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We present a theoretical and experimental study of the propagation of gravity currents
in porous media with variations in the topography over which they flow, motivated
in part by the sequestration of carbon dioxide in saline aquifers. We consider cases
where the height of the topography slopes upwards in the direction of the flow and is
proportional to the nth power of the horizontal distance from a line or point source of
a constant volumetric flux. In two-dimensional cases with n> 1/2, the current evolves
from a self-similar form at early times, when the effects of variations in topography
are negligible, towards a late-time regime that has an approximately horizontal upper
surface and whose evolution is dictated entirely by the geometry of the topography.
For n < 1/2, the transition between these flow regimes is reversed. We compare our
theoretical results in the case n = 1 with data from a series of laboratory experiments
in which viscous glycerine is injected into an inclined Hele-Shaw cell, obtaining
good agreement between the theoretical results and the experimental data. In the case
of axisymmetric topography, all topographic exponents n > 0 result in a transition
from an early-time similarity solution towards a topographically controlled regime
that has an approximately horizontal free surface. We also analyse the evolution over
topography that can vary with different curvatures and topographic exponents between
the two horizontal dimensions, finding that the flow transitions towards a horizontally
topped regime at a rate which depends strongly on the ratio of the curvatures along the
principle axes. Finally, we apply our mathematical solutions to the geophysical setting
at the Sleipner field, concluding that topographic influence is unlikely to explain the
observed non-axisymmetric flow.
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1. Introduction
Gravity-driven flows in porous media have an extensive range of applications in the

Earth sciences and in industry. These include the flow of groundwater, oil and gas
through porous geological formations. Our interest here stems principally from the
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developing technology of carbon-dioxide (CO2) sequestration, whereby carbon dioxide
is injected at high pressure into a porous aquifer deep underground (Orr 2009). In
such environments, the CO2 is of lower density than the ambient brine, causing it
to rise under the influence of buoyancy and eventually spread below an impermeable
caprock. The feasibility of this technology depends on the containment of CO2 within
the aquifer. In this article, we explore the fluid mechanics that governs the spread
of CO2, focusing on understanding the influence of variations in the height of the
overlying caprock on the dynamics of the flow.

At the Sleipner field, where this technology is currently in operation, the vertical
position of the caprock varies gradually by a few metres over horizontal scales
of hundreds of metres, forming a dome-shape structure centred on the point of
injection. Above the point of injection, where the topography of the caprock is
effectively horizontal, the leading-order propagation of the current can be described
by an axisymmetric similarity solution (Lyle et al. 2005; Bickle et al. 2007). Vella
& Huppert (2006) showed that this similarity solution applies at early times even if
the topography is sloped to any angle of inclination. At later times, the influence
of variations in the topography cause the current to depart from axisymmetric flow.
At Sleipner, the currents of CO2 have been observed to deviate significantly from
axisymmetric flow and it has been proposed that these deviations are caused by the
variations in the topography (Arts et al. 2008; Boait et al. 2012). Boait et al. (2012)
also suggested that the topography may cause the flow to transition towards a regime
in which the surface of the current is close to horizontal. Our focus in this paper is
to address the evolution towards such a regime, in which the extent of the current
ultimately becomes controlled only by geometry and the total volume of fluid injected.

To date, theoretical studies of gravity currents in porous media have typically
focused on cases where the topography is horizontal (Huppert 1986; Bear 1988;
Barenblatt 1996; Lyle et al. 2005; Mitchell & Woods 2006; Nordbotten & Celia
2006; Hesse et al. 2007) or of constant slope (Huppert & Woods 1995; Vella &
Huppert 2006; Gunn & Woods 2011; de Loubens & Ramakrishnan 2011). By applying
thin-film approximations, these authors show how the predominantly parallel flow can
become driven either by gradients in hydrostatic pressure or by the component of
gravity parallel to the slope. The influence of three-dimensional topographic variations
has been considered by Golding & Huppert (2010), who analysed the flow in a
channel of uniform cross-section. These authors calculated similarity solutions to
their model equations, which are derived under the presupposition that the flow is
unidirectional and that the vertical position of the interface does not vary across the
width of the channel.

Here, we extend these earlier studies by considering the case of topography that
confines the flow and by allowing for three-dimensional topography that varies in
the horizontal dimensions, forming a basin. In such configurations, a new feature
of convergence towards states controlled by the variations in the topography can
occur, and we investigate this in the context of the two- and three-dimensional flows
produced at a constant rate by a line or point source, respectively. A focus of our
analysis is to determine the time scales associated with the transitions towards such
topographically controlled states. We compare our theoretical predictions with data
from a series of laboratory experiments, extending previous experimental studies
(Huppert & Woods 1995; Vella & Huppert 2006; Golding & Huppert 2010) by
addressing the case of topography that slopes upwards in the direction of the flow.

We begin in § 2 by reviewing our model of a thin gravity current in a porous
medium with variations in the topography along which it flows. We proceed in
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FIGURE 1. Schematic of a gravity current of height h(x, t) and thickness H(x, t) in an
infinitely deep porous medium over variable topography described by d(x).

§ 3 to calculate solutions to the model equations in the case of a two-dimensional
current produced by a line source. The theoretical predictions are then compared
with the results of a series of laboratory experiments. In § 4, we consider the three-
dimensional flow due to a point source, focusing on cases where the topography
is either axisymmetric or paraboloidal. Finally, in § 5 we apply our mathematical
solutions to the geophysical setting of the Sleipner field, with the aim of assessing the
importance of topographic variations on the propagation of the CO2.

