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We study the flow and leakage of gravity currents injected into an unsaturated (dry),
vertically confined porous layer containing a localized outlet or leakage point in
its lower boundary. The leakage is driven by the combination of the gravitational
hydrostatic pressure head of the current above the outlet and the pressure build-up
from driving fluid downstream of the leakage point. Model solutions illustrate
transitions towards one of three long-term regimes of flow, depending on the value
of a dimensionless parameter D, which, when positive, represents the ratio of the
hydrostatic head above the outlet for which gravity-driven leakage balances the input
flux, to the depth of the medium. If D6 0, the input flux is insufficient to accumulate
any fluid above the outlet and fluid migrates directly through the leakage pathway. If
0<D 6 1, some fluid propagates downstream of the outlet but retains a free surface
above it. The leakage rate subsequently approaches the input flux asymptotically but
much more gradually than if D 6 0. If D> 1, the current fills the entire depth of the
medium above the outlet. Confinement then fixes gravity-driven leakage at a constant
rate but introduces a new force driving leakage in the form of the pressure build-up
associated with mobilizing fluid downstream of the outlet. This causes the leakage
rate to approach the injection rate faster than would occur in the absence of the
confining boundary. This conclusion is in complete contrast to fluid-saturated media,
where confinement can potentially reduce long-term leakage by orders of magnitude.
Data from a new series of laboratory experiments confirm these predictions.
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1. Introduction
There are many situations in nature where fluid spreads under gravity through

porous rock. Important examples include the long-term migration of hydrocarbons
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from their primary source (Dake 2010), the extraction of natural gas (Farcas &
Woods 2007), the flow of groundwater (Kresic & Stevanovic 2010) and the evolution
of sequestered carbon dioxide (Orr 2009). A key structural feature of the host rock,
particularly in sedimentary environments, is the horizontal layering of different rock
types, which alternate between more permeable pathways for fluid flow and much
less permeable boundaries of a different mineral composition. Structures of this kind
control the dispersal of fluid through the subsurface (e.g. Hesse & Woods 2010; Boait
et al. 2012). While horizontal migration along high-permeability layers provides one
dominant mode of flow (Bear 1988; Huppert & Woods 1995; Nordbotten & Celia
2006; Hesse et al. 2007; Pegler, Huppert & Neufeld 2014a), leakage through faults,
fractures or other local damaged zones in confining low-permeability barriers often
constitutes the primary means of vertical migration. In this work, we focus on
situations motivated by the flow of groundwater in otherwise unsaturated aquifers.
The recharge of aquifers at higher elevations, for example, can drive a flow of water
along a high-permeability layer. Any subsequent vertical migration through leakage
points in the confining boundaries, either to higher or lower strata, controls the extent
to which subsurface flows either infiltrate deeper underground or are driven upwards
and contribute to surface flow via fracture springs (Kresic & Stevanovic 2010).

Previous fluid-mechanical studies of gravity currents subject to leakage have
primarily considered situations where the aquifer is idealized as being very much
deeper than the current (Pritchard, Woods & Hogg 2001; Pritchard 2007; Neufeld,
Vella & Huppert 2009; Neufeld et al. 2011; Vella et al. 2011). These cover a
range of geometries, including two-dimensional, three-dimensional, as well as
different allowances for localized or spatially distributed leakage zones. The universal
conclusion from these studies is that the rate at which fluid leaks though the leakage
pathway always balances the rate of injection asymptotically. This can occur because
the hydrostatic head of the current above the leakage point is free to accumulate until
the leakage it drives balances the injection rate to leading order.

More recently, Pegler, Huppert & Neufeld (2014b) considered leakage in the
generalized situation more typical of sedimentary environments, in which the flow
is confined vertically between horizontal boundaries both above and below. The
confinement was found to introduce two fundamental new dynamical elements with
opposite effects on leakage.

First, confinement constrains the maximum thickness of the current and therefore
the maximum possible leakage rate that can be driven by gravity under an
accumulated pressure head. The key implication of this constraint is that the rate
of leakage does not necessarily balance the rate of injection asymptotically. The
confinement can therefore reduce the long-term rate of leakage by orders of magnitude
compared to the equivalent situations without the confinement.

The second effect introduced by confinement is the back-pressure arising from
driving fluid horizontally through regions of the medium where fluid spans the full
depth. This force does not arise in infinitely deep porous media because of the lack
of any geometrical constraints on vertical fluid motion. The back-pressure generated
by confinement was found to introduce higher fluid pressures at the leakage zone
and therefore enhance leakage. Motivated by geological carbon dioxide (CO2) storage,
Pegler et al. 2014b specialized to situations where the back-pressure originates
primarily from the viscous resistance associated with the long-range mobilization
of ambient fluid between the leakage point and the edge of the aquifer. With this
assumption, the back-pressure can be idealized as constant to leading order. This may
be more appropriate for CO2 storage, where the ambient saline water is appreciably
viscous.
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However, the idealization of a constant back-pressure is inappropriate in applications
where there is a significant change in back-pressure resulting from the evolution of
the invading fluid. An archetypal example is the invasion of a dry porous medium by
water, where any fluid motion of the ambient air may be neglected owing to the very
large viscosity contrast with water (it is approximately fifty times more viscous). A
fundamental difference in this situation compared to when back-pressure is dominated
by ambient stresses is that there is a leading-order build-up of back-pressure in
response to the evolution of the invading fluid downstream of the leakage point. The
resistance to introducing fluid downstream of the leakage point increases with the
volume of fluid retained there, and hence it is possible for the leakage rate to grow
significantly over time. This is in contrast to the situations considered by Pegler et al.
(2014b), where the change in leakage driven by the back-pressure arising from growth
of the current was neglected compared to the contribution associated with mobilizing
ambient fluid. The focus of this paper is to elucidate the regimes of flow that arise
under the influence of a back-pressure generated by the invading fluid. Importantly,
the conclusions regarding the effect of confinement on the long-term proportion of
fluid retained in the medium are found to differ significantly from those found to
apply when the back-pressure is instead controlled by the long-range mobilization of
ambient fluid.

We also present a laboratory study of fluid injection into a leaky porous medium.
This is used to test our theoretical predictions, with previous laboratory studies of
gravity currents subject to leakage having been performed solely in cases without any
confinement (Neufeld et al. 2009; Zheng et al. 2013).

We begin in § 2 by developing our model of leakage from a confined porous
layer. Numerical and asymptotic solutions are presented in § 3 and compared with
experimental data in § 4. We end in § 5 by summarizing our results and discussing
their implications.

2. Theoretical development
Consider an incompressible fluid layer of density ρ, viscosity µ and free surface

z= h(x, t) flowing in a two-dimensional porous medium of homogeneous permeability
k and porosity φ (see figure 1). Two horizontal impermeable boundaries along z= 0
and z = H are assumed to confine the medium vertically into a layer. The lower
boundary contains an outlet of horizontal extent b, vertical length l and horizontal
position centred on x= xF, through which fluid can leak. The fluid flow is modelled
using Darcy’s law with momentum- and mass-continuity equations given respectively
by

u= k
µ
(−∇p− ρgẑ) and ∇ · u= 0, (2.1a,b)

where u(x, t) ≡ (u, w) is the Darcy velocity, p(x, t) is the fluid pressure, g is the
gravitational acceleration and ẑ is the vertical unit vector (Bear 1988).

