust (solid) and core (dashed) over time for five different initial values of the bulk concentration, C̄(0),
and Figure 11b shows the corresponding trajectories in fluid composition, C̄(t). It is worth noting that for
finite initial concentration (C̄ ≠ 0 wt%) all models finish their evolution with a eutectic composition liquid,
though those cases with higher initial composition (C̄(0)) spend proportionally longer with C̄ = CE. This is
perhaps most clearly seen at intermediate concentrations (e.g., C̄ = 1 wt% in Figure 11a) where the initial
crustal growth, a(t), is determined by the thermal, and then mushy, modes of delamination followed by a
dramatic reduction in the growth rate as C̄ = CE signifying the onset of the eutectic mode of delamination. It
is also worth noting that in the limit C̄(0) → 0 wt% the model for pure iron discussed in section 2 is recovered
exactly.

This change in overall dynamics with initial concentration, C̄(0), is also reflected in the final crustal
thickness and the total time for solidification plotted in Figure 12. Again, for very low bulk impurity concen-
trations, C̄(0) ≲ 10−3 wt%, the pure iron evolution is recovered exactly. As the initial impurity concentration
increases, the time for final solidification initially increases (as expected), and the final thickness of the crust
relative to the core also increases. Both effects arise because for larger concentrations, where greater time is
spent with ⋆ <  < E, the result is a weaker time-averaged delamination flux dominated by the mushy
mode of delamination, and hence a longer solidification time and smaller final core radius (thicker crust).
This trend is reversed for large enough initial bulk concentrations, since the period during which the bulk
concentration is at the eutectic, C̄ = CE (see, e.g., C̄ = 0.024 wt%, red curve in Figure 11), is extended result-
ing in a larger time-averaged delamination flux. In an extreme case, the compositional and crustal evolution
may at all times be dominated by eutectic mode of delamination (C̄ = 30 wt% in Figure 11).

The addition of impurities thus affects the detailed dynamics of the delamination flux and the timescales of
solidification but plays a relatively minor role in the evolution of the buoyancy flux available for driving a
magnetic field. Following the previous analysis, we find that for all initial bulk concentrations considered the
magnetic Reynolds number is always sufficiently large to suggest that strong magnetic fields are produced
by the delamination flux as shown in Figure 13a. Similarly, the values of the local Rossby number suggest
that these fields are multipolar, consistent with the observations of the IVA meteorites.
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Figure 13. (a) The magnetic Reynolds number is plotted along with the boundaries for magnetic field generation on
small (Rm > 10) and large (Rm > 40) bodies and (b) the local Rossby number is plotted along with the boundary
between dipolar and multipolar dynamos (Rol > 0.12, black dashed line), in both figures for initial concentrations
C̄(0) = 10−4, 10−2, 0.024, 1, 30. These results suggest that for all concentrations considered, a strong,
multipolar magnetic field should be prevalent during the course of planetesimal solidification.

4. Discussion and Conclusions
We have presented simplified models of the rapid solidification of unmantled asteroid cores that crystallized
from the surface inward. Paleomagentic measurements of the IVA meteorites indicate that intense, direc-
tionally varying fields were generated on such bodies. These observations present a significant challenge
as top-down solidification cannot generate a dynamo through the same mechanism as the cores of much
larger bodies which solidify from the bottom up. Here we have suggested that delamination of a weak, warm
boundary layer at the base of an inwardly crystallizing metallic crust at the surface of metallic asteroids cre-
ates a buoyancy flux that is sufficient to generate a dynamo with intense, directionally varying magnetic
fields and to record those fields in the colder solid crust above.

