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Leakage from inclined porous reservoirs
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We investigate the effect of localized leakage on the storage of buoyant fluids in
inclined porous reservoirs, with application to the geological storage of CO2. We find
that once the current has propagated some distance beyond the point of leakage,
its profile becomes steady in time, save for the nose, which advances at a constant
speed. Crucially, this steady state implies that the efficiency of storage (defined as
the instantaneous proportion of the injected fluid that does not leak) tends to a
finite value. This contrasts with previous studies of localized leakage in horizontal
reservoirs, which found that the efficiency of storage tends to zero at late times.
We analyse the steady-state efficiency and the time scales of evolution for a leakage
point located either upslope or downslope of the injection point using analytical
and numerical methods. These findings are verified by model laboratory experiments.
Finally, we consider the implications of our results for the geological storage of CO2

under sloping cap rocks compromised by a fracture or fissure.
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1. Introduction
Recently, the buoyancy-driven flow of liquids in a porous medium has received

renewed interest because of the potential to sequester large amounts of carbon dioxide
(CO2) in porous reservoirs (Bickle et al. 2007). Several small-scale demonstration
projects have already commenced, pumping supercritical CO2 into brine-saturated
aquifers to test the viability of this technique. These have confirmed that the CO2

remains buoyant relative to the ambient brine and so migrates upwards until it
encounters a relatively impermeable cap rock after which it spreads horizontally as a
‘gravity current’ (Huppert 2006). The motion of gravity currents without leakage has
been extensively studied in both two and three dimensions (see Huppert & Woods
1995; Lyle et al. 2005, respectively). The presence of a sloping cap rock causes the
current to propagate preferentially along the slope (Vella & Huppert 2006).

For the geological storage of CO2 to be effective, the relatively impermeable cap
rock must prevent the buoyant supercritical fluid from escaping the aquifer for
long enough that other, more permanent, mechanisms (e.g. dissolution and capillary
trapping) have time to act. It is therefore important to understand the time scale over
which the cap rock may retain a substantial proportion of the injected CO2. Leakage
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Figure 1. Schematic of a gravity current on a slope with a downslope localized leak.

may occur over an extended region because of the small, but finite, permeability
of the cap rock (see Pritchard, Woods & Hogg 2001; Woods & Farcas 2009, for
example). Alternatively, leakage may be focused in a small region because of the
presence of a high-permeability pathway such as a fracture or fissure in the overlying
cap rock. Several recent studies have examined localized leakage from horizontal
gravity currents in a variety of geometries (Pritchard 2007; Neufeld, Vella & Huppert
2009; Neufeld et al. 2011; Vella et al. 2011). These studies have been primarily
concerned with the rate at which fluid leaks from the reservoir. A convenient way of
characterizing this leakage is by using the efficiency of storage,

Es ≡ qin − qs

qin

, (1.1)

in which qin is the volumetric injection flux and qs is the volumetric leakage flux.
These previous studies have determined the long-time behaviour of Es with horizontal
boundaries using asymptotic methods. In two dimensions, where fluid is injected along
a line and leaks from a line, Neufeld et al. (2009) found that Es ∝ t−1/2 at late times.
With injection occurring at a point and leakage localized to a small, circular region,
Neufeld et al. (2011) found that Es ∝ 1/ ln t , while for injection at a point but leakage
along a line Vella et al. (2011) found that Es ∝ t−2/5. In this article, we show that the
presence of a sloping cap rock changes these results qualitatively: at late times the
efficiency of storage tends to a constant, Es → E∞

s . We begin by detailing the theoretical
model in § 2 before studying the steady state in § 3 (including the determination of
E∞

s ) and the evolution to this state in § 4. We compare these results with analogue
laboratory experiments in § 5 before concluding in § 6 by considering the geological
storage of CO2.