2. Theoretical model
Consider the gravity-driven propagation of an incompressible viscous fluid of

density ρ and dynamic viscosity µ in a porous medium of homogeneous porosity
φ and permeability k, which flows in the effectively infinite region above a rigid,
impermeable boundary given by z = d(x), where x ≡ (x, y) (see figure 1). Let
z = h(x, t) and H(x, t) ≡ h − d denote the height of the interface of the current
(assumed sharp) and the thickness of the current, respectively. We assume that both
the gradient of the lower boundary and that of the interface of the current remain
small at all times, so ∇h and ∇d � 1, where we use ∇ to denote the horizontal
gradient operator. Under these assumptions, the flow is predominantly horizontal and,
by integration of the vertical Darcy equation, the pressure can be approximated as
hydrostatic to leading order (Huppert 1986; Bear 1988; Huppert & Woods 1995; Lyle
et al. 2005; Vella & Huppert 2006; Neufeld, Vella & Huppert 2009; Golding &
Huppert 2010), so

p∼ p0(x, t)− ρg(z− h) (∇d,∇h� 1), (2.1)

where p0(x, t) is a constant of integration representing the pressure along the interface
and g is the acceleration due to gravity. The assumption of hydrostatic pressure (2.1)
can be expected to hold uniformly throughout the currents described here, save in a
narrow region around the point of injection (Lyle et al. 2005; Pegler et al. 2013).

In the limit where the depth of the current is much less than the depth of the aquifer
(e.g. Bear 1988; Huppert & Woods 1995; Barenblatt 1996; Lyle et al. 2005; Vella &
Huppert 2006; Golding & Huppert 2010), the pressure in the ambient fluid can be
approximated as a constant p0 to leading order, in which case (2.1) simplifies to

p= p0 − ρg(z− h). (2.2)

We also focus on this case, which can be expected to provide a good approximation
to many geophysical settings (Sleipner being one proposed example; Bickle et al.
2007), and as an instructive example on which to begin fluid mechanical analysis of
non-trivial topography.
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By substituting (2.2) into the horizontal component of the Darcy equation, we find
that the horizontal velocity is independent of z and given by

u=−U∇h, (2.3)

where U ≡ ρgk/µ is the natural buoyancy velocity of the fluid. Substituting (2.3) into
the depth-integrated form of the continuity equation, we obtain the governing nonlinear
diffusion equation

φ
∂h

∂t
= U∇ · (H∇h). (2.4)

In the case of a broad, linear slope (d = ax), Vella & Huppert (2006) showed how
the contribution to the divergence of flux in (2.4) due to the along-slope component
of gravity, U∇H · ∇d, eventually dominates the dynamics of the current downstream
of the source. Unidirectional flows in which this component of gravity is assumed
to be dominant from the outset have been considered by Huppert & Woods (1995)
and Golding & Huppert (2010), where (2.4) reduces to a simple wave equation. In
cases where the topography slopes upwards in the direction of the flow, such as those
addressed in this paper, the contribution to (2.4) due to the along-slope component
of gravity can, by contrast, never become dominant. This reflects the fact that the
along-slope component of gravity can only drive the current downhill. In order to flow
uphill, the current must instead rely on the development of gradients in hydrostatic
pressure, represented by the diffusive contribution UH∇2h to the right-hand of side of
(2.4).

In common with previous models (e.g. Huppert 1986), we assume that the frontal
thickness is zero and that its position evolves kinematically according to

H = 0, φẊ =−U∇h (x= X), (2.5a,b)

where X(t) denotes a location on the edge of the current and the dot denotes d/dt.

3. Line source
We begin by considering the two-dimensional flow over topography described by

a power law d(x) = axn, where n > 0 is the topographic exponent and a > 0 is the
topographic scale. This expression for d describes a class of geometries, allowing for
convex surfaces (n > 1), linear slopes (n = 1) and concave surfaces (n < 1). The flow
of the current is governed by the two-dimensional form of (2.4), namely,

φ
∂h

∂t
= U

∂

∂x

(
H
∂h

∂x

)
where H ≡ h− axn. (3.1)

We consider solutions to this equation subject to (2.5a,b) and the source condition

−φUH
∂h

∂x
= q (x= 0), (3.2)

which implies a delivery of fluid at the constant volumetric rate per unit width q,
assumed to initiate at t = 0.

By considering the scaling h∼ d = axn in (3.1) and (3.2), we determine the scales

L ≡
(

q

a2φU

)1/(2n−1)

, T ≡ φL 2−n

aU
, H ≡ aL n, (3.3a,b,c)
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which characterize the horizontal extent, time and thickness at which the thickness of
the current becomes comparable to the change in the height of the topography across
its extent. Note that the length scale (3.3a) cannot be formed if n = 1/2 or a = 0,
which reflects the existence of similarity solutions in these cases. For other values of
n and a, the flow cannot be described by a single similarity solution that is valid for
all time, instead undergoing a transition between certain flow regimes over a length
scale characterized by (3.3a), as we shall explore below. The corresponding time scale
of this transition (3.3b) is notably independent of the entry flux q in cases where the
topography is parabolic (n= 2).

We use (3.3a,b,c) to make the system dimensionless according to

x≡L x̂, t ≡T t̂, (h,H)≡H (ĥ, Ĥ). (3.4)

In terms of (3.4), and with hats dropped, (2.5a,b) become

∂h

∂t
= ∂

∂x

(
H
∂h

∂x

)
where H ≡ h− xn, (3.5a,b)

and conditions (3.2) and (2.5a,b) become

−H
∂h

∂x
= 1 (x= 0), (3.6)

H = 0, Ẋ =−∂h

∂x
(x= X), (3.7a,b)

respectively. Equations (3.5)–(3.7) are together consistent with the volume constraint∫ X

0
H dx= t. (3.8)

The dimensionless system above depends only on the topographic exponent n.
With horizontal topography (n = 0), Huppert (1986) showed that (3.5)–(3.8) support

a similarity solution of the form

H = t1/3f (x/X), X = ξN t2/3, (3.9a,b)

where ξN ≈ 1.48 and f (x/X) is a function that can be determined numerically from the
solution of an ordinary differential equation. As noted above, however, non-horizontal
slopes (n > 0) do not generally permit such a similarity solution (with the unique
exception of n = 1/2, discussed later). For such n, we instead solve the system
(3.5)–(3.7) numerically using a partially implicit, finite-difference scheme of second
order, in which the coefficient of diffusion in (3.5) is treated explicitly, with variable
time steps and initialized using early-time asymptotic solutions obtained below. In our
numerical scheme, the time-dependent domain of the current [0,X(t)] is transformed
to a steady domain by recasting the system of equations in terms of the scaled
coordinate system (ζ, t), where ζ ≡ x/X.