This scenario most closely resembles the modeling of Scheinberg et al. (2016) who posited the detachment
of dendrites and rate of growth and melting of iron crystals in the liquid core as the most potent driver
of dynamo activity and magnetic fields in unmantled cores. In that study, while the possibility of delami-
nation was raised, the detailed numerical modeling instead considered cumulate formation of unattached
dendrites within the liquid core, which rapidly descended to form the inner core. Here, we instead focus on
macroscopic delamination, such that the viscosity structure of the crust is an important factor that crucially
determines the rates of convective mixing through a buoyancy flux driven by delamination. We consider two
main drivers of the buoyancy flux with the potential for dynamo generation: thermal convection driven by
the difference between the freezing temperature of iron and the mean temperature of the liquid core, and
the delamination flux of the weak base of the crust. Conservation of energy at the evolving boundary results
in a relatively simple, modified Stefan model for solidification, thermal convection, and delamination. The
results of this model suggest that thermal buoyancy rapidly (within ∼ 1, 000 years) becomes negligible.
Although the cooling rates of the IVA iron meteorites are fast compared to those of other iron meteorite
groups (Goldstein et al., 2009), they still cooled on the order of thousands to hundreds of degrees per mil-
lion years and so could not have recorded this transient field. Instead, we find that viscous delamination of a
metallic crust is sufficient to drive magnetic field over much of the ∼ 10-Ma lifetime of a Psyche-sized body
(e.g., of radius R = 150 km) and so is far more likely to be the origin of the remanent magnetization car-
ried by the IVA iron meteorites. Moreover, we predict that this field was intense and multipolar, matching
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the properties of the magnetic field inferred from paleomagnetic measurements of the IVA iron meteorites
(Bryson et al., 2017), and this model can also explain the inward crystallization trends observed in this mete-
orite group. We therefore suggest that the major driver of dynamo activity in unmantled cores could have
been the delamination of inwardly crystallizing metallic crusts.

The presence of light, insoluble impurities, such as sulfur, results in a mushy (sometimes referred to as
dendritic) zone at the base of the crust where light impurities rejected during solidification stagnate. The net
effect of such a mushy, partially solid zone is to further reduce the effective viscosity at the base of the crust.
We suggest that this leads to two distinct forms of delamination: a broader thermal mode active at very low
compositions that is commensurate with the thermal structure at the base of the crust and a much narrower
and weaker mushy mode active at higher concentrations that is associated with the region of lower solid
fraction. While these two modes alter the details of delamination, their effect is relatively minor on either
the magnitude of magnetic field generation or the duration of solidification. Their primary impact may be
instead on the compositional stratification of the solidified core. If solute is ejected from the compacting
diapirs that form the solid core of the planetesimal, this results in a gradual buildup of concentration in the
liquid as the planetesimal solidifies, driving the bulk liquid concentration to the eutectic in all cases. This
suggests a third, eutectic mode of delamination, again controlled by the thermal structure, now of a solid
eutectic-composition crust. It also suggests that most planetesimals should have nearly pure crust and core,
with a eutectic composition annulus in the interior (the width of which depends on the initial bulk liquid
composition and the radius). It is this compositional structure, along with the commensurate predictions
of the thermal structure and magnetic field intensities, that provide the strongest testable hypotheses and
which may be addressed by the upcoming Psyche mission.

References
Asphaug, E., Agnor, C. B., & Williams, Q. (2006). Hit-and-run planetary collisions. Nature, 439, 155–160.
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albillos, J., Kronast, F., Kasama, T., Alimadadi, H., et al. (2015). Long-lived magnetism from

solidification-driven convection on the Pallasite parent body. Nature, 517, 472–475. https://doi.org/10.1038/nature14114
Bryson, J. F. J., Weiss, B. P., Harrison, R. J., Herrero-Albillos, J., & Kronast, F. (2017). Paleomagnetic evidence for dynamo activity driven

by inward crystallisation of a metallic asteroid. Earth and Planetary Science Letters, 472, 152–163.
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., Shuster, D. L., Ebel, D., & Gattacceca, J. (2011). Magnetic evidence for a partially differ-

entiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences, 108, 6386–6389. https://doi.org/10.1073/
pnas.1017165108

Chabot, N. L. (2004). Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochimica et Cosmochimica Acta, 68,
3607–3618.