2. Theoretical modelling
2.1. Governing equations

Consider a liquid of density ρ + �ρ and viscosity µ injected with constant volume
flux per unit width qin at x = 0 into a two-dimensional, semi-infinite porous medium.
The porous medium, of constant permeability k and porosity φ, is saturated with a
fluid of density ρ and is bounded below by a layer of thickness b at an angle θ to the
horizontal (see figure 1). (We illustrate here the case of a dense fluid propagating at
the base of a reservoir for comparison with our experiments. However, the analysis
presented is identical to that for a buoyant fluid at the top of a reservoir, which is the
relevant case for CO2 sequestration.) The bounding layer is everywhere impermeable
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apart from a sink of width W and permeability kf at a distance xf from the source.
We consider separately the cases of a downslope sink and an upslope sink. We assume
that the depth of the porous medium is large compared to the depth of the gravity
current h(x, t) and thus neglect any motion of the ambient fluid. We also assume that
the interface of the current, y =h(x, t), is sharp, thereby neglecting any interfacial
energy between the injected and ambient fluids or differences in viscosity, as is typical
of buoyancy-driven flow (Lake 1989). While the capillary forces between CO2 and
brine can be significant, multiphase models find that the small aspect ratio, typical of
buoyancy-driven flows, leads to a balance between gravity and capillary forces (Gasda,
Nordbotten & Celia 2009; Golding et al. 2011). The behaviour of these multiphase
currents is qualitatively similar to the sharp-interface approximation employed here,
and therefore, capillarity is unlikely to affect our results qualitatively.

When flow is predominantly along the slope the pressure within the current is
hydrostatic,

P (x, y) = P0 + xρg sin θ + �ρgh(x, t) cos θ − (ρ + �ρ)gy cos θ, (2.1)

where P0 is a constant. The along-slope Darcy velocity (Bear 1988) is

u = − k

µ

[
∂P

∂x
− (ρ + �ρ)g sin θ

]
, (2.2)

which, when combined with a local statement of mass conservation, determines the
evolution equation for the spreading current

∂h

∂t
− γ

∂

∂x

(
h

∂h

∂x
− h tan θ

)
= −vf . (2.3)

Here, γ = kg cos θ�ρ/µφ is the buoyancy velocity and vf is the leakage velocity,
driven by the hydrostatic pressure gradient within the fissure (see Acton, Huppert &
Worster 2001; Pritchard et al. 2001; Neufeld et al. 2009), which is given by

vf =

⎧⎪⎨
⎪⎩

0, |x ∓ xf | >
W

2
,

γ
kf

k

[
1 +

h

b

]
, |x ∓ xf | <

W

2
,

(2.4)

with the ∓ is chosen according to whether the sink is downslope (−) or upslope (+)
of the source. Equation (2.3) is subject to boundary conditions[

γ h
∂h

∂x

]x=0+

x=0−
= −qin and

[
h

∂h

∂x
− h tan θ

]
x

±
N

= 0, (2.5a,b)

which describe the input flux qin at x = 0 and zero flux at the upslope (x−
N ) and

downlsope limits (x+
N ) of the current, respectively.

The presence of the fissure suggests a natural length scale with which to scale
horizontal distances, X = xf , as well as scales H for vertical distances and T for times,
where

H =

√
xf qin

γ
and T =

√
x3

f

qinγ
. (2.6)

This choice of scaling leads to three dimensionless parameters describing the fissure,

λ =
kf

k

1

b

√
x3

f γ

qin

, β =

√
γ

xf qin

b and ε =
W

xf

, (2.7a,b,c)
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Figure 2. The evolution of a current flowing downslope towards a sink located at xf = 1.
Solid curves show the current shape at t =0.1, 0.5, 2, 5, 20.5 and 52. The steady-state profile,
determined from (3.2)–(3.5), is shown by the dashed curve. Here, λ̄= 1 and σ = 0.25.

which characterize the strength, vertical extent and width of the fissure, respectively.
The slope of the impermeable layer is characterized by the dimensionless advection
velocity

σ = tan θ

√
γ xf

qin

=
X

H
tan θ. (2.8)

In dimensionless terms, the current therefore satisfies

∂h

∂t
− ∂

∂x

(
h

∂h

∂x
− σh

)
=

⎧⎨
⎩

0, |x ∓ 1| >
ε

2
,

−λ (β + h) , |x ∓ 1| <
ε

2
,

(2.9)

with boundary conditions[
h

∂h

∂x

]x=0+

x=0−
= −1 and

[
h

∂h

∂x
− hσ

]
x=x

±
N

= 0. (2.10a,b)

To simplify the theoretical analysis here, we set β =0 so that the system depends on
the values of σ , ε and λ only. When comparing with experiments, however, we allow
β > 0.