We consider the situation where fluid invades the medium from an initially dry state.
As a source condition, we impose

q(0, t)= q0, where q(x, t)≡
∫ h(x,t)

0
u(x, z, t) dz (2.2a,b)

is the horizontal velocity integrated across the depth of the current and q0 is the
constant flux per unit width at which fluid is introduced at x = 0. This condition
represents the introduction of fluid along a fault in a geological formation, for
example.
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FIGURE 1. Cross-section of a two-dimensional porous medium containing horizontal
boundaries along z= 0 and H and an outlet centred on x= xF which allows fluid to leak
from the medium.

Assuming that the current is much longer than it is tall, we neglect the viscous
stresses due to vertical velocity w in the vertical component of Darcy’s equation (2.1a)
to yield the equation describing hydrostatic pressure,

∂p
∂z
=−ρg and hence p(x, t)= P(x, t)− ρg[z− h(x, t)] (2.3a,b)

on integration, where the constant of integration P(x, t) ≡ p(x, h, t) is the unknown
pressure along the upper interface of the current. Depending on whether the interface
is a free surface or lies in contact with the upper boundary of the medium, the manner
in which P(x, t) is determined differs.

2.1. The free-surface region
Assuming that the ambient air is of negligible viscosity and density, we can
approximate its pressure as a constant p0. On the free surface, continuity of stress
with the ambient fluid determines the constant of integration in (2.3b) as P(x, t)= p0,
assuming negligible surface tension (with significant surface tension, p0 may be better
represented by the capillary entry pressure). Then (2.3b) yields

p(x, t)= p0 − ρg[z− h(x, t)] if h(x, t) <H. (2.4)

Using (2.4) to evaluate the pressure field in the horizontal component of Darcy’s
equation (2.1a), we obtain the horizontal velocity

u=−U
∂h
∂x
, where U ≡ ρgk

µ
(2.5a,b)

is the velocity scale associated with purely vertical gravity-driven flow in a porous
medium. Equation (2.5a) shows that the horizontal velocity u= u(x, t) is independent
of the vertical coordinate z and is proportional to the free-surface slope ∂h/∂x. To
determine the evolution of the free surface h(x, t), we use the depth-integrated form
of the continuity equation (2.1b) given by

φ
∂h
∂t
=−∂q

∂x
, where q=−Uh

∂h
∂x

(2.6a,b)
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is the flux per unit width, obtained by substituting (2.5a) into (2.2b). Using (2.6b) to
evaluate q in (2.6a), we obtain the governing nonlinear diffusion equation

φ
∂h
∂t
=U

∂

∂x

(
h
∂h
∂x

)
. (2.7)

At the front x= xL(t), we impose the conditions of vanishing thickness and flux,

h(xL, t)= 0 and q(xL, t)= 0. (2.8a,b)

By suitably combining (2.8a,b) (see appendix A), the frontal rate of propagation can
be determined as equal to the interstitial flow rate, and hence

φẋL = u(xL, t)=−U
∂h
∂x
(xL, t), (2.9)

where we have used (2.5a) to evaluate u.
If the free surface lies below the upper boundary at the input (h(0, t) <H), we can

combine (2.2a) and (2.6b) to yield the boundary condition

q(0, t)=−Uh(0, t)
∂h
∂x
(0, t)= q0 if h(0, t) <H. (2.10)

Note that (2.10) is only applicable before the current makes contact with the upper
boundary (h(0, t) <H).

If the current contains a component lying downstream of the outlet (xF < xL), then
we impose the conditions of continuity on the height and flux between the regions
just upstream and downstream of the outlet given by

h+ = h− and q+ = q− − qF(t), (2.11a,b)

where the ± subscripts represent quantities just downstream and just upstream of the
outlet, q is given by (2.6b) and qF(t) is the leakage rate through the outlet, to be
determined in § 2.3.

2.2. The depth-filled region
If the current lies in contact with the upper boundary, as illustrated in figures 1
and 2(b), then it forms two regions separated by a second contact line on x= xU(t).
The two regions are referred to as the downstream free-surface region, xU < x < xL,
wherein h<H, and the depth-filled region, 0 6 x 6 xU, wherein h=H.

The expression for the flux in the free-surface region (2.6b) does not apply in the
depth-filled region because the condition of pressure continuity used to evaluate P(x, t)
and obtain (2.4) is unavailable. Instead, we determine the flow rate in the depth-filled
region by noting that the uniformity of the height of the current in that region (h=H)
implies that the flux per unit width is horizontally uniform,

∂q
∂x
= 0 in 0< x< xU(t), (2.12)

in accord with (2.6a). If the upper contact line lies upstream of the outlet (xU < xF),
as shown in figure 2(b), an integration of (2.12) subject to (2.2a) implies that the flux
through the depth-filled region is simply equal to the injection flux,

q= q0 in 0< x< xU if xU < xF. (2.13)
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Depth-filled region

Free-surface region

(a) (b) (c)

FIGURE 2. The three possible flow configurations of the current: (a) it lies completely
detached from the top boundary (h(0, t)<H); (b) it contains a region wherein the current
fills the depth of the medium upstream of the outlet (h(0, t) <H but h(xF, t) <H); or (c)
the depth-filled region contains the outlet and the entire free surface lies downstream of
the outlet (h(xF, t)=H).

If instead the outlet lies in the interior of the depth-filled region, as illustrated in
figure 2(c), then (2.2a) together with (2.11b) implies that

q=
{

q0 in 0< x< xF

q+(t)= q0 − qF(t) in xF < x< xU
if xU > xF. (2.14)

In formulating the leakage rate qF(t) in § 2.3 we will need the pressure field
p(x, t) associated with the flow fields (2.13) and (2.14). To calculate this, we use the
horizontal component of Darcy’s equation (2.1a) which, when rearranged in favour
of the pressure gradient, is given by

∂p
∂x
=−µu

k
=−µq

kH
in 0< x< xU, (2.15)

where q = Hu is the (piecewise uniform) flux per unit width given by (2.13) if
xU < xF and (2.14) otherwise. In the former case, an integration of (2.15), followed
by a comparison with (2.3b) and use of the continuity condition p(xU, H, t) = p0,
determines the pressure field as

p(x, t)= p0 + ρg(H − z)+ µq0

k
[xU(t)− x]. (2.16)

With q given instead by (2.14), we obtain the conditional relationship

p(x, t)=


p0 + ρg(H − z)+ µ

k
{q+(t)[xU(t)− xF] + q0[xF − x]} in 0< x< xF,

p0 + ρg(H − z)+ µ
k

q+(t)[xU(t)− x] in xF < x< xU,

(2.17)
where q+(t)≡ q0 − qF(t) is the retained flux given in (2.14).

