Finite amplitude Kelvin-Helmholtz billows at high Richardson number

J. P. Parker1, C. P. Caulfield2,1, and R. R. Kerswell1

1Department of Applied Mathematics & Theoretical Physics, University of Cambridge
2BP Institute, University of Cambridge

Abstract

We study the dynamical system of a stratified mixing layer at finite Reynolds number and unity Prandtl number with hyperbolic tangent profiles in streamwise background velocity and density, forced in such a way that these background profiles are a steady solution of the governing equations. As is well-known, if the minimum Richardson number R_{i_m} is less than a certain critical value R_{i_c}, the flow is linearly unstable to Kelvin-Helmholtz instability. We show that unstable, steady, two-dimensional, finite amplitude elliptical vortex structures, i.e. ‘Kelvin-Helmholtz billows’, exist above R_{i_c}. Bifurcation diagrams are produced using branch continuation, and we explore how these diagrams change with varying Reynolds number. In particular, we examine whether such finite amplitude Kelvin-Helmholtz billows can exist at $R_{i_m} > 1/4$, where the flow is linearly stable by the Miles-Howard theorem.