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Abstract

The mixed initial–boundary value problem for the equations of nonhydrostatic fluid dynamics is mathematically

well posed, but is physically and computationally ill posed. The ill-posedness is exacerbated by boundary data taken

from integrations of hydrostatic flow equations. The difficulty is found both in fully compressible flow and in Boussin-

esq flow; the latter is emphasized here. The mixed problem for the Boltzmann equation is well posed in every respect.

Inserting lattice Boltzmann kinetics between hydrostatic boundary data and nonhydrostatic dynamics resolves the

physical and computational ill-posedness of the dynamics, by relaxing the boundary data to nonhydrostatic dynamical

consistency. Simple numerical experiments with boundary data taken from exact and approximate analytical solutions

demonstrate the effectiveness of the approach.
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1. Introduction

It is ironic that the introduction of digital computing into fluid dynamics has produced a new �classical�
problem for partial differential equations: the initial value problem in a limited region, or region with open

boundaries. The practical experience in numerical weather prediction and in ocean hindcasting is that the

solutions are highly sensitive to errors in boundary: see [1–6] and their references. This sensitivity is to be

expected when the boundary data are generated by a numerical model with a larger domain, different

numerical resolution or a different numerical method. For example, phase speeds of gravity waves in fully
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spectral global models do not suffer from horizontal truncation, while those in finite difference models have

well known errors [7, p. 115].

However, it was unexpected that Oliger and Sundström [8] would be able to prove that the initial value

problem with open boundaries (or mixed problem) for inviscid, nonconducting hydrostatic dynamics is

classically ill posed. They show, even after linearizing about a horizontally uniform and steady stable strat-
ification, and about a uniform constant horizontal wind field, that it is impossible to choose satisfactory

spatially and temporally local boundary conditions on vertical boundaries (that is, on boundaries that

are vertical). In general, choices of such �vertical boundary conditions� lead either to discontinuous solu-

tions or to undetermined solutions. There may be fortuitous choices of boundary values that yield conti-

nuity, such as values obtained by perfect measurement of the ideal fluid being modeled. The argument

of Oliger and Sundström involves separating the flow into vertical internal modes which have amplitudes

propagating horizontally as gravity waves in shallow water. The waves have phase speeds cn = O(n�1),

where n is the order of the internal mode. The number and type of boundary conditions required by each
mode depends upon the magnitude and sign of the internal Froude number U/cn, where U is the component

of the fluid velocity normal to the boundary. There would be no difficulty if the dynamics were integrated

mode by mode, but that is as a rule impractical owing to varying stratification, orography, etc.

The finding of Oliger and Sundström are rejected in [9], where it is shown to be possible to choose local

conditions on vertical boundaries in such a way that the ideal, nonlinear hydrostatic dynamics lead to well

defined analytical continuation off the boundaries. Assuming the existence of a nonzero radius of conver-

gence, [9], in effect establishes existence of solutions in neighbourhoods of the vertical boundaries. Yet the

investigation in [9] is incomplete, since classical well-posedness also requires that the solution be uniquely
and continuously dependent upon the prescribed boundary values. Uniqueness and continuous dependence

may be addressed by considering the dynamics of finite-amplitude flow disturbances. Oliger and Sundström

showed that even the linearized dynamics of disturbances do not lead to well posed problems, given local

boundary conditions.

It may be shown [10,11] that the generalized inverse problem for the linearized, ideal hydrostatic equa-

tions is mathematically well posed in open regions. That is, there is a unique solution to the Euler–Lagrange

equations for the best fit to any interior data, to the dynamics, to the initial conditions, and to local bound-

ary values for both horizontal components of the fluid velocity and for the pressure. The fit is defined by
weighted squares, summed over the domain and over the �smoothing� time interval of interest. It may also

be shown [12] that the forward integration problem is well posed if the open boundary consists of moving

fluid particles of fixed identity, that is, if the open boundary is comoving, since the local Froude number

vanishes in the comoving reference frame. Alas, we must for many applications continue to integrate for-

ward in fixed open regions. In particular, efficient variational data assimilation requires forward and back-

ward integrations, either to calculate the gradient of the penalty functional in state space, or to solve the

Euler–Lagrange equations which hold when the gradient vanishes. Both the forward and backward prob-

lems for the Primitive Equations are ill posed, and there is no partitioning of the boundary conditions in the
Euler–Lagrange equations which overcomes this difficulty, even though the Euler–Lagrange system is well

posed as a boundary value problem in space and time.

Practical numerical weather prediction (NWP) models include parameterizations of subgridscale proc-

esses. These are often expressed simply in terms of eddy viscosities, eddy conductivities and eddy diffusiv-

ities in general. The parabolic operators for rates of change owing to divergences of diffusive fluxes

dominate the dynamics mathematically, even if the diffusivities are small. It is therefore intuitively obvious

that advection and gravity wave propagation are not issues when choosing boundary conditions, and a sim-

ple choice of local boundary conditions yields a well posed problem. However, it is remarked in [13] that
‘‘the addition of viscous or diffusive terms can give rise to spurious boundary layers that may propagate,

interact and contaminate the flow elsewhere’’. [13] continues: ‘‘it would be better to use the more complete

set of (nonhydrostatic) Euler equations, rather than the hydrostatic primitive ones, in order to put the for-
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mulation of a regional model on a sounder theoretical footing’’. Indeed, oceanographers are developing

nonhydrostatic models of regional circulation: see [14] for a description of a nonhydrostatic Boussinesq

model of the general ocean circulation. Fully compressible regional nonhydrostatic NWP models are

now in operation, e.g. [15]. The Euler equations include nonhydrostatic accelerations, in particular the hor-

izontal advection of vertical momentum, and so intuitively the equations require at least the specification of
vertical velocity at vertical boundaries.

The emergence of spurious boundary layers in diffusive hydrostatic dynamics may be demonstrated with

a simple �toy� model that is readily solved with analytical methods. The same toy model also demonstrates

that, while nondiffusive nonhydrostatic dynamics can yield mathematically well posed problems, the spu-

rious advecting boundary layers are replaced by spurious packets of nonhydrostatic internal gravity waves

which would cause as much trouble for computation and interpretation. Thus, while the inclusion of non-

hydrostatic effects does render the nondiffusive problem mathematically well posed, it remains computa-

tionally and physically ill posed. The toy model and the analytical solution are available at an
anonymous ftp site. 1

In spite of the penetrating analysis of Oliger and Sundström, choices of boundary conditions remain

strongly influenced by earlier approaches [16,17]. The influence is especially strong in NWP. Both these ap-

proaches involve blending the time rates of change of prescribed boundary values with the rates of change

provided by the dynamics in the immediate interior. All prognostic variables are so treated, regardless of

the sign or the magnitude of the local Froude number.