A suite of illustrative numerical solutions obtained in this manner for n= 1/4, 1/2, 1
and 2 are shown as thin, solid curves in figures 2(a)–2(d), respectively, and the
corresponding evolutions of the frontal positions are shown in the last three of these
cases in figure 3. For both n = 1 and 2, the flow transitions from the similarity
solution (3.9) towards a regime with an approximately horizontal free surface. With
n = 1/4, the transition between these two flow regimes is reversed; with n = 1/2,
neither of these regimes applies in any asymptotic limit of time. We proceed to
analyse these transitions.
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FIGURE 2. The numerically obtained evolution of the height h(x, t) of the two-dimensional
current produced by a line source along x= 0, shown at dimensionless times t = 0.125, 0.5, 2
and 8, for topographic exponents of (a) n = 1/4, (b) 1/2, (c) 1 and (d) 2. The similarity
solution (3.9), which provides a late-time asymptote in cases with n < 1/2, is shown in
(a) at t = 8 (dashed). The asymptote passes through the lower boundary (bold) because
its construction does not involve an exact imposition of the condition of vanishing
frontal thickness (3.7a). The topographically controlled state composed of the leading-order
horizontally topped state along with its first-order correction (3.13) is shown in both (c) and
(d) at t = 8 (dotted). Again, the asymptote passes through the lower surface because (3.7a) is
only imposed to first order as part of its construction.

For topographic exponents of n > 1, there is a region close to the source
(0 6 x 6 X � 1) where the topography can be treated as horizontal at early times
(t � 1). Hence, the similarity solution (3.9) that describes the flow in the case of
horizontal topography can be expected to provide an early-time asymptote for the flow
if n > 1. This is confirmed by the fact that our numerically obtained frontal position
X(t) in the case n = 2 approaches that of the similarity solution (3.9b) in the limit
t→ 0, illustrated in figure 3. In fact, (3.9) describes the early-time flow more generally
for n > 1/2, which is perhaps surprising because this range includes some values
(1/2 < n < 1) for which the topography approaches an infinite slope near the source.
For such n, (3.9) provides an early-time asymptote because the thickness of the current
H implied by (3.9a) still remains asymptotically larger than the total change in the
height of the topography experienced by the current, d(X)− d(0). That is,[

H = t1/3f (x/X)
]� [d(X)− d(0)= ξ n

N t2n/3
]

(t→ 0) (3.10)

if and only if n > 1/2. Like the case n = 2, the approach of the frontal position X(t)
towards that implied by the early-time asymptote (3.9b) is illustrated by our numerical
solution for n= 1 in figure 3.

In the critical case n = 1/2, both sides of (3.10) are of equal order at all times,
so the asymptotic relationship of (3.10) does not apply. The similarity solution (3.9)
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FIGURE 3. The evolution of the frontal position X(t) for n = 0 (bold), n = 1/2 (dashed) and
n= 1 and 2 (each thin) as a function of time. The cases n= 0 and n= 1/2 are each described
analytically by a similarity solution of the form (3.9b), with different prefactors ξN ≈ 1.48 and
1.21, respectively. The solutions for n = 1 and 2, which we have determined numerically, are
seen to evolve from the similarity solution (3.9b) at early times towards the asymptote (3.11b)
(dotted) at late times. This illustrates a transition towards a regime in which the top surface of
the current has become close to horizontal.

cannot therefore provide an asymptote for the flow in any limit of time. Instead, the
non-existence of the length scale (3.3a) in this case indicates that the flow can be
described exactly by a different similarity solution, of identical form to (3.9), but with
a different function f for the thickness distribution and the smaller frontal coordinate
ξN ≈ 1.21. For this unique case, shown by our numerical solution in figure 2(b), the
influence of hydrostatic spreading and topographic variations are comparable at all
times.

For yet more concave surfaces (n < 1/2), the asymptotic relationship of (3.10)
instead holds in the opposite limit of large time (t→∞), implying that the similarity
solution (3.9) provides a late-time asymptote for the flow. The late-time convergence
towards (3.9) is illustrated for the case n = 1/4 in figure 2(a), which shows the
approach of our numerical solution (solid curves) towards the similarity solution (3.9)
(dashed). Note that the similarity solution passes through the lower surface because it
is only a leading-order asymptote and does not satisfy the condition of a vanishing
frontal thickness (3.7b) exactly.

The two cases n = 1 and 2 were seen in figure 2(c,d) to converge at late
times towards a state with an approximately horizontal upper surface. As this
transition occurs, the development of an approximately horizontal top implies that
the propagation of the extent of the current eventually becomes determined only by
geometry and the total volume of injected fluid (3.8). An explicit consideration of the
fluid-mechanical balance between gradients in hydrostatic pressure and viscous stresses
underlying the self-similar, early-time flow described by (3.9) are no longer required
in order to determine the leading-order frontal position. By setting the height of the
current to be purely horizontal, so h = h0(t), applying the volume constraint (3.8) and
using (3.7a), we determine the height and extent of the horizontally topped regime as

h= h0(t)≡
[
(n+ 1)

n
t

]n/(n+1)

, X = X0(t)≡
[
(n+ 1)

n
t

]1/(n+1)

, (3.11a,b)
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FIGURE 4. Characteristic dimensionless times t1 and t2, defined by (3.12a,b), at which the
flow transitions from the early-time similarity solution (3.9) to the late-time horizontally
topped regime (3.11) for n > 1/2; the transition is reversed for n < 1/2. Times at which
the flow is controlled by hydrostatic spreading (white) and topography (heavily shaded)
are separated by an intermediate region (lightly shaded) in which both hydrostatic and
topographic controls are comparable.

respectively. The late-time convergence of our numerical solutions towards the
spreading rate implied by (3.11b) is illustrated for the two cases of n = 1 and 2
(both of which satisfy n> 1/2) in figure 3, where the relationship (3.11b) is shown as
a dotted line.