2.2. Efficiency of storage

A measure of considerable practical importance is the quantity of injected fluid that
remains in the reservoir over time. Here, we analyze the instantaneous efficiency of
storage in the reservoir, Es , defined as the normalized difference between input and
leakage fluxes. In dimensionless terms, this gives

Es ≡ 1 − Qs = 1 −
∫ ±1+ε/2

±1−ε/2

λh dx = 1 − λ̄hf , (2.11)

where λ̄= ελ is the width-averaged sink strength, hf = 1
ε

∫ ±1+ε/2

±1−ε/2
h dx is the width-

averaged depth of the current over the fissure and Qs = λ̄hf is the leakage flux.

2.3. Numerical solution

We have solved (2.9) with boundary conditions (2.10a,b) using the numerical method
described by Neufeld et al. (2009), modified to include variable grid spacing and
upwinding (Press et al. 1997). This variable grid spacing accounts for the asymmetric
spreading of the current due to the slope. The evolution of the profile of the current
is illustrated by the time series shown in figure 2. Importantly, we find that for sloping
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aquifers the current tends to a steady-state profile and hence a constant efficiency of
storage, Es → E∞

s . This is in contrast to the behaviour of the efficiency of storage in
many horizontal geometries, which always decays to zero (Neufeld et al. 2009, 2011;
Vella et al. 2011). We therefore begin by considering the steady-state profile and
efficiency of storage, E∞

s , for both upslope and downslope sinks as a function of the
advection velocity, σ , and the width-averaged sink strength, λ̄.

3. The steady state
In the steady state, the current can be divided into three regions, each carrying its

own constant volume flux: upslope of both the source and the sink (upslope), between
the source and the sink (interior) and downslope of both the source and the sink
(downslope). Since the flux q is constant within each region and the shape is steady,
the profile in each of these regions is obtained by solving the first integral of (2.9)

h
dh

dx
− σh = −q, (3.1)

for the appropriate q . We consider separately the cases of downslope and upslope
sinks.

3.1. Downslope sink

When the sink is downslope of the source, xf = 1, the upslope region is stagnant,
q =0, and the upslope profile of the current is given by

h(x) = h(0) + σx (x � 0). (3.2)

The profile downslope of the sink is planar (dh/dx =0) with flux q = hf σ , where hf

is the height of the current above the sink. However, flux conservation at the sink
also implies that q = 1 − λ̄hf , and so the current depth above the sink is given by

h(1) = h∞
f = (σ + λ̄)−1. (3.3)

Therefore, we immediately have that the long-time efficiency of storage is

E∞
s =

σ

σ + λ̄
=

(
1 +

λ̄

σ

)−1

=

(
1 +

W

b

kf

k
cot θ

)−1

, (3.4)

which is only a function of the ratio λ̄/σ . This function is shown by the solid curve
in figure 3. Note that E∞

s , expressed in terms of physical parameters, is surprisingly
simple.

Finally, q = 1 throughout the interior region and (3.1) must be solved with the
boundary condition h(1) = hf = 1/(λ̄ + σ ). The solution is

h(x) =
1 + ΛW [−A exp{σ 2(x − 1) − A}]

σ
(0 < x < 1), (3.5)

where ΛW (x) is the Lambert W -function, defined as the solution of x = ΛW eΛW ,
and A= λ̄/(σ + λ̄). Figure 2 shows that this steady-state profile is recovered as the
long-time limit of the numerically determined current profiles.

3.2. Upslope sink

Even in the absence of leakage, a current only propagates a limited distance
upslope in inclined aquifers. The profile downslope of the injection point is given by
h = h(0) = 1/σ (Huppert & Woods 1995), which, combined with (3.2), implies that the
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Figure 3. The steady-state efficiency of storage, E∞
s , for an upslope sink as a function of λ̄/σ

with σ = 0.9 (long dash), 0.5 (short dash) and 0.1 (dotted). Note that in the limit σ � 1 we
recover the steady-state efficiency of storage for a downslope sink given by (3.4) (solid curve).

maximum upslope extent of the current in the absence of leakage is x−
N = − 1/σ 2.