When the current lies in contact with the upper boundary, h(0, t)=H, (2.10) cannot
be applied because the free surface lies downstream of x= 0. Instead, we impose the
condition of flux continuity at the upper contact line given by

−UH
∂h
∂x
(xU, t)=

{
q0 if xU(t) < xF,

q0 − qF(t) if xU(t) > xF,
(2.18)

where the flux on the right-hand side is evaluated using (2.13) or (2.14), depending
on whether the upper contact line lies upstream or downstream of the outlet.
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The upper contact line at xU(t) is a freely moving boundary whose evolution must
be determined. Mathematically, the condition which determines ẋU(t) is

h(xU(t), t)=H, (2.19)

which states that the upper contact line lies where the free surface intersects the
upper boundary. It is convenient for numerical implementation to obtain, if possible,
an explicit evolution equation for the upper contact line ẋU analogous to (2.9).
Differentiation of (2.19) with respect to time yields

ẋU =−∂h
∂t

/
∂h
∂x

at x= x+U, (2.20)

which shows that the propagation of the contact line is associated with vertical
thickening of the current just ahead of it. However, at this juncture the argument
used in appendix A cannot be continued to develop an equation for ẋU because the
flux towards the upper contact line q(xU, t) does not vanish in accord with (2.18).
The same difficulty arises in modelling the contact line that separates a floating and
grounded component of a gravity current in a Hele-Shaw cell (Pegler et al. 2013).
To evaluate the right-hand side of (2.20) numerically, we utilize the same method of
Pegler et al. (2013), whereby ∂h/∂t is calculated using the result of a trial integration
step under an artificial imposition of ẋU = 0. The predicted penetration of the current
through the top boundary δh= h− H arising from this trial is then used to evaluate
the rate of propagation (2.20) as

ẋU =−δh
δt

/
∂h
∂x
, (2.21)

where δt is the time step. It is notable that the difficulty described above does not
arise in studies where ambient fluid viscosity is included (Pegler et al. 2014a). In that
case, conditions of vanishing thickness and flux of the ambient fluid at the contact
line can be utilized to obtain an evolution equation describing its rate of propagation
(given by (2.8b) in Pegler et al. 2014a) using an analogous argument to that given in
appendix A. The break-down of that equation as the ambient viscosity tends to zero
occurs because the Darcy’s law used to describe the ambient flow is degenerate in
that singular limit.

2.3. The leakage law
It is assumed that the flow rate through the outlet is related to the applied pressure
gradient across it according to Darcy’s law, which implies that

qF(t)= bkF

µl
[p(xF, 0, t)− p0 + ρgl], (2.22)

where kF is the permeability of the outlet. The first two terms in (2.22) represent the
pressure difference between the top and bottom of the outlet. The third term represents
the added driving force due to gravity acting on fluid along the interior of the outlet.

Using (2.4) to evaluate p(xF, 0, t) in (2.22) if h(xF, t)<H and (2.14) if h(xF, t)=H,
we obtain the conditional leakage law given by

qF(t)=


bρgkF

lµ
(h(xF, t)+ l) if h(xF, t) <H,

bkF

lµ

{
ρg(H + l)+ µ

kH
[xU(t)− xF][q0 − qF(t)]

}
if h(xF, t)=H.

(2.23a,b)
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Note that the right-hand side of (2.23b) is itself dependent on qF(t) because the
contribution to leakage due to back-pressure is linearly proportional to the flux it
drives, q0 − qF(t). Making qF(t) the subject of (2.23b), we obtain finally

qF(t)= q̃F(t)≡



bρgkF

µl
[h(xF, t)+ l] if h(xF, t) <H,

bkF

µl

ρg(H + l)+ µq0

kH
[xU(t)− xF]

1+ bkF

lkH
[xU(t)− xF]

 if h(xF, t)=H.
(2.24a,b)

While the flow is detached from the upper boundary above the outlet (h(xF, t) < H),
(2.24a) implies that leakage rate is linearly related to the hydrostatic head h(xF, t).
This is the equivalent leakage rate applicable at all times in a deep porous medium
(Pritchard et al. 2001). If the current instead fills the full depth of the medium above
the outlet (h(xF, t) = H) then the leakage law switches to (2.24b). The contribution
to leakage due to the hydrostatic head is then fixed at a constant, but there is a new
contribution due to the back-pressure associated with driving fluid downstream. The
emergent back-pressure depends on the length of the depth-filled region downstream
of the outlet, xU(t)− xF. This feature is absent in the study of Pegler et al. (2014b),
where the dominance of back-pressure generated by long-range mobilization of
ambient fluid causes the leakage rate to become effectively fixed once h(xF, t) = H.
Importantly, the back-pressure generated by the invading fluid in the present context
will be shown to increase leakage rates significantly over time.

Before the current reaches the outlet, there is no accumulation of fluid above it
(h(xF, t) = 0). Equation (2.24a) then predicts that leakage occurs at a rate qmin ≡
bkFU/k owing to the effect of gravity acting on fluid filling the interior of the outlet.
The leakage rate predicted by (2.24) is then unphysical because there is no fluid
above the outlet to draw. This inconsistency arises because of the assumption made
initially in (2.22) that the outlet is always filled with fluid. Generally, this assumption
is invalid if the current delivers a smaller flux towards the outlet than is predicted to
leak according to (2.24). We accommodate this by assuming that, if the rate at which
fluid flows towards the outlet q− is less than the minimum leakage flux associated with
a fluid-filled outlet qmin, then all fluid reaching the outlet leaks through it. Therefore,
we impose

qF =
{

q− if q− < qmin ≡ bkFU/k,
q̃F if q− > qmin,

(2.25)

where q̃F is the rate given by (2.24). Only once the flux per unit width of fluid flowing
towards the outlet satisfies q−> qmin does accumulation above the outlet (h(xF, t) > 0)
occur consistently with (2.24).

2.4. The significance of ambient back-pressure
The pressure fields given by (2.4), (2.16) and (2.17) were calculated under the
assumption that ambient viscosity is negligible. This is opposite to the assumption
made by Pegler et al. (2014b), who considered situations where the ambient
contribution to the back-pressure is dominant over any perturbation to it due to
the presence of the invading fluid. The situations for which these two different
assumptions are applicable can be catalogued by the dimensionless parameter

A≡ µa

µ

L
xU
, (2.26)
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where µa is the viscosity of an ambient fluid, xU is the characteristic extent of the
current and L is the length scale over which the ambient fluid is mobilized (see the
discussion surrounding (2.13) in Pegler et al. 2014b). The parameter A represents the
ratio of the contributions to the back-pressure arising from the long-range mobilization
of the ambient fluid along the length of the medium to that arising from the current.
In taking a uniform reference pressure in obtaining (2.4), (2.16) and (2.17), it was
assumed that the latter is negligible and hence A� 1. Pegler et al. (2014b) assumed
instead that the back-pressure is dominated by the contribution due to ambient fluid,
for which A� 1. The parameter settings for the different modelling assumptions are
thus summarized by

A� 1 and µa/µ= any value (Pegler et al. 2014b)
A� 1 and µa/µ� 1 (present study).