It is argued here that the mathematical ill-posedness of the mixed initial-boundary value problem for the

hydrostatic Primitive Equations, and the computational and physical ill-posedness of the nonhydrostatic
equations, may be resolved by replacing conventional computational fluid dynamics with Lattice Boltz-

mann or �LB� models consistent with nonhydrostatic fluid dynamics. The mixed problems for LB models

are mathematically, computationally and physically well posed. It is assumed that practioners of regional

modeling would not want to abandon conventional finite difference (�FD�) models which have been so long

in development. Hence the approach advocated and tested here is the insertion of an intermediate region

between an outer region (the domain for a hydrostatic FD model), and an inner region (the domain of a

nonhydrostatic FD model). The intermediate region or �moat� is the domain of an LB model, which can

accept hydrostatic solutions at the outer boundary, relax them to nonhydrostatic solutions and pass these
across the inner boundary. The ill-posedness of the inner model is ameliorated by passing it boundary data

which are physically reasonable extrapolations of the outer hydrostatic solution, and which are exactly

compatible with the inner nonhydrostatic dynamics. The LB model receives nonhydrostatic boundary data

at the inner boundary from the inner FD model, that is, nesting at the inner boundary is necessarily �two
way�.

Simple LB models consistent with fully compressible flow are as yet unsatisfactory for two reasons: first,

they tend to be unstable for realistic ranges of the Mach number and Froude number; second, the solutions

are contaminated with unrealistic sound waves. The first problem may be solved by the introduction of two-
distribution LB models. The second may solved by requiring that the LB model be consistent only with the

dynamics of a Boussinesq fluid [18]. Both steps have been taken here. As a consequence of the Boussinesq

approximation, these first results are more applicable to ocean modeling than to NWP. An anelastic LB

model may suffice for NWP.

The outline of this paper is as follows: the continuous Boltzmann equation is introduced in Section

2, where it is shown that mixed initial boundary value problems are well posed. The boundary condi-

tion aside, the material in this section is classical physics [19], but is not well known to many compu-

tational fluid dynamicists and so is included to facilitate the subsequent discussion. Equally, the many
1 ftp.coas.oregonstate.edu/dist/bennett/LB/toy.pdf
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details related to implementation on a lattice are mostly standard; they are summarized in Section 3,

and given in full in Appendices A, B, C, D, E. Finite-amplitude, plane-wave analytical solutions of

the fluid dynamical equations, given in detail in Appendix E, are used in Section 4 to test LB and

FD solutions in the vertical plane. Nesting experiments are reported in Section 5. These are summa-

rized and conclusions are drawn in Section 6.
2. Boltzmann�s equation

The difficulties with regional boundaries can be resolved by the use of Lattice-Boltzmann techniques.

The essence of the approach is most simply explained with the continuous Boltzmann equation. The lattice

approximation may then be introduced as a discrete analog. In gas dynamics, the velocity uj (j = 1,2,3) is a

vector field which depends upon position xk (k = 1,2,3) and time t. In gas kinetics, the vector vj at (xk,t) is an
independent variable with unbounded range. It is a possible value for the velocity of one of many gas mol-

ecule close to that point, at that time. The value is idealised as a random variable with a distribution func-

tion N(vj,xk,t) satisfying Boltzmann�s equation, e.g. [19,20]
oN
ot

þ
X
j

vj
oN
oxj

¼ J ; ð2:1Þ
where J consists of terms binary in N, integrated over one of the pair of velocity–vector arguments. This

�collision operator� represents changes in N owing to collisions at (xk,t) between pairs of gas molecules.

It is assumed that the collisions conserve mass, momentum and energy, that is
Z Z Z
1; vk;

X
j

v2j

 !
J dv1 dv2 dv3 ¼ ð0; 0; 0Þ ð2:2Þ
for monatomic gas molecules without internal degrees of freedom. The distribution function is normalized

so that
m
Z Z Z

Nðv1; v2; v3; xj; tÞ dv1 dv2 dv3 ¼ qðxj; tÞ; ð2:3Þ
where m is the mass of a gas molecule, and q is the thermodynamic or macroscopic or fluid density of the

gas. [The shortcomings of subscript notation are evident in (2.3). The alternative is boldface for vectors,

which leads to boldface sans serif for tensors and dyads: the result is impenetrable.] The fluid velocity uj
is then given by
qujðxk; tÞ ¼ m
Z Z Z

vjNðv1; v2; v3; xk; tÞ dv1 dv2 dv3; ð2:4Þ
while the fluid stress tensor is given by
Pijðxk; tÞ ¼ m
Z Z Z

vivjNðv1; v2; v3; xk; tÞ dv1 dv2 dv3: ð2:5Þ
The distribution N is isotropic if
Pij ¼ quiuj þ pdij; ð2:6Þ

where p will be identified with the fluid pressure; dij is the Kronecker delta.

Detailed examination shows that the binary collision term J vanishes if N is the isotropic Maxwell–Boltz-

mann equilibrium distribution
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N eq ¼
q
m

2pp
q

� ��3=2

exp � q
2p

X
j

ðvj � ujÞ2
 !

: ð2:7Þ
If the flow is uniform, that is, if q, uj and p are independent of position and time, then Neq = Neq(vj;q,uj,p) is
clearly an exact solution of (2.1). Boltzmann�s H-theorem guarantees that for gases which are initially uni-

form in space, N must relax towards Neq as t! 1 (see e.g. [19]). In all but the most rarified nonuniform
flow, the time and distance between molecular collisions are far smaller than the time and space scales of the

flow. Hence the equilibrium distribution Neq satisfies (2.1) very closely, even in nonuniform flow. There are

exceptional regions, for example very close to a rigid wall, where the tangential velocity of each molecule is

that of the wall.

Let us return to the general case of nonequilibrium velocity distributions N. Multiplying (2.1) by the

molecular mass m and integrating over velocity yields the conservation of fluid mass
oq
ot

þ
X
j

o

oxj
ðqujÞ ¼ 0: ð2:8Þ
Multiplying (2.1) by the molecular momentum mvi and integrating yields the conservation of fluid

momentum
q
oui
ot

þ
X
k

uk
oui
oxk

 !
¼ � op

oxi
; ð2:9Þ
assuming that N that is isotropic. Multiplying (2.1) by the molecular kinetic energy 1
2
m
P

v2j and integrating

yields the conservation of fluid energy
op
ot

þ
X
j

uj
op
oxj

¼ c
p
q

oq
ot

þ
X
j

uj
oq
oxj

 !
; ð2:10Þ
again assuming isotropy of N, where c = (d + 2)/d for a monatomic gas without internal degrees of freedom,
in d space dimensions. Recall that for an ideal gas, cp=q ¼ cRT ¼ c2s is the square of the speed sound.