Christensen, U. R. (2015). Iron snow dynamo models for Ganymede. Icarus, 247, 248–259.
Davaille, A., & Jaupart, C. (1993). Transient high-Rayleigh-number thermal convection with large viscosity variations. Journal of Fluid

Mechanics, 253, 141–166.
Dwyer, C. A., Stevenson, D. J., & Nimmo, F. (2011). A long-lived lunar dynamo driven by continuous mechanical stirring. Nature, 479,

212–214.
Ehlers, E. G. (1972). The interpretation of geological phase diagrams. San Francisco, CA: W. H. Freeman.
Elkins-Tanton, L. T., Weiss, B. P., & Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals. Earth and Planetary Science

Letters, 305, 1–10.
Frost, H. J., & Ashby, M. F. (1982). Deformation-mechanism maps, the plasticity and creep of metals and ceramics. Oxford: Pergamon Press.
Fu, R. R., Weiss, B. P., Shuster, D. L., Gattacceca, J., Grove, T. L., Suavet, C., et al. (2012). An ancient core dynamo in asteroid Vesta. Science,

338, 238–241.
Ghosh, A., & McSween, H. Y. Jr (1998). A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus,

134, 187–206.
Goldstein, J. I., Scott, E. R. D., & Chabot, N. L. (2009). Iron meteorites: Crystallization, thermal history, parent bodies and origin.

Geochemistry, 69(4), 293–325.
Haack, H., Rasmussen, K. L., & Warren, P. H. (1990). Effects of regolith/megaregolith insulation on the cooling histories of differentiated

asteroids. Journal of Geophysical Research, 95(B4), 5111–5124.
Haack, H., & Scott, E. R. D. (1992). Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97(E9),

14,727–14,734.
Hanus, J., Marchis, F., & Durech, J. (2013). Sizes of main-belt asteroids by combining shape models and Keck adaptive optics observations.

Icarus, 226, 1045–1057.
Hauck, S. A. II, Aurnou, J. M., & Dombard, A. J. (2006). Sulfur's impact on core evolution and magnetic field generation on Ganymede.

Journal of Geophysical Research, 111, E09008. https://doi.org/10.1029/2005JE002557
Hevey, P. J., & Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics

and Planetary Science, 41(1), 95–106.
Howard, L. N. (1964). Convection at high Rayleigh number. In H. Görtler & P. Sorger (Eds.), Applied Mechanics, Proceedings of the 11th

International Congress of Applied Mechanics (pp. 1109–1115). Berlin, Germany: Springer-Verlag.
Huppert, H. E., & Worster, M. G. (1992). Vigorous motions in magma chambers and lava lakes. In D. Yuen (Ed.), Chaotic Processes in

Geological Sciences (pp. 141–174). New York: Springer-Verlag.
Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, H., et al. (2009). Hf-W chronology of the accretion and early evolution

of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 5150–5188.

Acknowledgments
J. A. N. is partly funded by the
University Research Fellowship from
the Royal Society. F. N. acknowledges
support from the NASA-EW program.
All figure data are available from the
Cambridge data repository (https://
doi.org/10.17863/CAM.37924).

NEUFELD ET AL. TOP-DOWN SOLIDIFICATION OF ASTEROIDS 25

https://doi.org/10.1038/nature14114
https://doi.org/10.1073/pnas.1017165108
https://doi.org/10.1073/pnas.1017165108
https://doi.org/10.1029/2005JE002557
https://doi.org/10.17863/CAM.37924
https://doi.org/10.17863/CAM.37924


Journal of Geophysical Research: Planets 10.1029/2018JE005900

Laneuville, M., Wieczorek, M. A., Breuer, D., Aubert, J., Morard, G., & Rückriemen, T. (2014). A long-lived lunar dynamo powered by core
crystallization. Earth and Planetary Science Letters, 401, 251–260.

Le Bars, M., Wieczorek, M. A., Karatekin, Ö., Cébron, D., & Laneuville, M. (2011). An impact-driven dynamo for the early Moon. Nature,
479, 215–218.

Mei, S., Bai, W., Hiraga, T., & Kohlstedt, D. L. (2002). Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous
conditions. Earth and Planetary Science Letters, 201, 491–507.

Molnar, P., Houseman, G. A., & Conrad, C. P. (1998). Rayleigh-Taylor instability and convective thinning of mechanically thickened
lithosphere: Effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophysical
Journal International, 133, 568–584.

Neumann, W., Breuer, D., & Spohn, T. (2014). Differentiation of Vesta: Implications for a shallow magma ocean. Geophysical Research
Letters, 395, 267–280.

Nimmo, F. (2009). Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.
https://doi.org/10.1029/2009GL037997

Olson, P., & Christensen, U. R. (2006). Dipole moment scaling for convection-driven planetary dynamos. Earth and Planetary Science
Letters, 250, 561–571.

