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Ocean Currents

T'1me-averaged (16-year) ocean circulation
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d [km]

The surface sources of global ocean waters. Oceanic volume that has originated in each 2°
by 2° surface location (11,113 origination sites), scaled by the surface area of each box to
make an equivalent thickness, d. The color-scale follows a base ten logarithm of the field.
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Averaging, across an ocean in longitude
» Meridional Overturning Circulation (MOC)
(sometimes called the Thermohaline Circulation, THC)

Atlantic MOC (1 Sv = 10° m®/s
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Nikurastun and Vallis, 201 1
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C . . y = o
Missing” Mixing
Problem: Observations of ocean mixing typically find x ~ 107° m?/s << 107* m?/s

Inferred diftusivity, North-South Atlantic section
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Evidence for slow mixing
across the pycnocline
from an open-ocean
tracer-release experiment

James R. Ledwell*, Andrew J. Watsont
& Clifford S. Lawt

* Applied Ocean Physics and Engineering,

Woods Hole Oceanographic Institution, Woods Hole,
Massachusetts 02543, USA

T Plymouth Marine Laboratory, Prospect Place, West Hoe,
Plymouth PL1 3DH, UK

THE distributions of heat, salt and trace substances in the ocean
thermocline depend on mixing along and across surfaces of equal
density (isopycnal and diapycnal mixing, respectively). Measure-
ments of the invasion of anthropogenic tracers, such as bomb trit-
jum and >He (see, for example, refs 1 and 2), have indicated that el | | L
isopycnal processes dominate diapycnal mixing, and turbulence 31 E— 30° e 29° S 28° W
measurements have suggested that diapycnal mixing is small>*,

but it has not been possible to measure accurately the diapycnal

diffusivity. Here we report such a measurement, obtained from the ~ FIG. 1 Evolution of the lateral distribution of the tracer. The injection
vertical dispersal of a patch of the inert compound SF released in streaks are shown as short heavy lines near 26° N, 28° W. The contours
the open ocean. The diapycnal diffusivity, averaged over hundreds just to the west show the patch later in May 1992. Heavy lines (further
of kilometres and five months, was 0.11 & 0.02 cm? s,,, confirming to the west) show tracks for the October survey, yvhgre the concentration
previous estimates'™. Such a low diffusivity can support only a C at the target surface was >500 fM; light solid lines, C was between

th I di 1 fi f nitrate into th hoti . it 100 and 500 fM; dashed lines, C~0. Solid triangles indicate bottle
rather small diapycnal fiux of nitrate into the euphotic zone; I stations occupied at the end of the October cruise, with C>300 fM.

justifies the n e%t_};t of di.apyc-nal mixing in dynamic models of Station symbols for the November survey are: plus signs, C<30 fM;
the thermocline*>>’, and implies that heat, salt and tracers must  open circles, C=30-300 fM; filied circles, C> 300 fM. A fine curve has
penetrate the thermocline mostly by transport along, rather than been drawn to envelop the high C regions for the two surveys. CM marks

across, density surfaces. the location of the central mooring for the Subduction experiment.
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Concentration {scaled) FIG. 3 Growth of the second moment of the vertical tracer distribution.

FIG. 2 Evolution of the vertical distribution of the tracer. The mean Squares are for raw M, circles azreior the centre of mass shifted to
profiles have been scaled so that the widths can be compared. h=0. The line is for K;=0.11 cm”s .
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Horizontal convection

Hughes and Griffiths 2008

Destabilizing Stabilizing Destabilizing
buoyancy input buoyancy input buoyancy input

Available Potential Energy and Irreversible Mixing in the Meridional
Overturning Circulation

GRAHAM O. HUGHES, ANDREW MCC. HOGG, AND ROSS W. GRIFFITHS

The Australian National University, Canberra, Australia

(d) K, = 0.0001m/s; y = 28x10° kg/s; Ap = 0.93 kg/m"

&
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FIG. 4. Dependence of the time-averaged overturning circulation upon the vertical diffusion coefficient
(surface buoyancy flux is fixed, with Qy = 200 W m~?). The maximum streamfunction quoted is that for
a two—d1rgens1onal ﬂow in a basin of 1-m width, while the density range is Ap = p, ... . The 20°C
isotherm is shown in gray.
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Figure 1 Changes in surface air
temperature caused by a shutdown
of North Atlantic Deep Water
(NADW) formation in a current
ocean—atmosphere circulation
model. Note the hemispheric see-
saw (Northern Hemisphere cools
while the Southern Hemisphere
warms) and the maximum cooling
over the northern Atlantic. In this
particular model (HadCM3)’, the
surface cooling resulting from
switching off NADW formation is up
to 6 °C. It is further to the west
compared with most models, which
tend to put the maximum cooling
near Scandinavia. This probably
depends on the exact location of
deep-water formation (an aspect
not well represented in current
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00

45°3
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180°W
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Temperature change (°C)

coarse-resolution models) and on the sea-ice distribution in the models, as ice-margin shifts act to amplify the cooling. The largest air temperature cooling is
thus greater than the largest sea surface temperature (SST) cooling. The latter is typically around 5 °C and roughly corresponds to the observed SST
difference between the northern Atlantic and Pacific at a given latitude. In most models, maximum air temperature cooling ranges from 6 °Cto 11 °Ciin

annual mean; the effect is generally stronger in winter.

Rahmstorf, Nature, 2002
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