Again, isotropy of N has been assumed. Detailed derivation of moment equations from (2.1) for weakly

anisotropic distributions leads to the Navier–Stokes equations [19]. In particular, there are divergences

of Newtonian shear and bulk stresses in the generalization of (2.9), and both mechanical dissipation and

divergences of Fourier heat fluxes in the generalization of (2.10). There can be no diffusion of mass in

(2.8), by definition of the density q and the momentum flux quj.
The selection of boundary conditions for (2.1) at open boundaries is trivial, regardless of the isotropy or

anisotropy of N. The velocity distribution function N should be specified for incoming molecules, but
should not be specified for outgoing molecules. If only the thermodynamical fields q, uj and p were known

at the boundary at (xk,t), then the natural choice for N at the boundary would be the isotropic equilibrium

distribution
Nðvj; xk; tÞ ¼ N eqðvj; q; uj; pÞ if
X
i

vini < 0; ð2:11Þ
where ni is the outward normal on the boundary. It is natural, therefore, that all the fluid variables q, uj, p
be specified on the entire boundary so that the right hand side of (2.11) can be evaluated. Note that the

Maxwell–Boltzmann equilibrium distribution (2.7) is uniquely determined by the fluid variables. This much

information would certainly overspecify the fluid-dynamical initial-boundary value problem, and spurious

boundary layers and spurious packets of internal waves should be expected. The fluid variables are mo-

ments of the velocity distribution N, so it too might be expected to be misbehaved. However, (2.11) does
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not impose values of q, uj, or p on the boundary. If values of N are given only for incoming molecules, then

only partial moments can be evaluated, such as
qIN � m
Z Z Z

IN

N dv1 dv2 dv3 ð2:12Þ
with analogous definitions for uINj and pIN. The complementary part
qOUT � m
Z Z Z

OUT

N dv1 dv2 dv3 ð2:13Þ
is not being imposed on the Boltzmann Eq. (2.1) as boundary information. Adopting the convention that

the molecules with velocities tangential to the boundary are included in OUT, that is,
P

ivini P 0, then

(2.11) partitions the boundary data for density as
q ¼ qIN þ qOUT ð2:14Þ

and similarly for uj and p, in a way which is consistent with the detailed molecular kinematics. Discontin-

uties can develop, but only within the domain, and only in the form of shocks owing to convergence of the

fluid continuum.

Within the domain, the moments of the anisotropic distribution N will be exactly compatible with the
Navier–Stokes equations. The moments will be approximately compatible with the Euler Eqs. (2.8)–

(2.10), and closely so for suitably chosen relaxation coefficients in the collision operator J. Thus, values

of q, uj and p obtained as moments of N would be almost exactly compatible as boundary data for a fluid

dynamical model in a region interior to the first inner region. That is, a Boltzmann �moat� around an open

Euler interior or open Navier–Stokes interior would be the most natural way to relax boundary data pro-

vided by smoothed and imperfect observations, or by a less accurate model of the exterior fluid dynamics:

see Fig. 1. It might be somewhat more informative about the �LB moat� to refer to the condition (2.11) at

the outer boundary of the moat as a �coupling condition�; in the interest of minimal jargon we shall simply
use the strictly correct if less specific term �boundary condition�.
3. Implementation

3.1. Lattice Boltzmann equation

It is not necessary, for the purposes of simulating hydrodynamics, to solve Boltzmann�s equation for a
continous distribution of molecular velocities vk in the range �1 < vk < 1. It suffices to consider a discrete
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and finite set of velocities vqk , for 0 6 q 6 Q, defined by transitions on a spatial lattice: see Fig. 2. There is

correspondingly a discrete set of probabilities Nq, for 0 6 1 6 Q at each lattice vertex and at each time t.

Fluid density, momentum and stress are defined as moments with respect to the discrete distribution,
and a Lattice Boltzmann equation is readily defined in terms of finite differences: see Appendix A. The Lat-

tice Boltzmann equation was first used for ocean modeling in [21], where may be found an especially

insightful analysis of the equation and its fluid dynamical limit. It may be shown [22] that there is a lattice

equilibrium distribution Nq
eq which annihilates the binary collision sum Jq analogous to the binary collision

operator J in (2.1). This lattice equilibrium distribution is, like (2.7), uniquely determined by the fluid var-

iables q, ui, p.

3.2. BGK approximation

The parameters in the �Lattice-Maxwell Boltzmann� distribution Nq
eq devised in [22,23] are not explicitly

related to the fluid variables q, uj and p. Hence, numerical tuning of the parameters over a usefully wide

range of the variables is extremely difficult [24]. In particular, given values of the flow variables at a bound-

ary, it is very difficult to construct the corresponding discrete equilibrium distribution. The �collision-inter-
val theory� advocated by Bhatnagar et al. [25] approximates binary collision operators by
Jq ¼ � 1

s
ðNq � Nq

eqÞ: ð3:1Þ
Subject to this collision term, Nq will relax towards Nq
eq over the time scale s. Detailed analysis, e.g. [26],

shows that as a result of the inhomogeneity of the flow, the departures from equilibrium will be anisotropic.

These assumptions lead to kinematic shear viscosities and kinematic conductivities proportional to

V2(s � Dt/2). The great advantage of (3.1) is that any convenient functional form may be used for Nq
eq.

There are explicitly tunable polynomials, see e.g. [27], which are uniquely determinded by q, ui, p. The pol-
ynomials are at least quadratic in the fluid fields, which are in turn moments of Nq, so the seemingly linear

expression (3.1) is actually nonlinear in Nq. As a result, the BGK lattice Boltzmann equation for compress-
ible flow is unstable in general; see [28].

3.3. Two-distribution planar LB

It has been found by experimentation [29,30] that the instability of �BGK LB� for stratified flow may

be avoided by introducing a second distribution. In the case of two-dimensional flow simulated on the
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9-velocity lattice shown in Fig. 2, the second distribution is of the form Mq, for 0 6 q 6 Q = 8. This second

distribution also satisfies a BGK LB equation. The two equilibrium distributions Nq
eq;M

q
eq may be chosen so

that the moments of their BGK LB equations yield the Navier–Stokes equations for compressible flow: see

Appendix B. It may be remarked that an 18-velocity lattice is required if the planar, compressible Navier–

Stokes equations are to be recovered from a single-distribution LB equation [31].
3.4. Boussinesq approximation

Sound waves are not an important mechanism for dynamical adjustment of circulation in either the

atmosphere or ocean. However the Mach number in the stratosphere is not very small, so there is little com-

putational advantage to filtering out sound waves. That is, the numerical stability criterion for explicit time

stepping schemes is not significantly relaxed by excluding such waves. Also, pressure is the preferred vertical

coordinate for analyzing meteorological fields, and the equation of conservation of mass is easily integrated
in pressure coordinates [7]. In the ocean, on the other hand, the Mach number is extremely small. Also, the

equation of conservation of volume is easily integrated if the vertical coordinate is simply the depth. Thus it

is of great advantage to exclude sound waves by imposing the Boussinesq approximation [18]. A slight var-

iant of the two-velocity LB model of a Boussinesq fluid given by [30] is employed here: see Appendix C. It

should be remarked that the molecular precursors to spurious sound waves can be troublesome on a Boltz-

mann lattice, and so the LB method favors a Boussinesq fluid.