(2.27)

Note that there are two different dynamical respects in which the ambient viscosity
can be considered significant: one, measured by µa/µ, is its effect on local flow
dynamics; the other, measured by A, is its effect on back-pressure. For illustration,
we note that the settings µa/µ� 1 but A� 1 give the unusual situation in which the
ambient viscosity can be neglected in the local flow dynamics but is dominant in the
determination of the back-pressure. This is a special limiting case of the situations
considered by Pegler et al. (2014b). The case µa/µ� 1 and A� 1 considered in this
paper corresponds to the different situation in which ambient viscosity is negligible
in all respects, resulting in the new mathematical feature of a time-dependent back-
pressure in (2.24). In this regard, the situations considered here differ fundamentally
from those of Pegler et al. (2014b).

For the invasion of water into an air-filled porous medium, µa/µ≈ 0.01 and hence
we can form the illustrative estimate A≈ 0.01L/xU. With xU =O(L), it is thus found
that A� 1 and hence that the contribution to the back-pressure due to the ambient air
is negligible. The assumption of a constant ambient pressure p0 used in the calculation
of the pressure fields (2.4), (2.16) and (2.17) is therefore reasonable in this application.
The situation relevant to geological CO2 storage is very different because the ambient
saline is at least an order of magnitude more viscous than the injected CO2. Typical
values of the viscosity ratio µa/µ≈ 10–100 imply that A> 10(L/xL). Given also that
xU < L, we find that A> 10 is at least one order of magnitude larger than unity. With
the added realistic assumption that the ambient fluid comprises the majority of fluid
in the aquifer, xU� L and A� 10 is yet larger. This indicates that the ambient flow
is likely to dominate the determination of back-pressure in the context of geological
CO2 storage, for which the situations considered by Pegler et al. (2014b) are therefore
more relevant.

3. Theoretical analysis

We make the system given by (2.7)–(2.9) and (2.24)–(2.25) dimensionless by
defining the scaled variables

x≡ UH2

q0
x̂, t≡ φUH3

q2
0

t̂, h≡Hĥ, q≡ q0q̂. (3.1a−d)
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The horizontal length and time scales in (3.1) are representative of the time and extent
at which a gravity current introduced at a constant rate q0 into a two-dimensional
porous medium attains the depth of the medium H. On dropping hats, the free-surface
evolution equation (2.7) becomes

∂h
∂t
= ∂

∂x

(
h
∂h
∂x

)
. (3.2)

The frontal height condition (2.8a) and evolution equation (2.9) become

h(xL, t)= 0, ẋL =−∂h
∂x
(xL, t). (3.3a,b)

The input condition relevant before the current makes contact with the upper boundary
(2.10) becomes

−h(0, t)
∂h
∂x
(0, t)= 1 if h(0, t) < 1. (3.4)

The conditions (2.18) and (2.19) at the upper contact line, applicable once contact is
made with the upper boundary, become

h(xU, t)= 1,

−∂h
∂x
(xU, t)=

{
1 if xU < X,
1− qF(t) if xU > X.

 if h(0, t)= 1. (3.5a,b)

Finally, the leakage law given by combining (2.24) and (2.25) becomes

qF(t)=



q−(t) if h(X, t)= 0 and q−(t) <Q,

Q+ (1−Q)
h(X, t)

D
if 0< h(X, t) < 1,

1− D− 1
D/(1−Q)+ [xU(t)− X] if h(X, t)= 1.

(3.6a−c)

The system above depends on the three dimensionless parameters

X ≡ µq0xF

ρgkH2
, Q≡ qmin

q0
≡ bkFρg

µq0
, D≡ l

H

(
1
Q
− 1
)
. (3.7a−c)

These represent the dimensionless outlet position X, the ratio of the threshold leakage
rate to the injection rate Q, and the hydrostatic parameter D which, when positive,
represents the ratio of the hydrostatic head for which leakage driven by gravity alone
balances the injection rate, to the depth of the medium. This definition is consistent
with (3.6b), which implies that qF = 1 if h = D. With D < 0, the injection rate q0
is less than the threshold qmin defined in (2.25). This occurs only if Q> 1 in accord
with (3.7c), implying that the parameter settings D< 0 and Q> 1 must go together.
In such situations, the leakage driven by gravity along the length of the outlet alone
is sufficient to match the injection rate without the need for any accumulation of fluid
above the outlet. With 0 < D < 1, the hydrostatic head required for gravity-driven
leakage to balance the injection rate lies in the interior of the medium. With D> 1, it
lies higher than the upper boundary. Therefore, leakage driven by gravity alone cannot
balance the injection rate.
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FIGURE 3. (Colour online) Numerically determined solutions (solid curves) for (a) any
D < 0 and Q > 1, (b) D = 0.5 and Q = 0.5, and (c) D = 2 and Q = 0.5, all with outlet
position X = 2, shown at t= 0.2, 1, 2, 5, 20 and 50. The steady states given by (3.9) and
(3.11) are shown as dotted curves (blue online) in (a,b), respectively.
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FIGURE 4. (Colour online) (a–c) The contact-line positions xL(t) and xU(t) for (a) any
D< 0 and Q> 1, (b) D= 0.5 and Q= 0.5, and (c) D= 2 and Q= 0.5. The horizontal
lines (red online) indicate the outlet position X= 2. The early-time evolution of the frontal
contact line xL = 1.48 t2/3 is shown as a thick dashed line (green online) in each panel.
The long-term asymptotic positions determined in § 3.3 are shown as thin dashed lines
(blue online) in (b,c).

Three illustrative numerical solutions to (3.2)–(3.6) are shown in figure 3 for (a) any
D< 0 and Q> 1, (b) D= 0.5 and Q= 0.5, and (c) D= 2 and Q= 0.5, each with the
dimensionless outlet position X = 2. The numerical solutions were obtained using a
second-order finite-difference scheme in which the regions upstream and downstream
of the outlet are transformed onto fixed numerical domains. Once formed, the upper
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contact line xU(t) was propagated by employing trial integration steps with a stationary
upper contact line ẋU = 0, as described in the final paragraph of § 2.1.

The three illustrative numerical examples reveal three different long-term regimes
of flow. If D< 0, all the invading fluid leaks directly through the outlet and no fluid
propagates downstream of it. If 0<D< 1, some fluid propagates downstream of the
outlet but the free surface in that region remains detached from the upper boundary
for all time. If D> 1, the current fills the full depth of the medium above the outlet
and the free surface advances indefinitely downstream.

3.1. Flow regimes preceding leakage
The dimensionless parameters in the system X, Q and D all relate to leakage.
Therefore, the dimensionless solutions are all equivalent before any contact with the
outlet occurs, that is, while xL(t) < X. During this time, the flow evolves as a gravity
current injected at a constant rate into a confined porous medium, corresponding to the
limiting case of zero ambient fluid viscosity in the analysis of Pegler et al. (2014a).
Initially, while the current lies below the upper boundary, the evolution is the same
as a gravity current injected into a porous medium without an upper boundary, which
is described by a similarity solution of horizontal and vertical extents xL = 1.482 t2/3

and h(0, t) = 1.296 t1/3, respectively (Huppert & Woods 1995). The first of these is
plotted as a thick dashed line (green online) in each panel of figure 4, where it is
seen to match our numerically determined evolution of xL at early times.

