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We study the axisymmetric propagation of a viscous gravity current over a deep
porous medium into which it also drains. A model for the propagation and drainage
of the current is developed and solved numerically in the case of constant input from
a point source. In this case, a steady state is possible in which drainage balances
the input, and we present analytical expressions for the resulting steady profile and
radial extent. We demonstrate good agreement between our experiments, which use a
bed of vertically aligned tubes as the porous medium, and the theoretically predicted
evolution and steady state. However, analogous experiments using glass beads as the
porous medium exhibit a variety of unexpected behaviours, including overshoot of
the steady-state radius and subsequent retreat, thus highlighting the importance of
the porous medium geometry and permeability structure in these systems.

1. Introduction
Gravity currents are primarily horizontal fluid flows driven by a density difference

between the intruding and ambient fluids. These flows are common in natural systems
and industrial processes and describe, for example, the spread of cold air into a
room, the dispersal of pollutants from an industrial spill and the flow of snow and
debris avalanches (Huppert 2006). Many previous studies have examined in detail the
propagation of currents along impermeable boundaries; here we consider flow over
porous substrates through which these currents can also drain.

Two-dimensional gravity currents propagating over porous media have been
addressed both theoretically and experimentally by several authors. For currents
flowing over thin porous substrates, only the weight of the overlying fluid drives
drainage (Thomas, Marino & Linden 1998; Ungarish & Huppert 2000; Pritchard,
Woods & Hogg 2001; Marino & Thomas 2002). In contrast, for gravity currents
propagating over deep porous media, Acton, Huppert & Worster (2001) showed
that both the hydrostatic pressure of the fluid in the current and the weight of
the fluid within the porous medium drive drainage. They used this description of
drainage in a model of experiments in which low-Reynolds-number gravity currents
spread over a deep porous layer in two dimensions. Thomas, Marino & Linden
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Figure 1. An illustration of the theoretical and experimental geometry considered for the
axisymmetric spreading of a viscous gravity current over a porous medium.

(2004) used this drainage law to describe their experiments on the propagation of
high-Reynolds-number currents over deep porous media. Pritchard & Hogg (2002)
have also applied the same drainage law to their examination of gravity currents
propagating within a porous medium overlying a deep layer of lower permeability.
Similar studies have also been conducted that consider two-phase flow within the
porous medium (e.g. Hussein, Jin & Weaver 2002), but these effects are beyond the
scope of the present study.

Axisymmetric gravity currents propagating over porous media have been studied
primarily as microscale flows in which capillary forces drive the drainage and therefore
the wetting properties of the medium are important (e.g. Davis & Hocking 1999, 2000;
Kumar & Deshpande 2006). At the macroscale, Pritchard et al. (2001) considered
gravity-driven drainage of an axisymmetric current flowing through a porous medium
overlying a thin layer of lower permeability. In both geometries, previous experiments
only involved currents of fixed volume, whereas our experiments explore the fixed-flux
case.

Here we examine the axisymmetric propagation of a macroscopic viscous gravity
current over a deep porous medium. Our model uses lubrication theory for flow
within the current, the drainage law of Acton et al. (2001), and Darcy flow within
the porous medium. While the full spatial and temporal evolution of the current can
only be obtained numerically, an analytical expression for the steady-state extent and
profile of a current fed by a constant input of fluid is found. Additionally, we develop
scaling laws describing the propagation of the current. Our experimental setup, in
which a gravity current fed by a constant flux of golden syrup spreads across a bed
of vertically aligned straws, conforms closely to the assumptions of our model, so
the scaling laws provide a good collapse of all data onto a curve in agreement with
the numerical solution. In contrast to these well-behaved currents, we describe the
non-ideal behaviour observed in experiments using glycerin and glass beads similar to
the system used by Acton et al. (2001). We propose that the axisymmetric geometry
makes the currents particularly sensitive to any non-uniformity of the porous medium
which leads to the disagreement between these experiments and the theory.