3.5. Simple wave solutions

Assume a spatially uniform and temporally constant mean horizontal fluid velocity U, a stable static

density profile qðzÞ and hydrostatically-balanced pressure pðzÞ. Ignore the vertical variation in these ther-

modynamic variables as they appear as coefficients in the fluid dynamical equations. Then disturbances

in the vertical velocity of the form
w ¼ W sinðjxþ xtÞ sinðkzÞ ð3:2Þ

and similarly for the other fluid variables, constitute exact solutions. In (3.2), j = 2p/L, where L is the wave-

length in the unbounded horizontal direction, k = 2p/H where H is the vertical distance between rigid walls,

and x = 2p/S where S is the period. The dispersion relation between x, j and k involves both U and the

Nyquist frequency N0 for internal waves: see Appendix D. The dynamic pressure pdyn includes exact quad-

ratic corrections to the simple wave form related to (3.2). These finite-amplitude solutions provide conven-

ient and reasonably representative tests for the BGK LB model.
4. Tests of 2D Boussinesq LB

The finite-amplitude, simple-wave analytical solution given in Appendix D for a stably-stratified Bous-

sinesq fluid, together with the conventional finite difference solutions of the 2D form of the Boussinesq

equations given in Appendix C, provide tests for the two-distribution compressible LB model given in

Appendix B and modified for Boussinesq flow in Appendix C. The numerical method and the fluid dynam-

ical boundary conditions are described in Appendix E. In particular, the flow fields in the equilibrium dis-

tributions at the boundaries are provided by the analytical solutions.
The amplitude of the wave solution is characterized by the Froude number Fr defined by
Fr ¼ W 2j2

N2
0

; ð4:2Þ
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which is a dimensionless measure of the fluid kinetic energy W2, in a wave motion having horizontal wave-

number j. The horizontal phase speed is OðN0=jÞ, in the absence of a mean horizontal velocity: see the

dispersion relation (D.16); assume U = 0, and j = O(k).
In the first experiment, the initial conditions are the velocity (u,w) and dynamic density qdyn for the sim-

ple wave (D.5)–(D.13). The case is a = 1 (nonhydrostatic), b = 0 (Boussinesq). The boundary conditions are
taken from the same solution, which is exact for all Fr. The boundary values for dynamic pressure pdyn are

corrected as in (D.18), and so are also taken from an exact solution.

Shown in Fig. 3 are: {solid lines} the analytical solution (AN) of the inviscid, nonconducting, nonhydro-

static Boussinesq equations (Fr = 0.7); {dashed lines} the tenfold amplified error in the finite-difference

(FD) solution, that is, 10 · (FD � AN) ; and {dotted lines} the tenfold amplified error in the LB solution,

that is, 10 · (LB � AN). The agreement amongst the three solutions is remarkable, even after 5 periods.

The three solutions AN, FD and LB are practically indistinguishable when plotted in full. With periodic

boundary conditions (not shown), the LB solution decays several percent per cycle. The decay rate is deter-
mined by the relaxation time s in (B.1) and in (B.14). Note again that the kinematic viscosity and conduc-

tivity implicit in these 9-velocity LB models are O(V2(s � Dt/2)), where V = Dx/Dt is the molecular speed on

the space-time lattice. In these experiments, s = 0.5001Dt; the simple stability requirement is clearly

s > 0.5Dt. The choice of relaxation time s is empirical; the onset of nonlinear instability for BGK LB sim-

ulation of stratified flow is Froude number dependent, being less stable at higher Froude number. The value

Fr = 0.7 in the following experiments is appropriate for the most intense circulations in the Gulf Stream,

and far larger than appropriate for the atmospheric jet stream. For further discussion of LB stability,

see e.g. [26,28]. See Table 1 for all the parameters used in these experiments.
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Table 1

The domain and the LB grid

L = 1600 m, H = 1600 m

Dx = 20 m, Dz = 20 m, Dt = 0.025 s

s = 0.5001Dt, V = 800 m s�1

The mean stratification

q0 ¼ 1:0 kg m�3, cs = 462 m s�1

ðdq=dzÞ0 ¼ �6:25� 10�4 kg m�4, g = 1.0 m s�2

N0 ¼ 7:91� 10�3 s�1, U = 0 m s�1

The plane waves

x = �5.59 · 10�3 s�1, W1 = 1.684 m s�1, W2 = 0.5 m s�1

j1 = (2p/L) m�1, j2 = 3j1
k1 = (2p/H) m�1, k2 = k1
Fr = 0.7 (based on Wave #1)
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The initial conditions and boundary conditions for the second experiment are the same as those in the

first, but their values are taken from a sum of two simple waves (denoted with subscripts 1 and 2 in Table

1). The LB, FD and analytical solutions agree closely for Fr = .0089 (not shown). The entire FD solution

{dashed line}, and entire LB solution {dotted line}, after a half period, are shown in Fig. 4 for Fr = 0.7. The

analytical solution is unknown. The integration of the FD model cannot be extended beyond a half period

since the boundary data are not taken from an analytical solution. The data are therefore not compatible

with the nonhydrostatic dynamics, and so the physical ill-posedness of the nonhydrostatic mixed problem

leads to very badly-behaved solutions exhibiting packets of short-wavelength, high-frequency nonhydro-
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Fig. 4. Integrations as in Fig. 3 {FD dashed, LB dotted}, but with periodic boundary conditions, and with initial conditions from a

two-wave field that is an approximate solution only for small Froude number. Here, Fr = 0.7 and the integrations are only for half a

period. The analytical field is not known. (a) u; (b) w; (c) pdyn; (d)qdyn; all at levels as in Fig. 3.
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static internal gravity waves. For the first half-period, however, the agreement between LB and FD is

remarkably good except for pressure. It is not known which numerical solution is the more accurate. Pres-

sure, velocity and density are all moments of the LB equations, but whereas velocity and density are solu-

tions of the fluid mechanical moment equations (Euler equations for momentum and energy), pressure is

diagnosed effectively through the incompressibility condition. It is concluded from these experiments that
the LB model is as accurate as the FD model at approximating incompressible, nonhydrostatic internal

gravity waves of large amplitude.
5. Nesting experiments

The method of nesting which will be explored here incorporates a LB �moat� separating an outer region

from an inner region. The outer is the domain of an hydrostatic model, the inner is the domain of a non-
hydrostatic model. In general the two models will have different resolution, and may even have quite dif-

ferent numerics. As there is only one horizontal dimension here, the LB moat is in two disconnected parts:

see Fig. 5. Again, the function of the moats is to relax the hydrostatic data at the outer boundaries towards

nonhydrostatic consistency at the inner boundaries. The three contiguous segments are each of the same

size as the single domain in the preceding tests (1600 m · 1600 m), but the spatial resolution is twice as

coarse: (40 m · 40 m), and the time step is much coarser (0.4 s). All other parameters are the same as in

the preceding tests: see Table 1.