Thus, for σ > 1, the current does not reach the fissure and its development follows that
detailed by Huppert & Woods (1995). For σ < 1, the current does reach the upslope
sink and the determination of its profile follows that outlined for the downslope sink.
In the stagnant region upslope of the sink, the profile is given by

h(x) = hf + σ (1 + x) (x < −1), (3.6)

and the upslope extent is given by x−
N = − (1 + hf /σ ). The flux in the downslope

region is q = 1 − λ̄hf , and so the depth of the downslope current is given by

h(x) =
1 − λ̄hf

σ
(x > 0). (3.7)

Within the interior region (−1 <x < 0), the profile is determined by solving (3.1)
with q = − λ̄hf and boundary conditions h(−1) = hf , h(0) = (1 − λ̄hf )/σ . hf must be
determined as part of the solution of this problem. We find that

h(x) = − λ̄hf

σ

{
1 + ΛW

[
− 1

λ̄hf

exp

(
−1 + σ 2x

λ̄hf

)]}
, (3.8)

where hf =
σ 2 − 1

λ̄

{
ΛW

[
(σ 2 − 1)(σ + λ̄)

λ̄
exp

(
−σ + λ̄

λ̄

)]}−1

. (3.9)

The steady-state efficiency of storage may therefore be calculated from (3.9) using

E∞
s = 1 − λ̄hf . (3.10)

We plot the steady-state efficiency of storage, E∞
s , for both upslope and downslope

sinks in figure 3. Note that Es → 0 as λ̄→ ∞ for the downslope sink, while Es remains
finite in this limit for an upslope sink. Also note that for σ � 1 the result for an
upslope sink (3.9) approaches the much simpler downslope result (3.3).

4. Evolution towards the steady state
The evolution of the current towards the steady state described in § 3 is determined

by the fully time-dependent problem (2.9). Initially, as fluid begins to spread from
the injection point and spatial gradients are large, ∂h/∂x � σ , the current is diffusion
dominated; the extent xN ∼ t2/3 and height h ∼ t1/3 following Huppert & Woods
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Figure 4. Evolution of the efficiency of storage towards the steady state value. (a) The value
of Es(t) determined by numerical simulations for σ =10−2 with various λ̄ (curves) compared
to the corresponding asymptotic results of Neufeld et al. (2009) for σ = 0 (dashed lines).
(b) The efficiency of storage rescaled as suggested by (4.4) for σ � 1. Here, the solid curve
shows G(−x) found from the solution of (4.2) and numerical results are shown for λ̄=1 with
σ = 5 (�), 1 (�), 0.5 (�) and σ = 0.1 (�).

(1995). From (2.9) we see that the advective and diffusive contributions balance when
h/x ∼ σ . This occurs at a time t � ∼ σ −3 after the start of injection by which time the
current has spread a distance x� ∼ t �2/3 ∼ σ −2 from the origin. Thus the approach to
a steady-state efficiency, for a sink located at xf = 1, is diffusively controlled when
x� � 1 (i.e. σ � 1) but by a balance between diffusion and along-slope advection for
x� � 1 (i.e. σ � 1).

4.1. Diffusion dominated leakage (σ � 1)

The asymptotic efficiency of storage in the horizontal limit, σ =0, was considered by
Neufeld et al. (2009) who showed that for t � 1

Es ≈ 0.444 × [1 + (2λ̄2 + 1)3/4]λ̄−3/2t−1/2. (4.1)

(Note that we use here the instantaneous efficiency Es rather than the time-integrated
quantity introduced by Neufeld et al. 2009, which modifies their prefactor by a
factor of 2.) For σ � 1, we expect that the effect of the slope is minimal and hence
that the efficiency of storage should follow (4.1) until the steady-state efficiency is
reached, E∞

s ≈ σ/λ̄. The evolution of the efficiency of storage, along with the long-time
asymptotic behaviours for the case σ = 0, is shown in figure 4(a). These plots confirm
that the asymptotic result (4.1) gives a reasonable estimate of the evolution of Es .