The characteristic dimensionless times at which the frontal position departs from
(3.9b) and converges towards (3.11b) can be seen to vary significantly between the two
cases of n = 1 and 2. To illustrate this variation across n in more detail, we consider
the times t1 and t2 that satisfy

X(t1)= 0.9 ξN t2/3
1 , X(t2)= 0.9 X0(t2), (3.12a,b)

which define the times at which the frontal extent is equal to 90% of that implied by
the similarity solution (3.9) and by the horizontally topped regime (3.11), respectively.
As shown by the solid curves in figure 4, these characteristic transition times are
both order unity for n & 2. However, t1 decreases by an order of magnitude to
the much smaller value t1 ≈ 4 × 10−2 in the case n = 1, indicating that the slope
of the topography has essentially immediate significance at such n. Meanwhile, the
characteristic time of convergence towards the horizontally topped state t2 increases
by an order of magnitude to about t2 ≈ 10 in the case n = 1, implying a much larger
intermediate interval (t2 < t < t1) in which the influence of topographic variations
is significant but not dominant. The duration of this intermediate interval continues
to expand as n is decreased, eventually tending to infinity in the case n = 1/2, as
neither (3.9) nor (3.11) apply at any stage of the evolution at that value. For n < 1/2,
t2 < t1, reflecting the reversal in the order in which the flow transitions between the
hydrostatically and topographically controlled regimes. The time to transition away
from the horizontally topped regime is very short for all n < 1/2, with a maximum
value of t2 ≈ 4 × 10−5 occurring at n ≈ 0.1. In contrast, the characteristic time t1 of
transition towards the similarity solution (3.9a,b) varies significantly between different
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values of n, with a very slow transition (t1→∞) in the limit n→ (1/2)−, but a rapid
transition (t1→ 0) in the limit of near-horizontal topography, n→ 0.

3.1. Convergence towards or departure from topographic control
To explore the evolution of the system towards topographic control (3.11) in more
detail, we consider the evolution of a small perturbation to it. Specifically, we set

h∼ h0(t)[1+ t−αF(η)], X ∼ X0(t)[1+ Kt−β], (3.13a,b)

where α and β are exponents of relative decay (to be determined as functions of n), K
is a constant, η ≡ x/X0(t) and the asymptotic limit is that of t−α→ 0 or, equivalently,
t→∞ if α > 0 and t→ 0 if α < 0. The function F(η) in (3.13a) represents the
leading-order shape of the current, as a perturbation from the horizontally topped state
(3.11a). By substituting (3.13a,b) into (3.5) and (3.8), and neglecting higher-order
terms in t−α, we determine that

α = 2n− 1
n+ 1

, N = d
dη

[
(1− ηn)

dF

dη

]
,

∫ 1

0
F dη = 0, (3.14a,b,c)

where N ≡ [n/(n+ 1)]α is a constant. The sign of the exponent of relative decay
(3.14a) is positive if n > 1/2 and negative if n < 1/2, which is consistent with the
respective decay towards or departure from the horizontally topped state (3.11) in
these cases.

The simplified governing equation (3.14b) represents a balance between the large-
scale, uniformly increasing height of the current implied by (3.11a) on its left-hand
side and the small-scale diffusion of the current that supports this increase on its
right-hand side. Integration of (3.14b) subject to a regularity condition on F at η = 1
yields

dF

dη
=−N

1− η
1− ηn

and hence F(η)= F0 + N
∫ 1

η

1− η
1− ηn

dη, (3.15a,b)

where F0 is a constant of integration that can be determined up to quadrature by
applying (3.14c). A particular feature of these solutions, implied directly by (3.15a),
is that the slope of the current increases by a factor of n between the source and the
front of the current, so F′(0) = nF′(1), where we have used a prime here to denote
d/dη. In particular, the slope of the current increases or decreases with η, depending
on whether n is larger than or less than unity, respectively. With a linear slope
(n= 1), the integrals in (3.14c) and (3.15b) can be evaluated analytically to obtain the
closed-form linear solution F = (1/2 − η)/√2. Likewise, the solution in the case of
parabolic topography (n= 2) can be obtained as F =−(2/3){1+ ln[(1+ η)/4]}.

Notably, it has been possible to determine the first-order perturbation to the
thickness given by (3.15b) without any reference to the perturbation to the frontal
position in (3.13b), with K and β still to be determined. By substituting (3.13a,b) into
the condition of vanishing thickness (3.7a), conducting a Taylor expansion in t−β and
balancing the first-order terms, we determine that β = α and

X ∼ X0(t)

(
1+ F(1)

n
t−α
)
. (3.16)

As n→ 0, the prefactor to the first-order correction in (3.16) diverges, which is
consistent with the fact that the horizontally topped state (3.13) never emerges if the
topography is horizontal (n= 0).
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FIGURE 5. Schematic of the experimental Hele-Shaw cell.

As shown by the dotted curves in figure 2(c,d), these first-order corrections
provide good descriptions of the late-time shape of the current, with a faster rate
of converge towards it in the case n = 2 compared to the case n = 1. Note that the
asymptotes slightly overlap the lower boundary because the condition of vanishing
frontal thickness (3.7b) is imposed only to first-order as part of their construction.
The differences in times of transition are consistent with the fact that the rate of
convergence is controlled by the exponent of decay (3.14a), and this increases with n
for n > 1/2. Furthermore, the vanishing of α as n→ 1/2 is consistent with the fact
that the horizontally topped state never emerges in the case n= 1/2.

3.2. Experimental comparison

We have conducted a series of laboratory experiments with which to compare our
theoretical predictions in the case of a linear slope n = 1. In common with previous
experimental studies (e.g. Huppert & Woods 1995; Neufeld et al. 2009), we used a
vertical Hele-Shaw cell to model the two-dimensional evolution of a gravity current in
a porous medium. With w representing the width of the cell, the equivalence between
these flows is given by setting the permeability and porosity equal to k = w2/12 and
φ = 1, respectively.