In these experiments, the role of the outer hydrostatic model (for example, the US Navy Operational
Global Atmospheric Prediction System or �NOGAPS�; see http://www.fnmoc.navy.mil/PUBLIC/) is taken

by analytical expressions. Specifically, the boundary data needed by the LB model in the moat are taken

from the nonhydrostatic and hydrostatic single-wave analytical solutions (Fr = 0.7), rather than integra-

tions of an outer model. The LB model, which implies nonhydrostatic flow, requires the distributions Nq

and Mq for molecular inflow, that is, inflow values of vq. These values are taken from the equilibrium dis-

tributions Nq
eq; Mq

eq, which are in turn determined by the dynamic density qdyn, fluid velocity u and dynamic

pressure pdyn: see (C.4) and (C.7). The values of all these fields must therefore be provided to the LB model

at the outer boundaries of the two-piece moat. The outer nesting here is �one way�, that is, the LB solution
has no influence on the outer solution. The LB model also requires inflow distributions at the inner bound-

ary. These are again provided by the inflow equilibrium distributions, but the moments qdyn, u and pdyn are

provided by the nonhydrostatic model in the inner region (representing the US Navy Coupled Ocean/At-

mosphere Mesoscale Prediction System or �COAMPS�, for example; see http://www.fnmoc.navy.mil/PUB-

LIC/). The horizontal grids for the LB moat and the nonhydrostatic interior overlap by one interval: see

Fig. 6, which shows the nodes near the left inner boundary at x = 1600 m (which is the right boundary

of the left moat). The rightmost open circle (LB index i = nx) indicate the innermost node of the moat
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Fig. 5. Two-part Boltzmann moat separating a one-dimensional inner nonhydrostatic region from an outer hydrostatic region.
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Fig. 6. {Open circles}: adjacent nodes of the Boltzmann lattice. {Solid circles}: the fluid finite-difference grid.
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at which an LB collision takes place; the leftmost filled circle (FD index i = 1) indicates the outermost node

at which the FD model is timestepped. Where necessary, LB moments on the LB grid are determined from

FD fields on the staggered FD grid by simple interpolation. Finally, note that inflow equilibrium distribu-

tions with hydrostatic moments are specified at LB index i = 1 and streamed, with collisions, to LB index
i = nx. The moments relax to nonhydrostatic dynamical consistency as a consequence of those LB

�collisions�.
Physical boundary conditions for the FD model at FD index i = 0 in the inner region are provided by the

LB solution. Dynamic density, dynamic pressure at fluid inflow (where u is flowing in), and vertical velocity

w at inflow are computed from the moments of the LB solutions. That is, nesting at the inner boundary is

�two way�. Where necessary, fluid variables on the staggered FD grid are determined from LB moments on

the LB grid by simple interpolation.
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Fig. 7. {Dotted lines}: LB solution in left (0 6 x 6 1600 m) and right (3200 6 x 6 4800 m) segments of the outer �moat�, subject to
nonhydrostatic boundary data at x = 0 m and at x = 4800 m. {Dashed line}: FD solution in the inner region (1600 6 x 6 3200 m),

with two-way nesting at x = 1600 m and at x = 3200 m; nonhydrostatic initial data everywhere. The boundary and initial data are

taken from a single-wave nonhydrostatic exact analytical solution for Fr = 0.7 {thin solid line}: (a) u; (b) w; (c) pdyn; (d) qdyn.
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Initial conditions for the FD and LB integrations in the moat and inner region are provided by the non-

hydrostatic single-wave analytical solution.

The analytical solution for Fr = 0.7 {thin solid line}, the entire FD solution {heavy dashed line}, and the

entire LB solutions {dotted lines} are shown in Fig. 7, after two periods. In this experiment there is an ana-

lytical solution, as the outer boundary data are taken from the same nonhydrostatic single-wave analytical
solution as the initial data. The LB and FD solutions are in excellent agreement with the analytical solution

in their respective domains. Plotting the amplified errors in this complicated nesting configuration is in

some respects clearer, but overall is too confusing. Shown in Fig. 8 are the results of an integration, again

for two periods, with outer boundary data for the relaxing LB moats taken from the hydrostatic single-wave

analytical solution. There is now no analytical solution in either the nonhydrostatic LB domains or in the

nonhydrostatic FD domain. The hydrostatic analytical solution given hydrostatic outer data and initial

conditions is shown {thin dashed line}, as is the nonhydrostatic analytical solution {thin solid line} with

the same initial vertical velocity as the hydrostatic analytical solution. Also shown in the FD region is a
numerical integration {heavy solid line} with inner boundary data taken from the hydrostatic analytical

solution but nonhydrostatic initial conditions. This will be referred to as the unrelaxed FD integration,

in distinction to the previously described integrations relaxed by LB moats. It resembles operational prac-

tice in numerical weather prediction:

1. In the inner or FD domain (1600 m 6 x 6 3200 m), the unrelaxed integration {heavy solid line} not only

fails to resemble either analytical solution, but lacks any credibility owing to the rapid formation of

strong gradients not present in the initial data nor in the inner boundary data at x = 1600, 3200 m.
The smooth behaviour of the data are manifest in the hydrostatic solution {thin dashed line}.
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Fig. 8. As for Fig. 7, except boundary data at x = 0, 4800 m are taken from a {thin dashed line} single-wave hydrostatic analytical

solution . {Thin solid line}: the nonhydrostatic analytical solution, with the same initial vertical velocity as the hydrostatic analytical

solution. {Thick solid line}: the FD solution, subject to hydrostatic boundary data at x = 1600, 3200 m.
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2. In the inner or FD domain, the integration {heavy dashed line joining dotted lines} subject to boundary

data relaxed by moats is as smooth as the initial and boundary data, and reasonably resembles the non-

hydrostatic analytical solution {thin solid line} even though the outer boundary data at x = 0, 4800 m

are hydrostatic.

3. The success of the FD integration owes to the relaxation of the LB solutions towards the nonhydrostatic
solution, as kinetic information propagates away from the outer boundaries and towards the inner

boundaries.
6. Summary

It has been shown, by comparison with finite-amplitude analytical solutions for internal gravity waves,

that the insertion of a Lattice Boltzmann �moat� between hydrostatic fluid dynamics in an outer region and

nonhydrostatic dynamic in an inner region has promise for resolving the physical and computational ill-

posedness of the mixed initial–boundary value problem. The LB approach is in principle applicable to com-

pressible flow, but Boussinesq flow has been emphasized here. The success of these experiments depends

critically upon the effectiveness of a two-distribution LB model at overcoming instabilities associated with

single-distribution thermodynamic LB models. The success may not be universal, but the stability issue is

the subject of much research at present. See [32] for a recent review, including a concise tour of the statis-
tical–mechanical background.

