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We study stratified turbulence in plane Couette flow using direct numerical simulations.
Two external dimensionless parameters control the dynamics, the Reynolds number
Re = Uh/ν and the bulk Richardson number Ri = gαVTh/U2, where U and T are
half the velocity and temperature difference between the two walls respectively, h
is the half channel depth, ν is the kinematic viscosity and gαV is the buoyancy
parameter. We focus on spatio-temporal intermittency due to stratification and we
explore the boundary between fully developed turbulence and intermittent flow in the
Re–Ri plane. The structures populating the intermittent flow regime show coexistence
between laminar and turbulent patches, and we demonstrate that there are qualitative
differences between the previously studied low-Re low-Ri intermittent regime and
the high-Re high-Ri intermittent regime. At low-Re low-Ri, turbulent regions span
the entire gap, whereas at high-Re high-Ri, turbulence is confined vertically with
complex dynamics arising from interacting turbulent layers. Consistent with a previous
investigation of Flores & Riley (Boundary-Layer Meteorol., vol. 129 (2), 2010, pp.
241–259), we present evidence suggesting that intermittency in the asymptotic regime
of high-Re Couette flows appears for L+ < 200, where L+ = Luτ/ν, with L being
the Monin–Obukhov length scale, L = u3

τ/Cκqw, qw the wall heat flux, Cκ the von
Kármán constant and uτ = √τw/ρ0 the friction velocity determined from the wall
shear stress τw, where ρ0 is the constant background density. We also consider
the mixing as quantified by various versions of the flux Richardson number Rif ,
defined as the ratio of the conversion rate from kinetic to potential energy to the
turbulent kinetic energy injection rate due to shear. We investigate how laminar and
turbulent regions separately contribute to the overall mixing. Remarkably, we find
that although fluctuations are greatly suppressed in the laminar regions, Rif does not
change significantly compared with its value in turbulent regions. As we observe a
tight coupling between the mean temperature and velocity fields, we demonstrate that
both Monin–Obukhov self-similarity theory (Monin & Obukhov, Contrib. Geophys.
Inst. Acad. Sci. USSR, vol. 151, 1954, pp. 163–187) and the explicit algebraic model
of Lazeroms et al. (J. Fluid Mech., vol. 723, 2013, pp. 91–125) predict the mean
profiles well. We thus use these models to trace out the boundary between fully
developed turbulence and intermittency in the Re–Ri plane.

Key words: intermittency, stratified turbulence, turbulent flows

† Email address for correspondence: jrt51@cam.ac.uk

mailto:jrt51@cam.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.497&domain=pdf


The intermittency boundary in stratified plane Couette flow 299

1. Introduction
Flows characterised by strong stable density stratification are encountered in

many geophysical applications. In the atmosphere, boundary layers with strong
static stability are observed in polar regions or during clear nights as a result of
strong cooling at the ground (Nieuwstadt 1984; van de Wiel et al. 2002; Grachev
et al. 2005). In the oceans, pycnoclines are similarly characterised by large density
gradients due to variations in the temperature and salinity profiles (Taylor & Sarkar
2007). Under such strongly stratified conditions, turbulence can be virtually absent
for a long period of time and then occur intermittently at other times in strong bursts
(Kondo, Kanechika & Yasuda 1978).

In order to classify observations of the stable atmospheric boundary layer, Mahrt
et al. (1998) proposed two dynamical regimes which he referred to as the ‘weakly
stable’ regime and the ‘very stable’ regime. In the weakly stable regime, the
stabilising effect of stratification is not strong enough to suppress turbulence and
continuously turbulent states are typically observed. The resulting regime is relatively
well understood, and theoretical approaches, such as the self-similarity theory of
Monin–Obhukov (Monin & Obukhov 1954; Obukhov 1971), provide a satisfactory
agreement with observations. On the other hand, the strongly stable regime is less
well understood and more challenging to model.