Our experiments were conducted in two different cells formed of two Perspex
sheets, each 200 cm long and 25 cm high, but with different mean spacings of
w ≈ 1.27 ± 0.05 cm and 0.60 ± 0.01 cm. As shown schematically in figure 5, the
cell was oriented to a slope a from the horizontal. We used glycerine of density
ρ ≈ 1.258 ± 0.002 g cm−3 and viscosity µ ≈ 5.0 to 11.6 g cm−1 s−1 as the working
fluid, which we injected at a constant rate at the lower edge of the cell through a
steel pipe connected to a raised reservoir. The constancy of the rate of injection was
maintained by keeping the head in the reservoir at a constant level. The density of
the glycerine was measured before each experiment using a hydrometer to within
an accuracy of ±0.002 g cm−3 and the viscosity of the glycerine was measured
using a glass U-tube viscometer to an approximate accuracy of ±0.1 g cm−1 s−1,
varying slightly between our experiments owing to differences in water content and
temperature. We recorded the experiment using a camera directed towards the front
of the Hele-Shaw cell, the results of which were analysed afterwards to determine the
evolution of the frontal position X(t) and the entry flux per unit width q by digitally
measuring the length and area of the currents in the photographs, respectively. Taking
into consideration the resolution of our recorded images, the maximum errors in the
digital analysis of the frontal positions were expected to be of the order of 2 cm.
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FIGURE 6. (a) The raw experimental data for the frontal position X(t) recorded in each of
our experiments as a function of time, and (b) the same data scaled by the intrinsic length
and time scales (3.3a,b). The errors in measurement of the frontal position were estimated to
be smaller than the symbols used in (a). In (b), the theoretical prediction is shown as a solid
curve. The two dashed curves indicate the maximum and minimum theoretical predictions
given the tolerances to which we have measured the intrinsic scales L and T .

Experiment a µ
(P)

w
(cm)

q
(cm2 s−1)

Symbol

A 0.040 11.6 1.27 7.2 ×
B 0.074 6.2 1.27 5.9 •
C 0.074 11.9 0.60 2.1 ©

TABLE 1. Parameter values used in our experiments.

Our experimental parameters spanned slopes of a = 0.040 to 0.074, viscosities of
µ = 6.2 to 11.9 P, widths of w = 0.60 to 1.27 cm and input fluxes per unit width
of q = 2.1 to 7.2 cm2 s−1 (see table 1). The evolution of the front of each of our
experimental currents is plotted in figure 6(a) and a time-lapse sequence of images
of experiment B is shown in figure 7. On collapsing the data for the evolution of
the frontal position in terms of our dimensionless variables (3.4) in figure 6(b), we
find excellent agreement with the theoretical prediction (solid). Comparison between
the position of the experimental interface in figure 7 also shows good agreement with
the theoretical prediction (dashed). This provides confirmation that the model gives
an accurate description of the dynamics for topography that slopes upwards in the
direction of the flow.
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FIGURE 7. (Colour online) Sequence of photographs showing the progression of experiment
B at dimensional times (a) t = 20 s, (b) 100 s and (c) 200 s. The theoretical prediction for the
position of the interface of the current is shown as a dashed curve in each photograph.

4. Point source
We explore the influence of three-dimensional topographic variations by considering

topography that can vary in both the x and y directions. Specifically, we consider two
different idealized cases,

d(r)= brn (axisymmetric), (4.1a)
d(x, y)= a|x|m + b|y|n (three-dimensional), (4.1b)

where a, b > 0, corresponding to topography that is axisymmetric or varies with
different power laws between the two horizontal dimensions, respectively. Note that
(4.1a) is a non-trivial special case of (4.1b) only if n= 2 and a= b.

At the origin, we impose the condition of constant injection at a point source,

lim
r→0

[
−(2πφU)rH

∂h

∂r

]
= Q, (4.2)

which implies a radial supply of fluid at the constant volumetric rate Q (cf. Lyle et al.
2005; Vella & Huppert 2006). By considering the scalings h ∼ arn or h ∼ byn in (2.4)
and (4.2), we determine the scales of horizontal length, time and thickness,

L ≡
(

H

b

)1/n

, T ≡ φH (2−n)/n

Ub2/n
, H ≡

(
Q

2πφU

)1/2

, (4.3a,b,c)

respectively. The thickness (4.3c) characterizes the internal thickness of an
axisymmetric gravity current supplied at constant flux over a horizontal surface in a
deep porous medium (Lyle et al. 2005; Vella & Huppert 2006). The length scale (4.3a)
and time scale (4.3b) characterize the extent and time beyond which the topographic
variations in the r- or the y-direction, depending on which of the topographic models
(4.1a,b) is used, have significant influence on the dynamics of the current. In common
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with the time scale in the two-dimensional case (3.3b), that of (4.3b) is independent of
the entry flux when the cross-section of the geometry is parabolic (n= 2).

We use (4.3a,b,c) to make the system dimensionless according to

(x, y)≡L (x̂, ŷ), t ≡T t̂, H ≡H Ĥ. (4.4)

With hats dropped, and in terms of polar coordinates (r, θ), (2.4a,b) become

∂h

∂t
= 1

r

∂

∂r

(
rH
∂h

∂r

)
+ 1

r2

∂

∂θ

(
H
∂h

∂θ

)
, (4.5)

where the thickness and surface height are related in the two cases (4.1a,b) by

H = h− rn (axisymmetric), (4.6a)
H = h− A|x|m − |y|n (three-dimensional), (4.6b)

respectively. Conditions (4.2) and (2.5a,b) become

lim
r→0

(
−rH

∂h

∂r

)
= 1, (4.7)

H = 0, ṙN =−∂h

∂r
(r = R), (4.8a,b)

where R(θ, t) is the radial coordinate of the frontal position. Equations (4.5)–(4.8) are
together consistent with the volume constraint,∫ 2π

0

∫ R

0
rH dr dθ = 2πt. (4.9)

With axisymmetric topography (4.6a), the dimensionless model system above depends
only on the topographic exponent n. With the three-dimensional topography (4.6b), it
also depends on the additional dimensionless parameter

A≡ ab−m/nH (m−n)/n, (4.10)

which measures the relative importance of the variations of the topography between
the x- and y-directions. For cases with equal topographic exponents (m = n), (4.10) is
independent of the fluid-mechanical parameter H , and simplifies to the ratio of the
curvatures of the topography between the x- and y-directions, A= a/b.