If the outlet lies sufficiently far downstream of the input (specifically if X> 0.882),
then the current will make contact with the upper boundary before it reaches the outlet.
By setting h(0, t) = 1.296 t1/3 = 1, the time of first contact between the fluid and
the upper boundary is determined as t ≈ 0.459. The solution after this time adjusts
relatively quickly towards an asymptotic solution obtained by Pegler et al. (2014b) as

h∼ xL − x, xU ∼ t− 1
2 , xL ∼ t+ 1

2 (t & 1 but xL(t) < X), (3.8a−c)

which describes a linear height profile of constant slope that translates horizontally
with unit speed. The asymptotic solution (3.8) is shown as a dashed line (red online)
in figure 3(a) at t = 1, where it is seen to match our numerically obtained solution
closely.

3.2. Transient evolution
Once the current reaches the outlet (xL(t)= X), the rate at which fluid flows towards
the outlet q− begins to increase from zero, as illustrated for our three examples
in figure 5(a–c). With a non-zero threshold flux Q, there is an interval of time
during which the flux flowing towards the outlet is less than the threshold needed
to accumulate fluid above it (q− < Q), and hence all the fluid reaching the outlet
initially leaks in accord with (3.6a). During this interval, the front is pinned at the
outlet, as illustrated by the examples with Q= 0.5 in figures 4(b,c).

When D < 0 and Q > 1, shown in figure 3(a), the threshold leakage rate exceeds
the flux of injection. The threshold flux is therefore never exceeded and all fluid leaks
directly though the outlet for all time, as illustrated in figure 3(a). In that example, the
rate of leakage matches the injection flux qF ≈ 1 to within 1 % by t= 3, as indicated
in figure 5(a). The free surface is observed to approach a steady profile (cf. Pritchard
et al. 2001; Pritchard 2007; Neufeld et al. 2009; Hesse & Woods 2010). This profile
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FIGURE 5. (Colour online) The dimensionless leakage rate, qF(t) (black), flux towards the
outlet q−(t) (green online), and flux flowing downstream of the outlet q+(t) (blue online),
for the three numerical examples (a) any D< 0 and Q> 1, (b) D= 0.5 and Q= 0.5, and
(c) D= 2 and Q= 0.5, all with X = 2. The injection rate q= 1 and threshold flux q=Q
are represented by a solid and dashed horizontal line, respectively. While q−<Q, all fluid
reaching the outlet leaks through it. Once q− >Q, a residual flux q− − qF = q+ > 0 feeds
the component of the current downstream of the outlet. The time at which the leakage
law transitions from purely gravitational leakage (3.6b) to leakage with pressure build-up
(3.6c) is indicated by an open circle in (c).

can be determined analytically by integrating the steady form of (3.2) subject to the
input condition (3.5b) and the condition of vanishing thickness h(X, t)= 0 to give

h∼ [2(X − x)]1/2 (t→∞), (3.9)

which is plotted as a dotted curve (blue online) in figure 3(a). Setting h= 1 in (3.9),
the asymptotic position of the upper contact line is determined as xU ∼ X − 1/2,
assuming that X > 1/2. If X < 1/2 then the current remains detached from the upper
boundary for all time.

With D= 0.5 and Q= 0.5, the threshold flux is less than the injection rate (Q< 1).
In this case, the front of the current is only temporarily pinned at the outlet, as
illustrated in figures 3(b) and 4(b). The threshold flux is attained (q− =Q) at a time
t ≈ 1.8, indicated by a filled circle in figure 5(b). The residual between the rate at
which fluid flows towards the outlet and the rate at which it leaks, q+ = q− − qF,
then introduces fluid downstream of the outlet. Eventually, the height of the current
above the outlet approaches the hydrostatic parameter

h∼D (t→∞) (3.10)

and, consistent with (3.6b), the leakage flux qF→ 1 and the retained flux q+ = q− −
qF → 0. The leakage rate therefore balances the injection rate asymptotically in an
equivalent manner to that identified previously in the context of infinitely deep porous
media (Pritchard et al. 2001). Like the case D< 0, the free surface upstream of the
outlet approaches a steady state. By integrating the steady form of (2.6a) subject to
(3.10), we obtain the steady-state height profile

h∼ [D2 + 2(X − x)]1/2, (3.11)
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which is plotted as a dotted curve (blue online) in figure 3(b). Setting h= 1 in (3.11),
we determine the asymptotic position of the upper contact line xU ∼ X − (1− D2)/2.
If X < (1−D2)/2 then the current remains detached from the upper boundary.

When D> 1, the current eventually fills the entire depth of the medium above the
outlet, as illustrated by our solution with D= 2 in figure 3(c). The time at which this
occurs, t ≈ 8, is indicated by an open circle in figure 5(c). At this critical time, the
leakage law (3.6) switches from the second condition to the third. Leakage due to
gravity then becomes fixed at a constant rate but qF(t) continues to increase owing
to the build-up of back-pressure between the upper contact line and the outlet. The
back-pressure increases with growth of the downstream current, and hence the retained
flux flowing downstream of the outlet q+(t) decays to long times (see figure 5c).

In understanding how fluid disperses underground, an important quantity is the ratio
of fluid retained in a layer compared to that which migrates vertically from it to
another level in the formation. This can be measured using the dimensionless rate of
change of the volume of the current, given by

V̇(t)≡ 1− qF(t), where V(t)=
∫ xL(t)

0
h(x, t) dx (3.12a,b)

is the total volume of the current and we have used a dot to denote d/dt. The
evolution of V̇(t) is potted as a function of time for various hydrostatic parameters D
in figure 6(a) and various threshold fluxes Q in figure 6(b). The illustrative fracture
position X = 2 is chosen in all cases (variation of X only changes the time when
the asymptotic solution (3.8) reaches the outlet, so we have omitted a detailed
consideration of its variation). Before the current reaches the outlet (t < 0.88), V̇ is
initially unity because no leakage occurs during that time (qF = 0). Following the
initiation of leakage, there is a sharp reduction in V̇ . Once the threshold q− = Q is
attained, V̇ continues to decrease, before approaching a milder asymptotic rate of
decay at long times. The asymptotes for V̇ (shown as dashed lines, blue online), to
be determined in § 3.3, increase with D because the outlet permeability is larger in
these cases (see (3.7)). The plot of figure 6(b) shows that the asymptotic volume
change V̇ is independent of Q, which therefore only affects the transient evolution.
However, the time scales on which the current spans the depth of the medium and
subsequently approaches the asymptotic flow vary significantly with Q.

3.3. Long-term flow regimes
Our numerical solutions indicated three distinct long-term regimes of flow dependent
on whether D < 0, 0 < D < 1 or D > 1. We refer to these as regimes A, B and C,
respectively. Regime A arises when fluid flows directly through the leakage pathway,
occurring if D < 0. In this case, the long-term asymptotic flow is described entirely
by the steady state (3.9). Regime B arises when the current remains detached from
the upper boundary and the asymptotic condition (3.10) is applicable, occurring if 0<
D< 1. Finally, regime C arises if the free surface contacts the upper boundary above
the outlet, occurring if D > 1. The long-term flow is then subject to the alternative
asymptotic condition xU(t)→∞.