Perhaps one of the most important and poorly understood issues is the characteri-
sation of mixing processes. Although many models assume a fixed ratio between
buoyancy flux and kinetic energy dissipation of approximately 0.2 (Osborn 1980;
Wunsch & Ferrari 2004), there is very large uncertainty as to what the mixing
efficiency is and, indeed, whether it is constant (e.g. Smyth, Moum & Caldwell 2001).
Linden (1979) reported experimental observations of the mixing efficiency quantified
by the flux Richardson number Rif , defined as the ratio of the conversion rate from
kinetic to potential energy to the turbulent kinetic energy injection rate due to shear.
Although a rather large spread of data was observed, Rif was found to increase with
the bulk Richardson number, Ri, up to a maximum of Rif ≈ 0.2 for Ri . 0.1–0.15
and decrease for larger values of Ri. As originally argued by Phillips (1972), if the
buoyancy flux decreases with stratification at relatively large static stability, there is
an effectively negative eddy diffusivity. As a result, small perturbations in the density
profile are unstable and lead to the creation of sharp interfaces between relatively
well-mixed layers, a rather striking feature observed in a number of experiments
of stably stratified flows (Ruddick, McDougall & Turner 1989; Park, Whitehead &
Gnanadeskian 1994; Holford & Linden 1999). Recent experiments by Oglethorpe,
Caulfield & Woods (2013) have also suggested the presence of a plateau in the
mixing efficiency for large stratifications, possibly connected to self-similar regimes
of strongly stratified turbulence (Billant & Chomaz 2001).

More importantly, it is unclear how the mixing efficiency is influenced by the
appearance of global intermittency characterising strongly stratified regimes (van de
Wiel et al. 2002; van de Wiel, Moene & Jonker 2012) where laminar and turbulent
regions coexist and mutually interact. Although strongly stratified flows are known to
be highly intermittent (Rorai, Mininni & Pouquet 2014), large-scale intermittency and
coexistence of laminar and turbulent dynamics may also arise in unstratified conditions
at low Reynolds number, Re, due to viscous effects ‘quenching’ the turbulence. Coles
(1965) conducted a number of Taylor–Couette flow (TCF) experiments investigating
the transition from laminar finite-amplitude instabilities to turbulence. Intermittent
states were observed, characterised by spiral bands of turbulence alternating with
laminar regions. More recently, Prigent et al. (2002) also performed experiments on
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FIGURE 1. (Colour online) Sketch of the intermittency boundary (solid line) and the
relaminarisation boundary (dashed line) in the Re–Ri plane of Couette flows.

more extended domains, showing the existence of similar large-scale modulations in
both plane Couette flow (PCF) and TCF for 340<Re< 415, where Re=U h/ν is here
defined using half the velocity difference U, the half channel gap h and the kinematic
viscosity of the fluid ν. The appearance of inclined bands of laminar/turbulent
regions has recently been studied numerically, both in small aspect-ratio domains
perpendicular to the bands (Barkley & Tuckerman 2005, 2007) and in extended
domains (Duguet, Schlatter & Henningson 2010).

Similar structures have also been found at higher Re when a stabilising force other
than viscosity suppresses turbulent motions. García-Villalba & del Álamo (2011)
reported intermittent dynamics in stratified channel flows in the form of laminar spots
surrounded by turbulent dynamics. Brethouwer, Duguet & Schlatter (2012) showed
coexistence of laminar/turbulent inclined bands in spanwise rotating Couette flow
and in channel flows subjected to buoyancy or magnetic forces. Ansorge & Mellado
(2014) and Deusebio et al. (2014) found inclined turbulent/laminar stripes in stratified
Ekman layers, i.e. boundary layers developing under the effect of wall-normal rotation,
which indicates that turbulent patterns might be more general and not limited to TCF
and PCF dynamics only.