Reliable arithmetic concerning the computational cost of a three-dimensional moat cannot yet be

provided. Consider an inner region with square plan form. Append a moat of the same shape and size

as the inner region to each of the four vertical faces of the latter, for a fourfold expansion of volume

and computation. This is a huge cost, even though it excludes the four �corners� of the connected moat

shown in Fig. 1. Yet in their seminal 1986 study of regional weather forecasting, Robert and Yakimiw

[1] argue for an expansion of the plan forms of limited regions by even greater factors, with corners

included, in order to postpone the impact of boundary noise upon the central forecast region. We spec-
ulate that the existence of two transverse directions for collisions in a three dimensional moat would

accelerate relaxation, and thus moats as wide as the inner region should not be necessary. On the other

hand, the principal goal of this study is to find the first rational solution to the longstanding and vexed

problem of the ill-posedness of regional computational fluid dynamics. Efficiency is not the first con-

cern. That said, the pursuit of efficiency should, as already mentioned, address the width of the moat.

Again, the exploration of the geometrical parameter space should be conducted with a three dimen-

sional model. The �diagonal� BGK collision operator (3.1) employed here could be replaced with a non-

diagonal operator having a range of eigenvalues [33], with further potential not only for simulating a
range of Prandtl numbers, but also for accelerating the relaxation process in the moat. In addition,

nondiagonal operators permit the simulation of complex constitutive relations such as nonisotropic vis-

cosity and viscoelasticity, for insignificant computational cost.

The LB approach needs also to be demonstrated for compressible flow. Sound waves and lattice waves

can be a nuisance when integrating Lattice Boltzmann equations, but an anelastic LB moat should suffice

for the nesting of flows at low Mach number. Furthermore, the inner FD model should be subject to radi-

ation conditions rather than the adiabatic conditions 1–5 of Appendix E: see [12].

It may well be more effective in the long run to abandon the inner, nonhydrostatic fluid dynamical model
entirely, in favor of a LB model driven at its open boundaries by equilibrium distribution values for incom-

ing molecular velocities. Indeed, it has recently been argued in [34] that extended Boltzmann kinetics are

more efficient than fluid dynamics at modeling turbulent flow in general.
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It has been candidly stated [35] by a leading advocate of the Lattice Boltzmann method that there is as

yet no �compelling application� which justifies the method over all others. We submit that the resolution of

the mixed problem in computational fluid dynamics is just such an application.
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Appendix A. The Lattice Boltzmann equation

Boltzmann�s equation determines the evolution, in continuous space and time, of the distribution N of

molecular velocities which lie in the range �1 < vj < 1 (j = 1,2,3). Such detail is not needed for a numer-

ical �moat�. It suffices to determine the distribution at each vertex of a fine, regular lattice in space and time.
The �molecules� need only be capable of occupying vertices, and jumping to neighbouring vertices in a fixed

time interval. Thus, only a finite set of molecular velocities need be admitted.

An example of a planar lattice is shown in Fig. 2. The nine admitted velocities are:
ð0; 0Þ; ðV ; 0Þ; ð0; V Þ; ð�V ; 0Þ; ð0;�V Þ; ðV ; V Þ; ð�V ; V Þ; ð�V ;�V Þ; ðV ;�V Þ; ðA:1Þ

which shall be denoted vqj ; 0 6 q 6 Q, where Q = 8 here.

The value of V is uniquely Dx/Dt where Dx and Dt are the lattice intervals. It is assumed that the lattice is
square: Dx1 = Dx2 = Dx. The real-valued velocity distribution function N(vj; xk, t) is replaced at each vertex

by Q + 1 real numbers Nq(xk, t),0 6 q 6 Q. The flow variables are defined at each vertex value of (xk,t) by:
qðxk; tÞ ¼ m
XQ
q¼0

Nqðxk; tÞ; ðA:2Þ

qujðxk; tÞ ¼ m
XQ
q¼1

vqjN
qðxk; tÞ; ðA:3Þ

Pijðxk; tÞ ¼ m
XQ
q¼1

vqi v
q
jN

qðxk; tÞ: ðA:4Þ
An example of a Lattice Boltzmann equation for the Nq is
Nqðxk þ vqkDt; t þ DtÞ ¼ Nqðxk; tÞ þ DtJ q; ðA:5Þ

where Jq is a collision operator. A Taylor series expansion of (A.5) yields (2.1), to leading order. The col-
lision operator may be defined as a binary product of the Nq summed over one of the pair of velocity vec-

tors [22,23], such that the collisions conserve mass, momentum and energy. The sum has an equilibrium

distribution Nq
eq for which Jq vanishes, and so (A.5) is exactly satisfied by uniform gases in equilibrium.

There is even [22] an H-theorem for the lattice collision operator. See the reviews [36,37] for further details

of the LB method.
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The selection of boundary conditions for (A.5) at open boundaries is again trivial, regardless of the

isotropy or anisotropy of Nq. The values Nq should be specified for incoming molecules, but should not

be specified for outgoing molecules. If only the thermodynamical fields q, uj and p are known at the

boundary at (xk,t), then the natural choice for �inflow� at the boundary would be the isotropic equilib-

rium distribution
Nq ¼ Nq
eq if

X
i

vqi ni < 0: ðA:6Þ
It is assumed that the lattice equilibrium distribution depends, like the Maxwell–Boltzmann distribution

(2.7), only upon the fluid density, momentum and pressure. Then the values of Nq
eq for the prescribed q,

uj and p may be determined by satisfaction of (A.2)–(A.4), after noting that Peq
ij ¼ quiuj þ pdij since Nq

eq

is isotropic on the lattice. Again, (A.6) partitions the fluid data at the boundary into additive IN and

OUT components, with only the IN component influencing the interior flow. Examples of lattice equilib-

rium distributions Nq
eq depending only upon q, uj and p are given below.
Appendix B. Two-distribution planar LB: compressible fluid

The first of the two LB equations is the combination of (A.5) and (3.1)
Nqðxk þ vqkDt; t þ DtÞ ¼ Nqðxk; tÞ �
Dt
s
ðNq � Nq

eqÞ: ðB:1Þ
The fluid density and fluid momentum q and quk are again defined to be the normalizing and first moments