To investigate the long-term flow relevant to regime B, we consider the solution to
(3.2)–(3.6) subject to (3.10). A scaling analysis of these equations shows that there is
no constant horizontal length scale associated with the flow, indicating a self-similar
asymptotic regime. The relevant similarity variables are

η= t−1/2(x− X), h= h(η), q+ = R t−1/2, (3.13a−c)
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FIGURE 6. (Colour online) The rate of change of the dimensionless volume of fluid in
the medium V̇ defined by (3.12) plotted as a function of time. In (a), solutions are shown
for a selection of hydrostatic parameters D= 0.125–8 and D 6 0 with the dimensionless
threshold flux Q= 0.5 and outlet position X = 2 fixed. In (b), solutions are shown for a
selection of dimensionless threshold fluxes Q = 0–0.9 and Q > 1, all with fixed D = 2
and X = 2. The time at which the threshold flux is reached, occurring when q− = Q
and V̇ = 1 − Q, at which the leakage law switches from (3.6a) to (3.6b) and fluid
begins to propagate downstream of the outlet, is indicated by a filled circle. The time
at which the current contacts the upper boundary directly above the outlet (h(X, t)= 1),
corresponding to the switch in the leakage law from (3.6b) to (3.6c) for cases of D> 1,
is indicated by an unfilled circle. Panel (a) illustrates the approach of V̇ towards different
asymptotes (3.18c) (dashed lines, blue online), as D varies. Panel (b) illustrates that, while
the asymptotic evolution of V̇ is independent of Q, the time scales on which V̇ approaches
the asymptote increases significantly with Q.

where the constant R will be referred to as the retainment coefficient. Recasting (3.2)
in terms of (3.13), we obtain

− 1
2ηh′ = (hh′)′, (3.14)
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where we use a prime to denote d/dη. The frontal conditions (3.3a,b) become

h(ηL)= 0, h′(ηL)=− 1
2ηL. (3.15a,b)

and the asymptotic condition (3.10) becomes

h(0)=D. (3.16)

In terms of the rescaled similarity variables h̃ = h/D, η̃ = D1/2η, and R̃ = D−3/2R,
(3.14)–(3.16) are rendered free of D and are then equivalent to the similarity system
described by Neufeld et al. (2009) in the context of flow downstream of a leakage
point in a deep porous medium. This equivalence occurs because the free surface
remains detached from the upper boundary downstream and hence the confinement
plays no role there. The unique solution to the rescaled system, which we denote here
by h̃= F(η̃), η̃L = 1.62 and R̃= 0.443, can be determined numerically and describes
all instances of the dimensionless asymptotic solution relevant here if 0< D< 1. In
terms of the similarity variables (3.13), it can be expressed as

h=DF(D−1/2η), ηL = 1.62 D1/2, R= 0.443 D3/2, (3.17a−c)

which shows how it scales with the hydrostatic head D. The height (3.17a) is plotted
for D= 0.1, 0.5 and 1 in figure 7. The superlinear relationship between the retainment
coefficient and the asymptotic hydrostatic head R ∝ D3/2 given by (3.17c) is plotted
as a function of D for 0<D 6 1 in figure 8.

If D> 1, the asymptotic condition (3.10) cannot apply because the hydrostatic head
needed to balance the injection rate using gravity alone lies outside the medium. As
shown earlier by our numerical solution with D= 2, the surface instead accumulates
to fill the depth of the medium above the outlet and proceeds to advance indefinitely
downstream. In this case, the long-term rate of leakage is controlled by (3.6c) instead
of (3.6b), representing a critical switch in the relevant long-term leakage dynamics.
Given that xU � 1 at long times, we neglect the first term involving Q in the
denominator of the third equation in (3.6) to yield the asymptotic leakage law

qF(t)∼ 1− D− 1
xU(t)− X

(t→∞). (3.18)

In the study of Pegler et al. (2014b), the leading-order constancy of back-pressure
implies an asymptotic condition different from (3.18) in which qF is simply fixed at
a constant less than the input flux. This is responsible for fundamental differences in
the asymptotic flows and leakage rates that arise between the two problems.

The relevant asymptotic conditions (3.5a,b), which replace (3.10) for D > 1, are
given by

h(xU, t)= 1, q+(t)=−∂h
∂x
(xU, t)∼ D− 1

xU(t)− X
(t→∞), (3.19a,b)

where the latter follows on substitution of (3.18) into (3.5b). Remarkably, a scaling
analysis of (3.2)–(3.6) with (3.19a,b) reveals the same similarity scalings (3.13)
relevant if 0<D< 1. This equivalence is coincidental: with 0<D< 1, it arises from
the diffusive scaling for the horizontal extent x ∼ t1/2 associated with a scaling of
terms in (3.2) with h ∼ 1. The same scaling applies for D > 1 because x ∼ t1/2 is
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FIGURE 7. (Colour online) The long-term free-surface height h(η) downstream of the
outlet described by the similarity equations (3.14)–(3.16) for illustrative hydrostatic
parameters D= 0.1, 0.5, 1, 2, 4 and 50. The case D= 1 (thick line) separates cases where
the fluid contacts the upper boundary above the outlet (D>1; regime C) from those where
the current remains detached below it (D < 1; regime B). The analytical approximation
obtained in appendix B is shown as a dashed black line for D= 4 and 50.
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FIGURE 8. (Colour online) The retainment coefficient R(D) in the long-term asymptotic
evolution of the rate of change of the volume V̇ ∼ R t−1/2 as a function of D. For
D 6 0, all injected fluid leaks and R = 0 (regime A). For 0 < D < 1, the coefficient
R = 0.443 D3/2 given by (3.17c) is shown as a dashed curve (green online, regime B).
For D> 1, the leakage rate is controlled by the back-pressure (regime C). The switch in
leakage dynamics from purely gravitational leakage for 0<D< 1 to fixed gravity-driven
leakage with back-pressure for D> 1 causes the curve of R(D) to change from increasing
superlinearly to sublinearly. This results in reduced fluid retainment compared to the same
situation with the confining boundary absent. The asymptote for D� 1 given by (B 10)
is shown as a dotted curve (blue online).
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FIGURE 9. (Colour online) The asymptotic volume of fluid retained in the medium as
a proportion of that which would be retained in the absence of the confining upper
boundary C, as given by (3.21), measuring the relative reduction in fluid retainment by
the confinement. The asymptote C ∼ 1.60/D for D� 1 is shown as a diagonal dashed
line (blue online).

also implied by the inverse dependence of q+∼ x/t on xU ∼ x in (3.19b), representing
the reduction in the downstream flow rate arising from the build-up of back-pressure.
In the analysis of Pegler et al. (2014b), the relevant asymptotic scalings for D > 1
instead imply that q+ = O(1) and x = O(t), thus resulting in a different and more
dramatic critical transition at D= 1 than occurs here.