Opeil, C. P., Consolmagno, G. J., & Britt, D. T. (2010). The thermal conductivity of meteorites: New measurements and analysis. Icarus,
208(1), 449–454.

Riley, D. S., Smith, F. T., & Poots, G. (1974). The inward solidification of spheres and circular cylinders. International Journal of Heat and
Mass Transfer, 17, 1507–1516.

Rückriemen, T, Breuer, D., & Spohn, T. (2014). Key characteristics of the Fe-snow regime in Ganymede's core. Lunar and Planetary Science
Conference, 45, 2454.

Scheinberg, A., Elkins-Tanton, L. T., Schubert, G., & Bercovici, D. (2016). Core solidification and dynamo evolution in a mantle-stripped
planetesimal. Journal of Geophysical Research: Planets, 121, 2–20. https://doi.org/10.1002/2015JE004843

Scheinberg, A., Soderlund, K. M., & Schubert, G. (2015). Magnetic field generation in the lunar core: The role of inner core growth. Icarus,
254, 62–71.

Sterenborg, M. G., & Crowley, J. W. (2013). Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos.
Physics of the Earth and Planetary Interiors, 214, 53–73.

Tarduno, J. A., Cottrell, R. D., Nimmo, F., Hopkins, J., Voronov, J., Erickson, A., et al. (2012). Evidence for a dynamo in the main group
pallasite parent body. Science, 338, 939–942.

Tkalcec, B. J., Golabek, G. J., & Brenker, F. E. (2013). Solid-state plastic deformation in the dynamic interior of a differentiated asteroid.
Nature Geoscience, 6, 93–97.

Vilim, R., Stanley, S., & Hauck, S. A. II (2010). Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field.
Journal of Geophysical Research, 115, E11003. https://doi.org/10.1029/2009JE003528

Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L., Stanley, S., Lima, E. A., & Carporzen, L. (2008). Magnetism on the angrite parent body and
the early differentiation of planetesimals. Science, 322, 713–716. https://doi.org/10.1126/science.1162459

Weiss, B. P., & Elkins-Tanton, L. T. (2013). Differentiated planetesimals and the parent bodies of chondrites. Annual Review of Earth and
Planetary Sciences, 41(1), 529–560. https://doi.org/10.1146/annurev-earth-040610-133520

Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P., & Christensen, U. R. (2010). Paleomagnetic records of meteorites and early planetesimal
differentiation. Space Science Reviews, 152, 341–390.

Wettlaufer, J. S. (2001). The Stefan problem: Polar exploration and the mathematics of moving boundaries. In C. Hammerl, R. Lenhard,
R. Steinacker, & P. Steinhauser (Eds.), Die Zentralanstalt für Meteorologie und Geodynamik, 1851-2001, 150 Jahre Meteorologie und
Geophysik in 'Osterreich (pp. 420–435). Graz, Austria: Styria Verlag.

Williams, Q. (2009). Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores.
Earth and Planetary Science Letters, 284, 564–569.

Worster, M. G. (1997). Convection in mushy layers. Annual Reviews of Fluids Mechanics, 29, 91–122.
Yang, J., & Goldstein, J. I. (2006). Metallographic cooling rates of the IIIAB iron meteorites. Geochimica et Cosmochimica Acta, 70,

3197–3215.
Yang, J., Goldstein, J. I., & Scott, E. R. D. (2007). Iron meteorite evidence for early formation and catastrophic disruption of protoplanets.

Nature, 446, 888–891.
Yang, J., Goldstein, J. I., & Scott, E. R. D. (2008). Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica

Acta, 72, 3043–3061.
Yang, J., Goldstein, J. I., & Scott, E. R. D. (2010). Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica

et Cosmochimica Acta, 74, 4471–4492.

NEUFELD ET AL. TOP-DOWN SOLIDIFICATION OF ASTEROIDS 26

https://doi.org/10.1029/2009GL037997
https://doi.org/10.1002/2015JE004843
https://doi.org/10.1029/2009JE003528
https://doi.org/10.1126/science.1162459
https://doi.org/10.1146/annurev-earth-040610-133520

	Abstract