4.1. Axisymmetric topography
We begin by considering the axisymmetric case (4.6a), in which there is no variation
in θ and the second term on the right-hand side of (4.5) is identically zero. With
horizontal topography (n = 0), Lyle et al. (2005) showed that the flow can be
described at all times by a similarity solution of the form

H = f (r/R), R= ξN t1/2, (4.11a,b)

where ξN ≈ 1.83 and the function f can be determined numerically from the solution
of an ordinary differential equation. As detailed below, such a similarity solution
cannot be used to describe cases of n > 0 for all time because the influence of
topographic variations changes the flow dynamics over a length scale characterized
by (4.3b). For these cases, we instead solve the system numerically using a scheme
similar to that described in § 3.
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FIGURE 8. The numerically obtained evolution of the height of an axisymmetric current
h(r, t) shown at dimensionless times t = 0.125, 0.5, 2 and 8 for two topographic exponents,
(a) n = 1 and (b) 2. The asymptotic prediction (4.15b) is shown at t = 8 as a dotted curve in
each case. The topography z= d = rn is shown as a bold curve in each case.

Two illustrative numerical solutions for n = 1 and 2 are shown as thin curves in
figure 8(a,b) and the corresponding evolutions of the frontal positions X(t) are each
shown alongside the analytical result (4.11b) for n= 0 in figure 9. Both the numerical
solutions are seen to undergo a similar transition towards a horizontally topped regime
as that seen in cases of the two-dimensional problem with n > 1/2. Likewise, the
similarity solution that applies for horizontal topography (4.11a,b) provides a leading-
order description of the flow in the limit of small time. Again, we can confirm this
mathematically by noting that the thickness of the current H implied by (4.11a) is
negligible at early times compared to the change in the height of the topography
across the extent of the current, d(R)− d(0), implied by (4.11b), so

[H = f (r/R)] � [d(R)− d(0)= ξ n
N tn/2

]
(t→ 0). (4.12)

This asymptotic relationship applies for all n > 0, confirming that (4.11) describes the
early-time flow for all such n. This is different from the two-dimensional case, where
the analogue of (3.10) allows for a reversal of the transitions if 0 < n < 1/2. Again,
the form of the horizontally topped state is determined purely from geometry. By
setting h = h0(t) in (4.9) and using the volume constraint (4.8a), we determine the
height and extent of the late-time horizontally topped regime as

h= h0(t)≡
[

2(n+ 2)
n

t

]n/(n+2)

, R= R0(t)≡
[

2(n+ 2)
n

t

]1/(n+2)

, (4.13a,b)

respectively. The transition in frontal position from (4.11b) towards (4.13b) is
illustrated by the log–log plot in figure 9.

As in our two-dimensional analysis, we can quantify the variations in the transition
times between the asymptotic states of (4.11b) and (4.13b) by considering the
axisymmetric analogues of the transition times (3.12a,b), defined by

R(t1)= 0.9 ξN t1/2, R(t2)= 0.9 R0(t2), (4.14a,b)

which we plot as functions of n in figure 10. Both t1 and t2 are of order unity over a
slightly larger range of n & 1 compared to the two-dimensional case shown in figure 4.
In further contrast to the two-dimensional case, the characteristic time of transition
away from the similarity solution t1 attains a minimum of approximately 0.25 at n≈ 2.
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FIGURE 9. The evolution of the frontal position R(t) for n = 0 (bold) and n = 1 and 2 (each
thin) as a function of time for the axisymmetric flow produced by a point source at r = 0.
The case n = 0 is described analytically by the similarity solution (4.11) at all times. The
solutions for n= 1 and 2, which we have determined numerically, are seen to evolve from the
similarity solution (4.11b) at early times towards the asymptote (4.13b) (dotted) at late times,
illustrating the transition towards a regime in which the top surface of the current has become
close to horizontal.
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FIGURE 10. Characteristic dimensionless times t1 and t2, as defined by (3.12a,b), at which
the flow transitions from the early-time similarity solution (4.11) to the late-time horizontally
topped regime (4.13). Times at which the flow is controlled by hydrostatic spreading (white)
and topographically controlled (heavily shaded) are separated by an intermediate region
(lightly shaded) in which both hydrostatic spreading and topographic control are comparable.

This minimum is extremely wide, being barely distinguishable in figure 10, showing
that t1 is essentially constant for n & 1.5. Both t1 and t2 increase as n→ 0, implying
that both the transition away from the similarity solution (4.11) and to the horizontally
topped regime (4.13) occur at ever later times, with the intermediate interval between
them (t1 < t < t2) having an increasingly longer duration. This is different from the
two-dimensional case, where the transitions become reversed below a critical value
(n< 1/2) and proceed to occur in the opposite limit of small time as n→ 0.
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A more quantitative understanding of the variations in the rate of convergence
towards (4.13) between values of n can be developed using similar asymptotic methods
to those presented in § 3.1 above. Specifically, we substitute perturbation expansions of
the same form (3.13), except with r and R in place of x and X, into (4.5)–(4.9), to
determine that

α ≡ 2n

n+ 2
, F = F0 + N

∫ 1

η

1− η2

η(1− ηn)
dη,

∫ 1

0
ηF dη = 0, (4.15a,b,c)

where N ≡ [n/2(n+ 2)]α and the constant of integration F0 in (4.15b) can be evaluated
up to quadrature by applying (4.15c). Here, the exponent of relative decay (4.15a) is
positive for all n > 0, which is consistent with the unconditional convergence of the
system towards a horizontally topped state over all such n. The asymptotic predictions
of (4.15b) in the cases n = 1 and 2 are shown as dotted curves in figure 8(a,b),
where they are seen to agree well with our numerical solutions at late times. Like the
two-dimensional case, the flow in the case n = 2 converges more rapidly towards its
asymptote than with n= 1, again reflecting the fact that the exponent of relative decay
(4.15a) is an increasing function of n.