2. Theoretical model
We consider the axisymmetric spreading of a fluid of kinematic viscosity ν and

density ρ into an ambient fluid of density ρa � ρ and viscosity νa � ν. As shown
schematically in figure 1, fluid is supplied at the origin and spreads radially over a
porous medium with porosity φ and permeability k into which the fluid drains. We
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consider the general case in which the volume of fluid increases as qtα , where t is
time and q and α are constants. After a brief initial stage, the radial extent of the
current rN (t) is much greater than its height h(r, t), and in this limit we apply the
approximations of lubrication theory: velocity within the current is assumed to be
predominantly horizontal and pressure within the current is assumed to be hydrostatic.
Under this approximation, viscous flow within the current is driven by radial gradients
of its thickness. We apply conditions of no slip at z = 0 and no tangential stress at
z = h to determine the horizontal fluid flux qh = − (g/3ν) rh3 ∂h/∂r . Conservation of
fluid mass through an infinitesimal control volume of the gravity current gives

∂h

∂t
− g

3ν

1

r

∂

∂r

(
rh3 ∂h

∂r

)
= w(r, 0, t) (2.1)

governing the current’s structure and evolution, where w(r, 0, t) is the drainage velocity
from the base of the current into the underlying porous medium. Following Acton
et al. (2001), we assume that drainage into the porous medium is driven both by
the weight of the draining fluid and the hydrostatic pressure of the fluid within the
current, giving

w(r, 0, t) = −gk

ν

(
1 +

h

l

)
= −φ

∂l

∂t
, (2.2)

where l(r, t) is the depth of the fluid within the porous medium.
In this analysis, we have made a few assumptions that merit further examination.

First, our assumption of no slip at the porous medium surface is valid when the
current height is much greater than the pore size because the presence of a slip
velocity is equivalent to extending the fluid region a distance of less than one pore
size into the medium (Beavers & Joseph 1967; Le Bars & Worster 2006). Near the
nose of the current or for currents flowing over very rough substrates apparent slip
may be important. Secondly, we have assumed that surface tension is negligible in
the drainage law. As discussed in Acton et al. (2001), this is accurate as long as the
pressure due to surface tension is much less than the hydrostatic pressure; equivalently
the capillary rise height hc ≈ γ /ρga, where γ is the surface tension and a is the pore
radius, must be much smaller than h. For our experimental setup hc ≈ 2 mm, much
less than typical current heights. Finally, (2.2) assumes that flow within the porous
medium is single phase and that the porous matrix is stationary; therefore we can
ignore flow of the displaced fluid and assume that k is constant in time. This is
an accurate assumption when the wetting properties of the displaced and displacing
fluids with respect to the porous matrix are similar and when the displaced fluid
is inviscid. Equation (2.2) also assumes that fluid flow is predominantly vertical,
implicitly neglecting the potential for the Rayleigh–Taylor instability.

The governing equations (2.1) and (2.2) are subject to one boundary condition
specifying the flux near the origin and another requiring zero flux through the nose
of the current rN (t). Respectively, they are

lim
r→0

[
2πr

gh3

3ν

∂h

∂r

]
= −αqtα−1 and

[
2πr

gh3

3ν

∂h

∂r

]
rN

= 0. (2.3a, b)

We note that boundary condition (2.3a) along with the evolution equation (2.1) is
equivalent to a statement of global mass conservation, namely,

qtα = 2π

∫ rN

0

rh dr − 2π

∫ t

0

∫ rN

0

rw(r, 0, t) dr dt. (2.4)
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We non-dimensionalize (2.1)–(2.3) by introducing horizontal, vertical and temporal
scales SH , SV and ST given by

SH = (q/Γ )1/2

(
Γ 4g

3qν

)(α−1)/2(α−5)

, SV = Γ

(
Γ 4g

3qν

)1/(α−5)

and ST =

(
Γ 4g

3qν

)1/(α−5)

,

(2.5a, b, c)

where Γ = gk/ν is the characteristic drainage velocity in the porous medium. By
introducing dimensionless variables

H = h/SV , L = l/SV , R = r/SH and T = t/ST , (2.6a, b, c, d )

the equations governing the dimensionless height H (R, T ) and depth L(R, T ) of the
intruding fluid become
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. (2.8)

These are subject to the scaled boundary conditions

lim
R→0
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For a fixed flux at the origin (α = 1) the scalings simplify to
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. (2.10a, b, c)