Nq, as in (A.2) and (A.3), respectively. Then conservation of mass (2.8) is an identity, within truncation

error. The ideal conservation of momentum (2.9) is correct to leading order, for distributions Nq close
to isotropic equilibria Nq

eq such as in [27]:
Nq
eq ¼

wqq
m

1þ 3vq � u
V 2

þ 9ðvq � uÞ2

2V 4
� 3juj2

2V 2

" #
; ðB:2Þ
where
w0 ¼ 4
9
; w1;2;3;4 ¼ 1

9
; w5;6;7;8 ¼ 1

36
; ðB:3Þ
and
vq � u ¼
X
k

vqkuk: ðB:4Þ
Note that (A.2)–(A.4) hold also for Nq
eq. Pressure is not an independent parameter in (B.2), but is related to

density by
p ¼ 1
3
qV 2: ðB:5Þ
Hence the speed of sound cs is related to the lattice speed by
cs ¼
Vffiffiffi
3

p ; ðB:6Þ
rather than obeying the ideal gas relation
cs ¼
ffiffiffiffiffi
cp
q

r
ðB:7Þ
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with c = 2 in two dimensions (c = 5/3 in three dimensions). Buoyancy is introduced by the addition of a

source term to (B.1):
Nqðxk þ vqkDt; t þ DtÞ ¼ Nqðxk; tÞ �
Dt
s
ðNq � Nq

eqÞ �
DtgqdynvqK

6V 2
; ðB:8Þ
where the vertical index K equals d (the number of dimensions: d = 2 or 3), g is the gravitational acceler-

ation and qdyn ¼ q� q, where q ¼ qðzÞ is a static density distribution. The pressure obtained from the sec-

ond moment of Nq is the dynamic pressure pdyn ¼ p � p, where p and q are in hydrostatic balance. The

normalizing and first moment Eqs. (2.8) and (2.9) are unaltered except for the vertical momentum balance,

which now incorporates the buoyancy force:
q
ouK
ot

þ
X
j

uj
ouK
oxj

 !
¼ � opdyn

oxK
� gqdyn: ðB:9Þ
However, it would be thermodynamically incorrect to calculate the buoyancy using the normalizing mo-
ment of Nq. Even if Nq � Nq

eq, the latter distribution implies the thermodynamically incorrect sound speed

(B.6). Again, single-distribution 18-velocity LB-BGK models may be constructed which are thermodynam-

ically correct [31], but these are unstable. Now the energy-conservation Eq. (2.10) and mass-conservation

Eq. (2.8) imply
op
ot

þ
X
j

uj
op
oxj

¼ �cp
X
k

ouk
oxk

: ðB:10Þ
For an ideal gas
p ¼ RqT ðB:11Þ

or
p ¼ 2qed�1; ðB:12Þ

where d is the spatial dimension and e is the internal energy per unit mass. Hence (B.10) and (2.8) imply that
oe
ot

þ
X
j

o

oxj
ðujeÞ ¼ �ðc� 2Þe

X
k

ouk
oxk

: ðB:13Þ
Consider first the case of two space dimensions: d = 2, c = 2. The right hand side of (B.13) vanishes, and

the equation takes the same form as (2.8) with e replacing q. This suggests introducing a second 9-velocity

distribution Mq satisfying a second LB equation
Mqðxk þ vqkDt; t þ DtÞ ¼ Mqðxk; tÞ �
Dt
s
ðMq �Mq

eqÞ; ðB:14Þ
where the equilibrium distribution is simply
Mq
eq ¼ wqe 1þ 3vq � u

V 2

� �
ðB:15Þ
with wq defined as in (B.3). The fluid velocity uj is still defined as a the first moment of Nq as in (A.2), but the

internal energy per unit mass is defined as the normalizing moment of Mq
e ¼
X
q

Mq: ðB:16Þ
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If Mq � Mq
eq, then
X

q

vqkM
q � uke ðB:17Þ
and so (B.13) is recovered. The internal energy having been computed using (B.14)–(B.16), buoyancy is

recovered as
�gqdyn ¼ �g
dp
2e

� q

� �
; ðB:18Þ
which is, with sufficient accuracy in shallow convection
�gqdyn ffi �gq
pdyn

p
� edyn

e

� �
ffi gq

edyn

e
; ðB:19Þ
where e ¼ dp=2q.
For 3D flow, c = 5/3 and so the right hand side of (B.13) does not vanish. It may be introduced into

(B.14) as a source. The two-distribution, 9-velocity LB model has only limited ability to represent com-

pressible stratified flow, owing to the lattice equation of state (B.5). By implication, the hydrostatic density

profile must be
pðzÞ ¼ pð0Þ exp½�zf�1�; ðB:20Þ

where the scale height f is
f ¼ c2sg
�1 ¼ 1

3
V 2g�1: ðB:21Þ
That is, the two-distribution, 9-velocity LB model can only represent an isothermal atmosphere with the

constant, static, absolute temperature T ¼ ð3cRÞ�1V 2. The inner and outer fluid dynamical models do

not in general assume isothermal atmospheres, so some dynamical adjustment would be instigated by

the use of the isothermal equilibrium distributions. Many operational forecasting models already make var-

ious assumptions about static stratifications at various stages in their solution algorithms, so 100% thermo-

dynamic purity would not be lost by the use of isothermal equilibria in the LB moat. The two-distribution,

6-velocity hexagonal LB model in [30] permits arbitrary equations of state.
Appendix C. Two distribution planar LB: Boussinesq fluid

The equations of motion for a shallow Boussinesq fluid are [18]:
q0

ouj
ot

þ
X
k

uk
ouj
oxk

 !
¼ � opdyn

oxj
� gqdyndjK ; ðC:1Þ

X
j

ouj
oxj

¼ 0; ðC:2Þ

oqdyn

ot
þ
X
k

uk
oqdyn

oxk
þ uK

dq
dxK

¼ 0: ðC:3Þ
Note that the sound speed cs does not appear in these equations. It is pointed out in [29] that (C.1) and (C.2)

may be recovered, with sufficient accuracy, as the first moment and the normalizing moment of (B.8),
respectively, provided that the equilibrium distribution (B.2) is replaced with
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Nq
eq ¼

wqq0

m
3pdyn

q0V
2
þ 3vq � u

V 2
þ 9ðvq � uÞ2

2V 4
� 3juj2

2V 2

" #
: ðC:4Þ
Assuming that Nq � Nq
eq, and taking the normalizing moment of (B.8) leads to
c�2
s

opdyn

ot
þ q0

X
k

ouk
oxk

¼ 0; ðC:5Þ
where c2s ¼ V 2=3. Taking the first moments leads to (C.1). Thus the lattice supports sound waves having

speed cs ¼ V =
ffiffiffi
3

p
, but their amplitude is small if the initial flow divergence vanishes. The relative error

in (C.5), as an approximate representation of the Boussinesq continuity Eq. (C.2), is of order l2 where

l = juj/cs is the Mach number. The dynamic density qdyn is determined as the normalizing moment of

the second distribution Mq, which satisfies
Mqðxk þ vqkDt; t þ DtÞ ¼ Mqðxk; tÞ �
Dt
s
ðMq �Mq

eqÞ �
DtuK
Qþ 1

dq
dxK

ðC:6Þ
with Mq
eq given by
Mq
eq ¼ wqq

dyn 1þ 3vq � u
V 2

� �
: ðC:7Þ
The normalizing moment of (C.6) is, with error of order l2, the Boussinesq energy Eq. (C.3).
Appendix D. Finite-amplitude waves