4.2. Advection dominated leakage (σ � 1)

For σ � 1, the along-slope acceleration due to gravity quickly becomes important,
leading to the development of the nose profile described by Huppert & Woods (1995)
when the current has propagated a distance x� � 1. The nose of the current therefore
assumes a self-similar shape well before it encounters the fissure. To describe this
profile we rewrite (2.9) in the frame of the nose by introducing η = x − σ t and
h(x, t) = h∞

f [1 − g(η, t)]. The transformation of (2.9) so obtained admits a similarity
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Symbol ν (cm2s−1) q (cm2s−1) θ (◦) H (cm) T (s) λ̄ β σ

� 7.6 3.97 9.0 4.0 10.0 0.11 1.26 0.40
� 7.6 8.25 22.3 5.9 7.2 0.07 0.85 0.70
� 7.6 0.95 16.9 2.2 22.6 0.25 2.33 1.41
� 7.6 1.74 16.7 2.7 15.7 0.18 1.82 1.09
× 7.6 0.95 6.4 1.9 19.8 0.26 2.37 0.53
� 4.8 6.07 18.8 4.2 6.8 0.12 1.21 0.89

Table 1. Summary of parameters investigated experimentally. We also have xf =10 cm,
b = 5 cm and W = 0.7 cm.

solution G(ξ ) = g(η, t), where ξ = η/(h∞
f t)1/2 and G(ξ ) satisfies

−1

2
ξ
dG

dξ
=

d

dξ

[
(1 − G)

dG

dξ

]
. (4.2)

The solution of (4.2) is found subject to the boundary condition that the current depth
vanishes at the nose, ξ = ξN in similarity variables, giving G(ξN ) = 1. The conservation
of mass gives an integral condition for ξN , which may be written as

ξN =

∫ ξN

−∞
G(ξ ) dξ. (4.3)

We note that this corrects an apparent typographical error by Huppert & Woods
(1995), and find that ξN = 1.238. For σ � 1, the advection of this profile past the
sink determines, to leading order, the efficiency of storage. We therefore find that
Es = 1 − λ̄h(1, t) = 1 − λ̄h∞

f [1 − g(1 − σ t, t)] and hence that

1 − Es

λ̄h∞
f

= 1 − G

[
1 − σ t

(h∞
f t)1/2

]
. (4.4)

Substituting the form of h∞
f from (3.3) provides the motivation for the plot in

figure 4(b), which shows that the evolution of the efficiency of storage can indeed be
understood simply by the shape of the nose sweeping over the sink.

5. Experimental analogue
A series of analogue laboratory experiments were conducted to test whether the

efficiency of storage does indeed tend to a steady-state value. Six experiments were
conducted in a Hele-Shaw cell measuring 200 cm × 30 cm × 0.5 cm. We injected
glycerine using a peristaltic pump, while leakage occurred from a localized hole in
the base of the tank. Digital mass balances recorded the mass of fluid injected and
the total mass of fluid that had leaked as functions of time. The value of kf was
determined in a separate series of experiments with σ = 0 in the manner described
by Neufeld et al. (2009). The experiments reported here were all performed with a
downslope sink, although comparable results were also obtained with an upslope
sink. The parameters in each experimental run are summarized in table 1.

Experimental results for the evolution of Es are shown in figure 5. These results
confirm that the efficiency of storage does indeed tend to a steady-state value, E∞

s ,
as t → ∞ and that this value is well predicted by the analytical arguments presented
earlier, albeit modified to allow β > 0. Furthermore, we see that the temporal evolution



Leakage from inclined porous reservoirs 403

t

1.0

0.8

0.6

0.4

0.2

0 10 20 30 40

Es

Figure 5. The evolution of efficiency of storage for a downslope sink as a function of
dimensionless time, t . Results are shown for the experimental runs reported in table 1; the
same symbols being used here. The evolution of Es predicted by the numerical solution of
(2.9) is shown by the solid curve along with the asymptotic steady-state efficiency (dashed
horizontal lines).

of Es towards E∞
s is reasonably well described by the numerical solution of (2.9).