This system admits a steady state in which drainage exactly balances the material
input. In the long-time limit, the depth of drainage greatly exceeds the height of the
current L � H and the current has the steady profile

H =
[
R2 − R2

N − 2R2
N ln (R/RN )

]1/4
, (2.11)

plotted in figure 2. The logarithmic singularity at R = 0 accounts for the finite flux
there (Huppert 1982). Balancing the external flux with the drainage flux, we find the
steady-state extent

RN (T → ∞) = π−1/2 ≈ 0.564. (2.12)

We note that Pritchard et al. (2001) determined an analytical solution for the steady
state of currents in a similar system. They considered a two-dimensional current
fed by a constant source at the origin spreading through a porous medium of high
permeability and underlain by a very thin low permeability porous layer. Comparing
their figure 3 and (2.20) with our figure 2 and (2.11) highlights the importance of
the specific system to the current behaviour. Whereas in our system, the steady-state
profile of the current has an inflection point where the curvature switches from being
positive near the source to negative near the nose, in their system the steady-state
current surface is concave upwards near the nose.

3. Numerical solution
The full time evolution of the current height H (R, T ) and depth L (R, T ) is found

numerically by integrating (2.7) and (2.8) on a uniform grid with spacing 0.001.
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Figure 2. The steady-state profile of dimensionless height H versus dimensionless radius R.
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Figure 3. Dimensionless height H and depth L profiles from the numerical solution with
φ = 0.907 (curves) and experiment 9 (symbols) at dimensionless times T =0.216 (solid curve
and �), 0.592 (dashed curve and �) and 1.72 (dotted curve and �). Data for R � 0.1 are not
plotted as effects from the finite width and coiling instability of the fluid source are most
pronounced there. See discussion of experimental errors in § 4.

We compute the new drainage depth Ln+1 =L (R, Tn+1) from (2.8) using the height
Hn = H (R, Tn) and depth Ln = L (R, Tn) from the previous time step. We then use
Ln+1 to compute the drainage velocity on the right-hand side of (2.7) and solve
for the height from (2.7) using the control volume (or flux conservative) method
in space and a Crank–Nicholson (semi-implicit) scheme in time (Patankar 1980). In
this computation, (Hn)

3 is our initial estimate for H 3 in the nonlinear term on the
left-hand side of (2.7). We update the height as described above and use the new
estimate for H in the nonlinear term, iterating this process until the updated value of
H converges. This converged value is Hn+1. Finally, we proceed to the next time step.

We introduce fluid into the current by assigning a constant flux at the left-
hand boundary of the first control volume (R = 0) in the discretized equations.
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Figure 4. Lyle’s golden syrup spreading out over and draining into a bed of drinking straws.

The right-hand boundary of our grid is impermeable to fluid flow and is positioned
beyond the steady-state extent. The initial condition is an empty box with no fluid.
We record the nose of the current as the position where H (R) falls below a prescribed
small tolerance: the height beyond this point is set to 0. This condition is necessary
because the drainage velocity is ill defined when L =0 and H �= 0, as occurs near the
current nose at the beginning of a time step.

We have tested the sensitivity of the numerical solution to the choice of grid spacing,
time-step size and height tolerance, and found the results to be relatively insensitive to
these parameters. Additionally, we have tested our numerical results for non-draining
currents against those of Huppert (1982), and have found good agreement for both
the constant volume and constant flux cases.

Figure 3 shows three calculated profiles (curves) at different times for a numerically
simulated current with porosity φ =0.907, similar to that of our experimental setup.
We note that, as the system approaches steady state, the volume of fluid residing
within the porous medium becomes much larger than the volume in the current
above the medium. The solid curve in figure 5 shows how the extent increases with
time, approaching the steady-state value predicted by (2.12).

4. Experiments
We performed a series of experiments using Lyle’s golden syrup as the viscous

intruding fluid and a bed of vertically oriented drinking straws of radius rs = 0.29 ±
0.01 cm as the underlying porous medium, as shown in figure 4. Lyle’s golden syrup
was used as the working fluid because its viscosity of ν � 400 cm2 s−1 (as measured by
a U-tube viscometer) results in currents with heights much greater than the surface
topography of the porous medium. The simple geometry of the porous medium
ensures strictly vertical drainage flow and allows for a comparison between the
experimentally measured and the theoretically predicted permeability.