The introduction of a stabilising force into the system, such as stratification,
allows us to have an additional control parameter to study the complexity arising
from the temporal and spatial intermittency of the flow. Figure 1 shows a cartoon
of the phase space of stably stratified PCF where two dimensionless parameters
control the dynamics, the bulk Reynolds number Re and the bulk Richardson
number Ri. The two lines show the intermittency boundary (solid line) between fully
developed turbulence and intermittent regimes, which crosses the zero-stratification
axis at approximately Re = 415 (Prigent et al. 2002; Duguet et al. 2010), and the
relaminarisation boundary (dashed line) to the left of which no chaotic attractor exists,
crossing the zero-stratification axis at approximately Re=324 (Duguet et al. 2010). At
the present stage it is not known where the regime boundaries lie in the Re–Ri plane,
and the main aim of the current investigation is to be able to identify the intermittency
boundary. On the other hand, tracing the relaminarisation boundary is beyond the
scope of the present study, although there have been some recent investigations of
this issue focusing on the identification of minimal seeds (Eaves & Caulfield 2015)
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and edge states (Olvera & Kerswell 2014) in stably stratified PCF. The two boundaries
are distinct and well separated at low Re. Nevertheless, it is unclear whether they
would approach each other and possibly coalesce at higher Re.

The quest to trace out these boundaries is connected with the development of an
understanding of the relaminarisation process and the maintenance of wall-bounded
turbulence. Early approaches, such as the Miles–Howard criterion (Howard 1961;
Miles 1961), related relaminarisation to either linear stability analysis of shear
flows or to the balance between turbulent kinetic energy production by shear and
conversion to potential energy (e.g. Armenio & Sarkar 2002). Nieuwstadt (2005)
presented evidence that the relaminarisation of open-channel flows subject to strong
cooling at the lower wall occurs when h/L ≈ 0.5, where h is the half channel gap
and

L= u3
τ/Cκqw (1.1)

is the Obukhov length scale (Monin & Obukhov 1954), with u2
τ = ρ0τw being the

friction velocity, Cκ ≈ 0.4 the von Kármán constant, qw the wall heat flux and τw the
shear stress at the wall. Flores & Riley (2010) suggested, however, that the critical
value of h/L may be Re-dependent and proposed that a criterion based on L+ should
instead be used, where L+= Luτ/ν is the Monin–Obukhov length scale normalised in
wall units.

From a physical point of view, the L+ criterion suggests that relaminarisation is
inherently a near-wall process for wall-bounded flows. The importance of near-wall
dynamics to sustain wall-bounded turbulence in unstratified flows has been recognised
for a long time. The region close to the wall is the place where most of the turbulent
kinetic energy is generated (near y= 15ν/uτ ) and fluctuations are the largest (see, for
instance, Kim, Moin & Moser 1987). Hamilton, Kim & Waleffe (1995) identified a
self-sustained near-wall process in which counter-rotating streamwise vortices produce
high- and low-velocity streaks by advecting the mean flow. These streaks are unstable
in the inviscid limit and their secondary instability leads to the formation of new
streamwise vortices, hence the cycle. The importance of the so-called near-wall cycle
in wall-bounded turbulent dynamics has also been emphasised by synthetic simulations
in which horizontally periodic boxes were reduced until turbulence could no longer be
sustained (Jiménez & Moin 1991). The spanwise extent of the minimal flow unit, i.e.
the smallest box size able to allow the development of turbulent flows, was found to
be of the order of the near-wall streak spacing. Jiménez & Pinelli (1999) extended this
to the vertical direction by damping out turbulent fluctuations above a certain height
δ and showed that turbulence can only be sustained if δ > 60ν/uτ .

Here, we will provide evidence that suggests that the onset of intermittency in
strongly stratified PCF is indeed connected with the suppression of the near-wall
cycle and that the criterion proposed by Flores & Riley (2010) based on L+ can
capture the onset of intermittent dynamics in the asymptotic regime of high-Re stably
stratified PCF. When the flow is indeed turbulent, we also investigate the efficiency
of mixing using several definitions of the flux Richardson number Rif . When Rif is
defined in terms of global quantities describing the energy input by the wall forcing
and the buoyancy flux through the boundaries, we find that Rif increases linearly
with Ri, due to the fact that the mean velocity and density profiles are related by
qw/T ≈ τw/U in the canonical geometry of PCF. We have also found that appropriate
measures of Rif take close to the same values in both laminar and turbulent regions
of the flow when it is spatially intermittent. Although there has been recent interesting
work considering in detail the most appropriate measure of mixing efficiency (see,
for example, Karimpour & Venayagamoorthy 2015; Salehipour & Peltier 2015), since
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we are focused on intermittency, we believe that slight modifications of the classical
definition of the flux Richardson number adequately capture the (interestingly weak)
effect of intermittency on the ‘efficiency’ of mixing.