Recasting (3.19a,b) in terms of (3.13), we obtain

h(ηU)= 1, h′(ηU)=−R=−D− 1
ηU

if D> 1. (3.20a,b)

The system given by (3.14)–(3.16) and (3.20) was solved using a second-order finite
difference scheme in which ηU is treated as a shooting parameter. The height profiles
for D = 2, 4 and 50 are plotted in figure 7 and the retainment coefficient is shown
extended to cases of D > 1 in figure 8. The free surface is seen to become shorter,
steeper and lie further downstream as D is increased. An analytical approximation
obtained by considering the limit D� 1 is calculated in appendix B and plotted as
a dashed black line for D= 4 and 50. The associated asymptote for R is shown as a
dotted curve in figure 8.

The plot of the retainment coefficient R in figure 8(b) shows that the function
R(D) switches from the superlinear relationship (3.17c) for 0< D 6 1 to a sublinear
relationship for D > 1. For values of D > 1, R therefore drops below the long-term
value applicable to an infinitely deep medium (shown extended into the region D> 1
by the dashed curve (green online) in figure 8). The confinement therefore reduces
the proportion of fluid retained to long times. To measure the increase in long-term
fluid retainment relative to the leakage rate applicable without the confinement given
by (3.17c) and denoted here by R0 = 0.433D3/2, we calculate the ratio

C= R
R0
=
{

1 D 6 1,
∼1.60/D D→∞, (3.21)

which we have plotted in figure 9. The reduction of C below unity for D>1 implies a
reduction in fluid retainment compared to the same situation without the confinement.
The large-D asymptote in (3.21) is determined using the leading term in (B 10) and is
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FIGURE 10. (Colour online) Schematic of our experimental Hele-Shaw cell.

shown as a blue diagonal dashed line in figure 9. The presence of the upper boundary
is found to reduce the long-term proportion retained by 10 % if D = 1.4, by 50 %
if D = 2.9 and by 90 % if D = 16. The enhancement of vertical migration through
a geological formation by confinement is therefore significant for large D. This
conclusion is in complete contrast to the effect of confinement found in situations
where back-pressure is dominated by the viscous stresses associated with mobilizing
ambient fluid (Pegler et al. 2014b). In that situation, the approximate constancy of
the back-pressure implies that the reduction of leakage caused by constraining the
hydrostatic head remains a dominant effect to long times. In the present situation, the
reduction of leakage caused by constraining the hydrostatic head is instead ultimately
overridden by the long-term build-up of back-pressure and, moreover, results in
greater long-term leakage than would occur if the confining boundary were absent.

4. Experimental study
We conducted a series of laboratory experiments to compare with our theoretical

predictions. Our experiments were performed in a Hele-Shaw cell composed of two
acrylic sheets, each 200 cm long and 14 cm high (see figure 10) and spacing w ≈
0.38 ± 0.01 cm, forming a porous medium of permeability k = w2/12 and porosity
φ= 1. The gap width was set by spacers, which bounded a confined region of internal
height H = 6 cm. An opening of horizontal breadth b = 0.6 cm, vertical length l =
4 cm and central distance xF = 40 cm from the left-hand edge was left in the lower
spacer to form the outlet. The working fluid was glycerine of kinematic viscosity ν≡
µ/ρ ≈ 4.35–8.08± 0.02 cm2 s−1, which was measured before each experiment using
a U-tube viscometer. Slight absorption of water from air caused the viscosity to vary
between experiments.

The glycerine was injected into the medium through an inlet located at the lower
left-hand corner of the cell using a peristaltic pump. The rate of injection q0 was
monitored by measuring the weight of the glycerine supply over the course of the
experiment. The experiments were recorded using a digital camera and the recorded
images analysed to obtain the positions of the upper and lower contact lines xU(t)
and xL(t). The value for the outlet permeability kF ≈ 7.5× 10−3 cm2 was determined
empirically from calibration experiments in which the leakage rate was monitored
over time. The parameters for six of our experiments (a)–(f ), listed in table 1,
spanned hydrostatic parameters from D = −0.30 to 5.21. Experiment (d) is shown
in supplementary movie 1 available at http://dx.doi.org/10.1017/jfm.2015.315, and

http://dx.doi.org/10.1017/jfm.2015.315
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FIGURE 11. Sequence of photographs showing the evolution of experiment (d), as
described in table 1: (a) t = 50 s, (b) t = 100 s, (c) t = 500 s. The images have been
stretched vertically by a factor of four. Our theoretically predicted position of the free
surface is shown as a solid black curve. No fitting parameters have been used in making
the comparison.

compared with our theoretically predicted interface position in the time-lapse sequence
of figure 11. The measured frontal positions are compared with the theoretical
predictions for all the experiments in figure 12. No fitting parameters have been used.
Generally excellent agreement is seen between the data and the predictions.

Slight overprediction of the frontal positions xL(t) can be attributed to rounding of
the noses of our experimental currents (see figure 11), which is not accommodated
in our idealized theoretical model. We expect this rounding to be caused by a
combination of the surface tension between glycerine and air and the traction exerted
along the base of the current by the lower boundary. The discrepancy is most
significant in experiment (b) because the region of the current downstream of the
outlet is thinnest in that case and hence more sensitive to the effects of a rounded
nose. Slight underprediction of the positions of the upper contact line xU(t) can
likewise be attributed to the meniscus of the glycerine extending slightly along the
top boundary.

5. Conclusions
We have considered the invasion of a dry porous medium by fluid in situations

where the medium is confined vertically by horizontal boundaries, with one boundary
containing a localized outlet or leakage point. It was found that, if the invading fluid
can fill the full depth of the medium in the region of the leakage zone, then the
long-term volume of fluid that leaks can be significantly greater than the rates of
leakage obtained from previous studies of leakage in infinitely deep porous media.
The enhancement of leakage arises from the build-up of back-pressure resulting from
driving the invading fluid downstream of the leakage point. The rate of vertical fluid
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FIGURE 12. Comparisons between our experimental data for contact-line positions, xL(t)
(filled circles) and xU(t) (crosses), and our theoretical predictions (solid curves), for the
six experiments listed in table 1: (a) D=−0.30; (b) D= 0.28; (c) D= 1.04; (d) D= 1.93;
(e) D= 3.02; (f ) D= 5.21.

Experiment q0 (cm2 s−1) ν (cm2 s−1) X Q D Regime

(a) 0.56 4.35 0.22 1.81 −0.30 A
(b) 1.20 5.22 0.58 0.705 0.28 B
(c) 1.56 7.24 1.04 0.391 1.04 C
(d) 3.27 5.25 1.61 0.257 1.93 C
(e) 3.92 6.23 2.25 0.181 3.02 C
(f ) 4.82 8.08 3.59 0.113 5.21 C

TABLE 1. Parameter values used in our experiments, arranged in order of ascending
hydrostatic parameter D.

migration through the subsurface can therefore be much greater than predicted by
studies which assume infinite depth, in situations where the rock forms layered strata,
as is typical in sedimentary geological formations. Excellent agreement was obtained
between the predictions and data from a new series of laboratory experiments.
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Our primary theoretical results were to show that the long-term asymptotic flow
can be classified into three distinct regimes by a dimensionless parameter D. When
positive, D is the ratio of the steady-state height of the current at which the leakage
driven by gravity alone balances the injection rate, to the depth of the medium. If
D < 0, gravity acting along the outlet alone can independently drive a leakage rate
which balances the injection rate. In those cases, all the invading fluid leaks directly
through the outlet, with no fluid propagating downstream of it.