We measured the permeability of the porous medium by conducting drainage
experiments in which syrup with ν = 453 cm2 s−1 and ρ = 1.5 g cm−3 was maintained
at a constant height h = 10 cm above the porous medium within a large cylinder of
radius rC = 5.75 cm as it drained through the straws of length l = 20 cm. By measuring
the mass flux dM/dt through the straws with a digital scale connected to a computer,
we obtained the drainage velocity

w =
gk

ν

(
1 +

h

l

)
=

dM/dt

ρπr2
C

, (4.1)

and consequently a measure of the permeability of the porous medium

kexp = 6.36 ± 0.04 × 10−3 cm2. (4.2)
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Experiment q (cm3 s−1) ν (cm2 s−1) SH (cm) SV (cm) ST (s)

1 1.06 ± 0.01 453 8.78 1.10 80.0
2 4.18 ± 0.03 453 17.4 1.55 113
3 2.09 ± 0.01 453 12.3 1.30 94.7
4 9.83 ± 0.01 453 26.7 1.92 139
5 6.74 ± 0.01 453 22.1 1.75 127
6 2.31 ± 0.01 401 12.2 1.30 83.4
7 1.27 ± 0.01 401 9.05 1.12 71.9
8 2.00 ± 0.01 401 11.3 1.25 80.4
9 6.11 ± 0.01 401 19.8 1.65 106

10 7.37 ± 0.01 401 21.8 1.73 111
11 6.63 ± 0.01 401 20.7 1.69 109
12 20.35 ± 0.03 401 36.2 2.24 144

Table 1. Summary of the experimental parameters. For each experiment, the permeability was
assumed to be k = 6.36 ± 0.04 × 10−3 cm2. The uncertainty in viscosity is described in the text.

The uncertainty in this value comes from estimating dM/dt from the measured mass
versus time, which has an uncertainty of ±0.02 g s−1. This experimental value can be
compared with the theoretical permeability for aligned capillary tubes given by Bear
(1972)

k =
φr2

s

8
= 9.5 ± 0.3 × 10−3 cm2, (4.3)

where φ = π
√

3/6 
 0.907 is the packing fraction of the straws for hexagonal close
packing. We attribute the approximately 30 % discrepancy between the measured
and the theoretical values to a slow leakage of golden syrup through the interstices
between the straws and imperfections in the straw packing that produced a porosity
not equal to that of a close packing. In the following analysis of the experimental
data, we use the measured permeability.

For each experiment, a fixed flux of syrup was supplied at the origin from a reservoir
maintained at a constant gravitational head. The mass flux was measured with a digital
balance connected to a computer prior to the initiation of each experiment. The flux,
viscosity and resultant scaling laws are summarized in table 1 for each experiment.

Digital images of the side profile of each experiment were made at regular intervals
(see figure 4) and later analysed to obtain the radial extent and height profiles of
each current. A comparison between the scaled radial extent of each current and the
numerical solution to (2.7) and (2.8) is shown in figure 5. The dotted curves represent
a ±10 % error bound in SH applied to the numerical extent (solid curve). The error
in ST is not represented in the plot. Uncertainty in ν and k are the main contributors
to the overall uncertainty, as the error in q is less than 1 %. Although the viscosity
was measured regularly throughout the set of experiments, the large range of values
obtained and the known large temperature dependence of the viscosity (20 % per ◦C)
result in a large uncertainty in the actual viscosity. Due to this uncertainty in the
viscosity and the discrepancy between the theoretical and the measured permeabilities,
we estimate the total error to be about ±10 %. Within the error bounds, the collapse
of the scaled data and agreement with the numerical solution is good. We also
obtained height profiles from the images of experiment 9, which are compared to the
numerical profiles at the same scaled times in figure 3. For clarity error bounds are
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Figure 5. The dimensionless radial extent RN versus dimensionless time T for the experiments
listed in table 1 and our numerical solution (solid curve). The dotted curves show the ±10 %
error bounds. The symbols correspond to experiments: 1 (�), 2 (�), 3 (�), 4 (�), 5 (�), 6 (+),
7 (×), 8 (�), 9 (�), 10 (	), 11 (
) and 12 (�).

not plotted, but the uncertainty is again ±10 %. Although the finite width and coiling
instability of the fluid source cause some discrepancy, the overall agreement is good.