Consistent with this observation, we confirm that Monin–Obukhov theory is able
to provide a reasonable description of the velocity and temperature mean profiles,
comparable to more sophisticated models such as the explicit algebraic model (EAM)
developed by Lazeroms et al. (2013). We then use these models to predict the
intermittency boundary in the Re–Ri phase space separating the intermittent and
fully developed turbulent regimes, and demonstrate good agreement between these
predictions and the results of our numerical simulations.

The paper is organised as follows: § 2 gives a summary of the numerical code
and an overview of the simulations; § 3 presents mean global quantities and turbulent
fluctuations; § 4 describes phenomenologically the intermittent regimes of PCF; § 5
investigates the efficiency of mixing considering different definitions of Rif ; in § 6 we
develop an analytical model based on Monin–Obukhov self-similarity theory and an
EAM to predict the boundary between fully turbulent and intermittent dynamics and
we compare this prediction with our simulations; finally, § 7 provides conclusions and
final remarks.

2. Numerical set-up
We consider a temperature-stratified system described by the Navier–Stokes

equations under the Boussinesq approximation where density variations are related to
temperature variations via a linear equation of state, i.e.

∂u
∂t
+ u · ∇u=−∇p

ρ0
+ ν∇2u− gαVTey, (2.1a)

∂T
∂t
+ u · ∇T = κ∇2T, (2.1b)

∇ · u= 0. (2.1c)

Here, u= (u, v,w) is the velocity vector in the reference system (x, y, z) with x and
z being the horizontal coordinates and y the vertical coordinate, p is the pressure, ρ0
is the background reference density, T is the temperature and gαV is the ‘buoyancy
parameter’, with αV being the thermal expansion coefficient and g the gravity. The
molecular kinematic viscosity ν and thermal diffusivity κ are assumed to be constant.

Periodic boundary conditions are imposed in the x and z directions. In the vertical
direction, the velocity and the temperature satisfy Dirichlet boundary conditions at the
two counter-moving walls, i.e.

u=−U, v = 0, w= 0, T =−Tr (2.2a−d)

at y=−h and
u=U, v = 0, w= 0, T = Tr (2.3a−d)

at y = h. When not otherwise stated, in the following we will always refer to the
dimensionless counterparts of the quantities which have been normalised using U
as a reference velocity, Tr as a reference temperature and h as a reference length.
The dynamics can be described in terms of three dimensionless parameters: the bulk
Reynolds number Re,

Re= Uh
ν
, (2.4)
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the bulk Richardson number,

Ri= gαVTrh
U2

, (2.5)

and the Prandtl number,
Pr= ν

κ
. (2.6)

Here, we consider Pr = 0.7 as a model of temperature stratification in air. It is
important to note that the wall shear stress

τw = ν ∂u
∂y

∣∣∣∣
y=±1

(2.7)

and heat flux

qw = κ ∂T
∂y

∣∣∣∣
y=±1

(2.8)

are not prescribed but naturally arise from the dynamics. As a consequence, the
friction Reynolds number, defined using the friction velocity uτ =√τw/ρ0,

Reτ = uτh
ν

with ρ0u2
τ = τw, (2.9)

which quantifies the ratio between the largest scales ∼h and the smallest scales ∼ν/uτ ,
and the Nusselt number,

Nu= qwh
κTr

, (2.10)

used to estimate the heat transfer are unknown a priori and are to be considered as
output parameters.