If 0 < D < 1, the injection rate is large enough to accumulate fluid above the
outlet but small enough that the current remains detached from the upper boundary
to long times. The hydrostatic head above the outlet approaches the asymptotic
height at which gravity-driven leakage balances the injection rate, equivalent to the
situation applicable to leakage from an infinitely deep porous medium. Likewise, the
asymptotic proportion of injected fluid retained decreases according to 0.433D3/2t−1/2.
The rate of leakage therefore balances the rate of injection asymptotically with a
coefficient that increases superlinearly with the asymptotic hydrostatic head above the
outlet D.

If D > 1, there is a critical transition as the current fills the entire depth of
the medium above the outlet and the free surface proceeds to migrate downstream
indefinitely. Filling the full depth of the medium downstream of the outlet fixes
gravity-driven leakage at a constant rate, but introduces a new force driving leakage
given by the back-pressure associated with driving the invading fluid downstream of
the outlet. Although the rate at which leakage is driven by gravity becomes constant
as a result of fixing the hydrostatic head at the depth of the medium, the increase
in back-pressure over time causes the leakage rate to approach the injection rate
asymptotically. In this regime, the proportion of injected fluid retained approaches
the asymptote R(D)t−1/2, where the function R(D) is sublinear (with an asymptote
R(D) ∼ (D/2)1/2 for D� 1), contrasting with the superlinear relationship applicable
for 0<D< 1. The presence of the upper boundary therefore causes the rate at which
fluid is retained in the medium to be potentially considerably smaller than if D< 1.

The conclusion relating to the effect of confinement on vertical migration is
different to that which has been found in situations where an aquifer is saturated by
an ambient viscous fluid (Pegler et al. 2014b). In that situation, the back-pressure
originates primarily from the displacement of ambient fluid towards the far field and
hence there is relatively little change in back-pressure resulting from the introduction
of invading fluid. The leakage rate is therefore effectively fixed once the depth of
the medium above the outlet becomes filled, thus resulting in substantially more fluid
retained to long times than occurs in the analogous cases where D< 1. This contrasts
completely with the present situation, where the effect of constraining gravity-driven
leakage from fixing the hydrostatic head at the depth of the medium is ultimately
overridden by a significant build-up of pressure arising from the accumulation of
injected fluid downstream of the leakage point. In summary, while the effect of
confining boundaries can significantly reduce long-term leakage in aquifers saturated
by an ambient fluid, the results of this paper indicate that confinement can only
increase vertical migration if the host rock is unsaturated.
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Appendix A. Frontal contact-line evolution
We derive the evolution equation for the layer fronts (2.8) from the frontal

conditions (2.8a,b). Differentiating (2.8a) with respect to t, rearranging for ẋL and
using (2.6a) to substitute for ∂h/∂t in favour of the flux gradient ∂q/∂x, we obtain

ẋL =− ∂h/∂t
∂h/∂x

= φ
−1∂q/∂x
∂h/∂x

= lim
x→xL

(
q
φh

)
= u
φ
, (A 1)

where all the quantities involving a partial derivative are evaluated a short distance
upstream of x = xL. The third equality follows from l’Hôpital’s rule, which is
applicable because the flux q and the thickness h both vanish together in the limit
x→ xL in accord with (2.8a,b).

Appendix B. Analytical approximation for D� 1

We determine an analytical approximation for the solution to the asymptotic
similarity system given by (3.14), (3.15) and (3.20) for cases of D � 1. With
reference to (3.7), this corresponds to the physical limits of a shallow medium, a
high rock permeability or a low outlet permeability, for example. It will be found to
provide a reasonable approximation for D & 2.

The free surfaces in the numerical solutions with D= 4 and 50 shown in figure 7
have a relatively short horizontal extent compared to the distance of the free surface
from the outlet (1η≡ (ηL − ηU)� ηU). This motivates an analysis based on a small
perturbation to the horizontal coordinate,

η= η0 + η̃, (B 1)

where η0 is a constant representing the leading-order horizontal position of the
interface, to be determined, and η̃� η0 is the perturbation to the spatial coordinate.
Substituting (B 1) into (3.14) and neglecting higher-order terms, we obtain

− 1
2η0h′ ≈ (hh′)′, (B 2)

where h= h(η̃) and we have used a prime here to denote d/dη̃. With η̃U=ηU−η0 and
η̃L = ηL − η0, the conditions at the upper boundary (3.20a,b) and front of the current
(3.15a,b) take the leading-order forms

h(η̃U)= 1, h′(η̃U)≈−(D− 1)/η0, (B 3a,b)

h(η̃L)= 0, h′(η̃L)≈− 1
2η0. (B 4a,b)

Integrating (B 2) subject to (B 3b) and (B 4b), we obtain

h′ =− 1
2η0 where η0 = [2(D− 1)]1/2. (B 5a,b)

Equation (B 5a) shows that the free surface is linear to leading order, with a slope
h′ that is steeper for solutions of larger extent η0. This is consistent with the flow

http://dx.doi.org/10.1017/jfm.2015.315
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rate u in the free-surface region being proportional to the slope in accord with (2.5).
Integration of (B 5a) subject to (B 3a) and (B 4a) yields

h(η̃)= η̃L − η̃
1η

, where 1η≡ (ηL − ηU)= 2
η0
=
[

2
D− 1

]1/2

. (B 6a,b)

To determine the edges of the free surface η̃U and η̃L, we utilize the equation of global
volume conservation, which is given dimensionally by∫ t

0
q+(τ ) dτ = φ

∫ xL(t)

xF

h(x, t) dx. (B 7)

This equation relates the time-integrated volumetric flux of input downstream q+(t)
to the total volume of fluid in that region. Recasting (B 7) in terms of the similarity
variables (3.13), evaluating the time integral on the left-hand side and using (3.20b)
and (B 6a), we obtain

2R= 2(D− 1)
ηU

=
∫ ηL

0
h dη≈ ηU + 1η2 , (B 8)

where the first term in the last equation originates from the volume between the outlet
and the upper contact line 0<η<ηU and the second term from the free-surface region
ηU < η < ηL. Substituting ηU = η0 − η̃U and neglecting higher-order terms in η̃� η0,
we obtain the first-order perturbations to the contact-line positions

η̃U =− 1
41η, η̃L = 3

41η. (B 9a,b)

The asymptotic solution given by (B 6a,b) and (B 9a,b) is shown as a black dashed
line for the examples of D= 4 and 50 in figure 7, showing good agreement with our
numerical solution.

Using (B 5), (B 6b) and (B 9a) to evaluate ηU = η0+ η̃U in the first equation in (B 8)
and neglecting the higher-order terms, we obtain the leading-order coefficient R, along
with its first-order correction, as

R∼
(

D− 1
2

)1/2 [
1+ 1

4(D− 1)

]
(D� 1), (B 10)

which is plotted as a dotted curve (blue online) in figure 8.
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