5. Discussion
We have shown that for a fixed flux of golden syrup flowing across a bed of vertically

aligned straws, a simple model based upon lubrication theory and the drainage law
of Acton et al. (2001) can describe the current propagation and steady state. In
contrast, experiments conducted using glycerin as the working fluid and ∼ 3 mm
diameter spherical glass beads as the porous medium (detailed results not included
here) exhibited non-ideal behaviour that violated a number of assumptions in our
model. In particular, most currents had a scalloped front as the current propagated
across the beads (figure 6a), complicating measurement of the current radius. Many
were also non-axisymmetric as shown in figure 6b. Finally, all of the glycerin currents
exhibited a maximum extent from which the current nose then retreated (figure 6c).

We attribute these non-ideal behaviours primarily to a sensitive dependence on
the characteristics and geometry of the underlying porous medium. For example, at
the nose of the current the thickness is small and may be comparable to the surface
topography of the porous medium. This could cause the front to stick on surface
asperities, producing the scalloped edge. Additionally, the currents are sensitive to
inhomogeneities in the bead packing, and thus the permeability of the medium, due
to the strong influence of permeability on the drainage velocity in (2.2) and on the
scaling laws in (2.10). This may have contributed to the scalloped front and the non-
axisymmetric propagation. The non-axisymmetry also could have arisen from a bead
surface that was not sufficiently levelled. Although care was taken to level the surface,
we cannot exclude this possibility. These hypotheses are supported by our experiments
using golden syrup and straws, a level and uniform porous medium, and could be
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Figure 6. Examples of non-ideal behaviour from three gravity currents using glycerin (dark)
input at the upper right corner and spreading across beads (light); (a) large and small scallops
at the leading edge; (b) non-axisymmetric spreading (the quarter circle is equiaxial); and (c) a
region of beads over which the current advanced and subsequently receded.

tested by conducting more experiments using, for example, glycerin and straws or
smaller beads.

For the roll-back phenomenon, we have no simple explanation. However, we
can rule out some possibilities. First, we verified that horizontal flow within and
immediately above the surface of the porous medium was negligible as assumed in
our model (no-slip condition). Powdered dye placed in several small piles on the
bead surface along the path of the current was picked up by the draining fluid
and carried purely vertically into the beads. Secondly, the geometry of the glycerin
experiments afforded us a cross-sectional view of the current and draining fluid from
which we observed a uniform saturation of the beads. This supports our assumption
of a constant permeability though, as we could not observe the interior of the porous
medium, we cannot completely rule out these effects in the bulk of the flow. Because
the roll-back phenomenon was not observed in the golden syrup and straws system,
we think that it is related to the specific combination of fluid and porous medium
properties. Again, this could be tested with experiments involving different fluids and
porous media. Finally, we note that no experimental evidence for a Rayleigh–Taylor
instability was found at the lower interface of the current on the time scales over
which the experiments were conducted. This observation implies that, at least here,
vertical drainage is the dominant factor controlling radial spreading of the current.

The contrast between our experiments using glycerin and beads and those of Acton
et al. (2001) using glycerin and beads in a linear geometry with a fixed fluid volume
suggests that some characteristic of either the axisymmetric geometry or the fixed fluid
input results in currents that are much more sensitive to the properties of the porous
medium. For example, axisymmetric currents have a much longer front and therefore
a larger nose area than linear currents. Therefore their spreading is more strongly
influenced by surface roughness and the failure of our model assumptions near the
nose. To explore these ideas further, we suggest conducting fixed flux experiments
in the linear geometry and fixed volume experiments in the axisymmetric geometry
using different porous media.

The sensitive dependence of propagation and drainage of the current on the spatial
structure of the permeability and the surface topography suggests that further studies
are needed to characterize fluid flow in these situations. Nonetheless, our model
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provides a simple framework to estimate the evolution of the current over time and
the maximum extent at steady state for currents flowing over simple porous media.
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