Specializing to 2D flow, and adopting the notation (x1,x2) = (x,z), (u1,u2) = (u,w), etc., consider a con-

stant uniform fluid velocity (u,w) = (U,0), a density profile q ¼ qðzÞ and a hydrostatic pressure profile

p ¼ pðzÞ, where dp=dz ¼ �gq. Linearized, constant-coefficient Euler equations for compressible flow are:
oqdyn

ot
þ U

oqdyn

ox
þ w

dq
dz

� �
0

þ q0

ou
ox

þ ow
oz

� �
¼ 0; ðD:1Þ

q0

ou
ot

þ U
ou
ox

� �
¼ � opdyn

ox
; ðD:2Þ

aq0

ow
ot

þ U
ow
ox

� �
¼ � opdyn

oz
� gqdyn ðD:3Þ
and
oqdyn

ot
þ U

oqdyn

ox
þ w

dq
dz

� �
0

¼ b
c20

opdyn

ot
þ U

opdyn

ox
þ w

dp
dz

� �
0

� �
; ðD:4Þ
where c20 ¼ cp0=q0. Note that the flow is nonhydrostatic or hydrostatic according to a = 1 or 0, and is com-

pressible or shallow-Boussinesq according to b = 1 or 0. Had the Euler Eqs. (D.1)–(D.4) been nondimen-
sionalized, a would be the Froude number while b would have been the square of the Mach number. The

zero subscript on the thermodynamic variables refers to a reference state, such as at z = 0. Assume that the

flow is confined between rigid horizontal plates: w = 0 at z = 0, H; that the flow is periodic in the horizontal

with wavelength L, and is also periodic in time with period S. A simple solution of (D.1)–(D.4) is
w ¼ W sin h sin kz; ðD:5Þ
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where h = jx + xt, j = 2p/L, k = 2p/H and x = 2p/S
pdyn ¼ PðzÞ cos h; ðD:6Þ

where
PðzÞ ¼ a sinðkzÞ þ b cosðkzÞ; ðD:7Þ

a ¼ bF v

v2k2 þ b2
; b ¼ � kF v2

v2k2 þ b2
; ðD:8Þ
where v � c20g
�1 is the scale height of the stratification, while:
F ¼ W q0

xþ jU
N2

0 �
gb
v

� aðxþ jUÞ2
� �

; ðD:9Þ

u ¼ � j cos hP
q0ðxþ jUÞ ðD:10Þ
and
qdyn ¼ � cos h
g

dP
dz

� aq0

g
ðxþ jUÞW cos h sinðkzÞ: ðD:11Þ
In (D.9), N0 is the Nyquist frequency given by
N2
0 ¼ �g

1

q
dq
dz

� �
0

: ðD:12Þ
The wave frequency x must satisfy the dispersion relation
abðxþ jUÞ4 � ðxþ jUÞ2½bN2
0 þ c20ðaj2 þ k2Þ� þ ðc20N 2

0 � bg2Þj2 ¼ 0: ðD:13Þ

If the flow is compressible (b = 1) there are two sound-wave branches; for large sound speed

ðc0jN�1
0 ! 1Þ, their asymptotes are:
x � �jU 	 c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj2 þ k2

p
: ðD:14Þ
Regardless of the value of b, there are always two gravity-wave branches. Their large sound-speed asymp-

totes are:
x � �jU 	 N0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj2 þ k2

p : ðD:15Þ
The analysis of Oliger and Sundström [8] is based upon (D.15). If the flow is hydrostatic (a = 0), then
x � j �U 	N0

k

� �
ðD:16Þ
and so signals can propagate upstream if and only if the flow is subcritical: jU j < N0k
�1. Hence the number

of conditions that need to be imposed at an open boundary depends upon the vertical wavenumber. This

precludes the specification of model boundary conditions level-by-level. If the flow is nonhydrostatic

(a = 1), then for large sound speed and large horizontal wavenumber j 
 N0jU j�1
, the asymptotic disper-

sion relation for the gravity wave branch is
x � �jU 	N0 ðD:17Þ
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and so all signals are swept downstream. No boundary conditions are needed at outflow, and the number

needed at inflow is the same for all vertical modes. Hence the inflow model boundary conditions maybe

specified level-by-level.

The analytical expressions (D.5), (D.10) and (D.11) for w, u and qdyn are in fact exact solutions of the

finite-amplitude Eqs. (C.1)–(C.3), but the expression (D.6) for pdyn is not. The reason is that advection of
vorticity and advection of dynamic density both vanish identically, but the divergence of momentum advec-

tion does not. With the addition of the pressure correction
pcorr ¼ q0W
2

4
cosð2kzÞ � q0k

2W 2

4j2
cosð2hÞ; ðD:18Þ
an exact solution is obtained for the dynamic pressure pdyn.

A more challenging test field is provided by a sum of two such simple waves having different amplitudes

W and wavenumbers (j,k), without any pressure correction. The sum is not an exact solution of the finite

amplitude equations, but is approximately so when the field has small amplitude.
Appendix E. Solving the fluid dynamics

The Boussinesq equations are readily solved numerically by

1. diagnosing for the dynamic pressure pdyn with the Poisson equation
r2pdyn ¼ ��q0

ou
ox

� �2

þ 2
ou
oz

ow
ox

þ ow
oz

� �2
 !

� g
oqdyn

oz
; ðE:1Þ
2. predicting the vertical velocity w with the vertical component of (C.1),

3. predicting the dynamic density qdyn with (C.3) and

4. predicting the horizontal velocity u with the horizontal component of (C.1).

The following boundary information suffices:

1. pdynz (=�gqdyn: see 5. below) at z = 0, H for all x;

2. pdyn at x = 0, L for all z;

3. the sign of u at x = 0, L for all z;

4. w and q on fluid inflow, at x = 0, L for all z;

5. w (=0) at z = 0, H for all x.

These boundary conditions may be inferred from the low Mach-number limit of the boundary condi-

tions for compressible flow. The latter conditions may be deduced using standard energy arguments, as
in the classic intermediate text [38, Chapter VI, Section 3, p. 656]. The special case of compressible flow

is developed in detail in [8]. No boundary condition for the magnitude of u is needed at either x = 0 or

x = L, since the normal advection of u may be eliminated using (C.2). Initial conditions for u, w and q
are prescribed by analytical solutions based on one or two waves.

The spatial finite difference scheme is based on the Arakawa C grid [39]. The time stepping scheme is first

order forward, for both velocity components and for density. The pressure gradients and the Laplacian of

pressure are second order centered. The Poisson equation is solved with the subroutine HWSCRT [40]. The

advection scheme is �QUICK� [41].
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The two distributions Nq and Mq for the LB model are readily stepped in time using the BGK LB equa-

tions (B.8) and Eq. (B.14), respectively. Initial conditions are prescribed by the equilibrium distributions

(C.4) and (C.7), respectively, with the analytical solution for the flow fields. The rigid boundary conditions

at z = 0, H are readily imposed using simple free-slip �bounce-back� conditions, see e.g. [35]. At the open

boundaries at x = 0, L, the LB distributions are prescribed for inflowing molecules only: see (2.11), with
an analogous condition for Mq. The flow fields in the equilibrium distributions at the boundaries are pre-

scribed by the analytical solutions.

The parameters in the experiments reported in Section 4 are listed in Table 1.
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