By expanding the integrand in (4.15b) in powers of η, neglecting all but the leading-
order term and evaluating the integral, we determine the singular behaviour near the
source,

F ∼ N ln(1/η) (η→ 0). (4.16)

This is a different form from the leading-order behaviour near the source implied
directly by integration of the source condition (3.6), namely, h ∼ [ln(1/r)]1/2 (Lyle
et al. 2005; Vella & Huppert 2006), indicating that (4.16) strictly only applies outside
a small radius from the source, whose scale becomes relatively smaller with time. This
is consistent with the fact that the perturbation from a horizontally topped state, given
by the radial form of (3.13), cannot provide an asymptotic description of the surface
of the current near the singularity at the source. The weaker agreement between the
asymptotic prediction and the numerical solutions shown in figure 8 also reflects this.

4.2. Paraboloidal topography
To explore the consequences of non-axisymmetric topography, we focus on the case
of a paraboloidal dome, obtained by setting m = n = 2 in (4.6b). Such topography
describes a large class of three-dimensional geometries with slopes that vary at
different rates between the x- and y-directions, depending on the value of A, which
is the general leading-order term in a Taylor expansion about the maximum of any
topographic trap (cf. Bickle et al. 2007). The limiting case A = 0 corresponds to
a channel of uniform parabolic cross-section (cf. Golding & Huppert 2010). With
A = 1, it forms an axisymmetric dome, which is a special case (n = 2) of the problem
considered in § 4.1. In the intermediate cases 0 < A < 1, the topography forms a
non-axisymmetric dome, with the steepest increase in topography in the y-direction.
Cases with A > 1 can be made equivalent to those with 0 < A < 1 by switching the x-
and y-axes, so we neglect those with no loss of generality.

On extending the argument given in § 4.1 to three dimensions, it is clear that the
similarity solution (4.11) describes the early-time flow for all cases of A > 0. We
determine the subsequent evolution numerically by recasting the system in terms of
the scaled coordinate system (ζ, θ, t), where ζ ≡ r/R(θ, t), which maps the numerical
domain onto a rectangle, and using the two-dimensional generalization of the implicit
scheme described in § 3 above. In the rescaled coordinate system, we discretize
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the domain onto a fixed, two-dimensional grid, with centred differences used to
approximate the spatial derivatives of R and θ and symmetry conditions applied along
θ = 0 and π/2. Our numerical solutions for the evolution of the front of the current
R(θ, t) in the two cases A= 0 and 1/2 are shown by the white curves in figures 11(a)
and 11(b), respectively. The height distributions of the currents h(r, θ, t) at the final
times are indicated by the depth of the shading, with lighter shading corresponding to
a larger height.

With A = 0, the shape of the front is seen to evolve from the circular form implied
by the early-time, self-similar form (4.11b) towards an approximately parabolic shape
that becomes increasingly elongated with time. At the final time shown, the height
distribution h(r, θ, t) is approximately uniform across the width of the channel, but
still has significant variation along its length in the x-direction. Between the source
and the downstream flow, there is a transition region that matches the radial flow
imposed at the source to the predominantly unidirectional flow downstream. By
imposing a condition of uniform unidirectional flow across the width of the channel
and prescribing an areal source in the plane of x= 0, Golding & Huppert (2010) show
that, with these assumptions, the unidirectional flow can be described at all times by a
similarity solution of the form

h= t1/4f (x/X), X ≡ R(0, t)= ξN t5/8, |y|6 h1/2, (4.17a,b)

where ξN ≈ 1.95. Our numerically determined frontal position R(θ, t) is seen to
converge towards the frontal locus implied by (4.17), shown by a dotted curve in
figure 11(a), reflecting the fact that the downstream flow eventually loses information
of the imposed radial flow at the source.

As shown in figure 11(b), the solution with A = 1/2 transitions towards a state in
which the current is horizontally topped in both the x- and y-directions, implying that,
like the two-dimensional cases with n > 1/2 and the axisymmetric cases with n > 0
considered in §§ 3 and 4.1 above, the leading-order propagation eventually becomes
determined purely by geometry and the total volume of injected fluid. Setting h= h0(t)
in (4.9) and applying (4.8a), we determine the height and extent of this regime as

h= h0(t)≡
(

2
√

At

π

)1/2

, R= R0(θ, t)≡
(

h0(t)

Acos2θ + sin2θ

)1/2

, (4.18a,b)

respectively.
To measure the influence of topographic variation over time, we consider the

evolution of the horizontal aspect ratio, or elongation, defined by E(t) ≡ X(t)/Y(t),
where Y ≡ R(π/2, t) is the maximum extent of the current in the y-direction, which
we plot as a function of time in figure 12 for a selection of A. The value of E
is seen to evolve from the unitary value implied by the axisymmetric early-time
flow described by (4.11) towards the late-time asymptote E ∼ 1.38t1/2 (dotted), which
can be derived from (4.17). The approximate constancy of the late-time first-order
correction (E − 1.38t1/2) ∼ 0.24 is due to the adjustment of the radial flow near the
source towards unidirectional flow over a dimensionless distance of order unity. The
frontal locus (4.18b), shown by the dotted curve in figure 11(b), describes an ellipse of
constant elongation E = A−1/2. Our numerically obtained evolutions of E in figure 12
are seen to evolve towards this asymptotic value (E ∼ A−1/2) at a rate which is faster
for smaller values of A.
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5. Geophysical application
Using the mathematical solutions we have developed, we can estimate the

importance of topographic variations at the Sleipner field, where carbon dioxide is
currently being sequestered. In that setting, the CO2 is injected towards the base of the
Utsira Sand, which is a sandstone layer with a thickness of 200 m and a top surface
that lies about 800 m below ground level (Boait et al. 2012). The CO2 is less dense
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than the ambient brine, so it is initially driven vertically by buoyancy. The vertical
propagation of the CO2 towards the caprock is interrupted by a sequence of partially
impermeable mudstone layers each with a typical thickness of a few metres, dividing
the aquifer into a set of interstitial sandstone layers along which the CO2 propagates
with predominantly horizontal flow (Bickle et al. 2007; Arts et al. 2008; Boait et al.
2012). A significant proportion of the CO2 leaks through the mudstone layers, such
that there is a gradual migration of CO2 towards the caprock, where no leakage occurs.
Seismic measurements show that the CO2 underneath each of these layers deviates
significantly from axisymmetric flow (Bickle et al. 2007; Boait et al. 2012). By fitting
ellipses to the data, Boait et al. (2012) find that the elongations E are approximately
constant in several of the layers, with typical values of between 2 and 4, some of
which have remained essentially constant since the initiation of the injection.