In performing the comparison between theory and experiment it was necessary to
account for the basal drag of the Hele-Shaw cell. This was done using the modified
permeability described by Neufeld et al. (2009) to account for this departure from
Darcy flow. (Note that the injected volume flux was determined from a linear fit of
the injected mass eliminating small fluctuations caused by the peristaltic pump. The
leakage flux was determined by using linear fits to consecutive epochs of data, each
10 s in duration.)

6. Discussion
We now turn to discuss the relevance of our results for the geological storage

of CO2. In carbon capture and storage schemes, CO2 is captured, compressed and
finally injected into geological reservoirs at depths typically greater than 1000 m. At
these depths the pressure and temperature are such that CO2 is a supercritical fluid
but remains buoyant with respect to the ambient brine. It therefore rises until it
encounters a region of lower permeability (a cap rock) where it spreads as a gravity
current (Huppert 2006).

It is informative to determine the time scales over which significant leakage occurs,
for comparison with the time scales for secondary trapping mechanisms such as
dissolution and residual trapping. We therefore determine t90, the time taken for Es

to reach 90 %, and its dependence on λ̄ and σ . A contour plot of t90 is shown in
figure 6(a). We note that for σ > 9λ̄, t90 = ∞ – the system remains at efficiencies
greater than 90 % for all times because E∞

s > 90 %. For σ � 1, t90 depends only on
λ̄, as expected. Furthermore, we observe the t90 ∼ λ̄−3 scaling predicted by (4.1) for
λ̄� 1 (figure 6b). For λ̄� 1, t90 depends only on σ and, in the limit σ � 1, is given
approximately by the time for advection to take the current to the sink, t90 ≈ σ −1

(figure 6c).
We note that the primary unknowns in a practical scenario are likely to be xf ,

W and b. For simplicity, we shall assume that W = b and kf = k, so that the ratio

σ/λ̄= tan θ is independent of the distance to the fissure/fracture xf or, indeed, any
other property of the system. In a given field, we imagine that robust estimates of θ

are possible. The main uncertainty therefore lies in the distance between the source
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Figure 6. The dependence of t90 on the parameters λ̄ and σ . (a) Contour plot (on logarithmic
axes) showing log10 t90, (b) t90(λ̄) for σ � 1 (solid curve) with scaling t90 ∼ λ̄−3 (dashed line) and
(c) t90(σ ) for λ̄� 1 (solid curve) with scaling t90 ∼ σ −1. In (a) the dashed line shows the allowed
values of σ and λ̄ for b = W , θ = 1◦ while the two points show xf = 100 m and xf = 10 km,
respectively, for Sleipner.

and the fissure. For a given θ , t90 varies along the line σ = λ̄ tan θ in the contour
plot of figure 6(a). However, to get concrete values we must use specific values for
a given setup. The largest sequestration project currently operational, though still a
demonstration, is that at Sleipner, Norway. Here 1 MT year−1 of CO2 is injected into
the Utsira formation, a sandstone with permeability k ≈ 3.05 × 10−12 m2 and porosity
φ = 0.3 (Bickle et al. 2007). At this depth, the densities of the injected and ambient
fluids are ρCO2

≈ 515 kg m−3 and ρbrine ≈ 1020 kg m−3. The viscosity of the injected
CO2 is believed to be µ ≈ 4 × 10−5 Pa s (Bickle et al. 2007). We therefore have that
γ ≈ 1 × 10−3 ms−1, and the effective two-dimensional flux (averaged over a width of
1 km) is q ≈ 6 × 10−5 m2 s−1. It is then a simple matter to plot points on the contour
plot corresponding to xf = 100 m and 10 km for θ =1◦. Such a plot is shown in
figure 6(a). We find that the dimensional values of t90 are 0.06 year (xf = 100 m) and
13 years (xf =10 km). These values should be compared to the corresponding values
in the absence of a slope for which we find that t90 = 0.1 year and t90 = 102 years,
respectively. Therefore, while the presence of a sloping cap rock ensures that the
efficiency of storage is bounded below by a finite value, it may also reduce the time
taken to reach a given efficiency of storage. This delicate balance is likely to be
important when considering sloping cap rocks in real-world carbon sequestration and
hence deserves further study.
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