Data from seismic imaging show that the topography of the caprock forms a dome
with its maximum centred relatively closely on the point of injection compared with
the extents of the currents (Bickle et al. 2007; Arts et al. 2008; Boait et al. 2012). On
this basis, we model the topography as a paraboloid (m = n = 2), as we considered
theoretically in § 4.2. To accommodate buoyancy into our theoretical model, we simply
replace g by the reduced gravity g′ ≡ (ρw − ρ)g/ρ, where ρw > ρ is the density of
the brine. By fitting parabolae along two perpendicular transects of the measured
height of the top of the Utsira Sand (Arts et al. 2008), we estimate the smallest
and largest topographic scales as a ≈ 5 × 10−6 m−1 and b ≈ 10−5 m−1, respectively.
Given the porosity φ ≈ 0.4, permeability k ≈ 10−12 m2, viscosity of carbon dioxide
µ ≈ 6 × 10−5 Pa s, density of carbon dioxide ρ ≈ 700 kg m−3, density of brine
ρw ≈ 1000 kg m−3 and reduced gravity g′ ≈ 4 m s−2 typical at Sleipner (Boait et al.
2012), we estimate the time scale (4.3c) and the curvature ratio (4.10) as

T ≈ 20 years, A≈ 0.5, (5.1a,b)

respectively. With the value of A given by (5.1b), our solutions calculated in § 4.2
predict that the difference between the elongation of the current and its starting value
is within 90% of its asymptotic value A−1/2 ≈ 1.4 at the dimensionless time t̂ ≈ 5
(illustrated in figure 12). Combining this value with our estimate of the time scale
(5.1a), we obtain the dimensional time at which this occurs as

t =T t̂ ≈ 100 years. (5.2)

This time scale is one order of magnitude larger than the current sixteen-year
running time of the Sleipner project, implying that the model predictions cannot
explain the significant deviations of the currents from axisymmetric flow that have
been observed there. Conversely, if the approximately constant elongations of E ≈ 4
that have been observed in several of the layers were to be explained geometrically
by the flow having approached a horizontally topped state with E0 ≈ A−1/2, then the
value of A needed (A = E−2 ≈ 0.06) is two orders of magnitude smaller than that of
the estimate (5.1b). With this value of A, the corresponding time scale T on which
the elongation of the current approaches its asymptotic value would also be a few
orders of magnitude larger than (5.2). The significance of these discrepancies indicates
that a different physical property, such as the possible anisotropy of the permeability
of the sandstone layer, may be the dominant cause of the observed departures from
axisymmetric flow, and we intend to discuss this aspect in a subsequent publication.
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6. Conclusions
We have determined the important time scales associated with the influence of

upwards-sloping topography of power-law form on the dynamics of gravity currents in
porous media. We considered both two- and three-dimensional geometries, showing in
particular that the flows in these cases can exhibit qualitatively different transitional
behaviour.

With two-dimensional flow produced at constant rate by a line source, we identified
three distinct behaviours of the current, depending on whether the topographic
exponent n satisfies n > 1/2, n = 1/2 or n < 1/2. If n > 1/2, then the current
evolves from an early-time, self-similar form of extent t2/3 towards a topographically
controlled regime of extent t1/(n+1), which has a horizontally topped surface to leading
order. This transition occurs once the current becomes predominantly constrained
by the need to flow uphill. Asymptotic analysis of small perturbations to the
horizontally topped regime reveals that they decay relative to it with temporal
exponent −(2n − 1)/(n + 1). In the critical case n = 1/2, the system is described
by a similarity solution of extent t2/3 in which the influences of hydrostatic spreading
and topographic variation are comparable at all times. For n < 1/2, the transition
between these two flow regimes is reversed, with a rapid early-time departure from
a topographically controlled state towards a similarity solution that is insensitive to
topographic variation. The theoretical predictions of the spreading rate in the case of a
linear slope (n = 1) showed good agreement with the results of a series of laboratory
experiments.

In the case of axisymmetric flow due to a point source, all non-zero values
of the topographic exponents (n > 0) were shown to lead to a transition from
a hydrostatically spreading similarity solution of extent t1/2 towards a horizontally
topped regime of extent t1/(n+2). Asymptotic analysis of perturbations to the late-time
state showed that they decay relative to it with temporal exponent −2n/(n + 2),
implying a more rapid transition for larger values of n. In the case of a non-
axisymmetric paraboloidal topography with ratio of the curvatures between its
principle axes A, we identified two qualitatively distinct behaviours. If A = 0,
corresponding to a channel of uniform cross-section, the current was shown
to converge towards a similarity solution of unidirectional flow, which becomes
increasingly elongated with time. If A > 0, it was shown to converge towards a
horizontally topped regime of elliptic extent and constant elongation A−1/2. The rate
of convergence towards this late-time regime was shown to decrease with A, with the
fastest rate of convergence occurring in the axisymmetric case A= 1.

The results of our analysis suggest that variations in the topography of the caprock
are unlikely to have had any significant impact on the dynamics of CO2 at the Sleipner
field up to and somewhat beyond the present, and cannot explain the rapid deviations
from axisymmetric flow that have been measured there.
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