Equations (2.1) together with the boundary conditions (2.2)–(2.3) have been
discretised using Fourier modes in the two horizontal directions and second-order
finite differences in the vertical direction. Time stepping was achieved by means
of a low-storage third-order Runge–Kutta method for the nonlinear terms and a
semi-implicit Crank–Nicolson method for updating viscous and diffusive terms.
Nonlinear terms were evaluated in physical space and a 2/3 dealiasing rule was
applied when transforming back to Fourier space. Variable time steps based on a
Courant–Friedrichs–Lewy (CFL) number equal to 0.5 were employed. For further
details on the numerical scheme we refer the interested reader to Taylor (2008)
and Bewley (2010). In order to carry out high-resolution numerical simulations, the
code was parallelised by using a 2D domain decomposition and parallel transpose
operations. Good scalability was observed up to a few thousand processors.

Figure 2 shows a summary in the Re–Ri plane of the simulations which did not
relaminarise within the used time window (in all the cases larger than 1000 h/U,
corresponding to 10–20h/uτ ). The simulations span more than two orders of
magnitude in Re and values of Ri that range between 0 and 0.175. Similarly to
the simulations of García-Villalba, Azagra & Uhlmann (2011), in runs 1 to 16 in
table 1 we consider sets of Re–Ri values that keep Reτ approximately constant.
Simulations were initialised by fixing Ri and adjusting Re every 100 time steps such
that the target value of Reτ was achieved. This allowed us to find an estimate of Re
which was then held fixed. The reason for fixing Reτ rather than Re is twofold: first,
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FIGURE 2. (a) Summary of the simulations (listed in table 1), in the Re–Ri plane. Colours
represent the magnitude of the Reτ , ranging from 40 (blue) to 1500 (red); (b) Reτ for the
same set of parameters of simulation 2 for different box sizes: ——, (Lx, Lz)= (8π, 4π);
- - - -, (Lx, Lz)= (16π, 8π); · · · · · ·, (Lx, Lz)= (32π, 16π).

Run Re Reτ Ri Lx Lz Nx Ny Nz L+ γ

1 710 45 0.01 16π 8π 512 65 512 578 0.87
2 865 47 0.02 64π 32π 1024 65 1024 256 0.64
3 1 685 90 0.02 4π 2π 128 97 128 492 1.00
4 1 850 90 0.03 4π 2π 192 97 192 297 0.88
5 2 130 85 0.04 32π 16π 1024 97 1024 170 0.50
6 2 150 127 0.0 4π 2π 192 129 192 Inf 1.00
7 2 950 128 0.04 4π 2π 192 129 192 287 0.99
8 3 925 130 0.06 16π 8π 768 129 768 148 0.82
9 4 250 181 0.04 4π 2π 256 129 256 395 1.00
10 6 666 182 0.08 8π 4π 256 129 256 128 0.83
11 12 650 349 0.08 4π 2π 512 161 512 249 1.00
12 15 600 335 0.1 4π 2π 512 193 512 152 0.91
13 35 000 520 0.125 4π 2π 768 289 768 134 0.79
14 52 630 469 0.15 4π 2π 768 289 768 59 0.28
15 180 000 1043 0.175 4.0 2.0 512 385 512 75 0.41
16 280 000 1578 0.175 2.66 1.33 512 513 512 117 0.70
A 15 000 497 0.05 4π 2π 768 257 768 666 1.00
B 15 000 318 0.1 4π 2π 512 193 512 142 0.85
C 25 000 764 0.05 4π 2π 768 385 768 930 1.00
D 25 000 520 0.1 4π 2π 768 257 768 227 0.99
E 25 000 377 0.125 4π 2π 640 225 640 96 0.61

TABLE 1. Summary of the characteristics of the simulations.

it is Reτ that imposes the requirements for a fully resolved simulation; second, it is
Reτ that defines the ratio between largest and smallest scales.

Eight values of Reτ were chosen, ranging from 45 (close to the value of unstratified
relaminarisation) up to 1500. Two sets of simulations at constant Re= 1.5× 104 and
Re= 2.5× 104 were also run (runs from A to E in table 1). Figure 2(a) shows Reτ
by the colour of the open circles marking the Re–Ri plane. As is evident, constant-
Reτ contours are sloped lines at increasing Re and increasing Ri. We increase Ri until
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(partially) turbulent states cannot be sustained and full relaminarisation is achieved. As
shown in figure 2(a), relaminarisation occurs at larger Ri as Reτ (and Re) increases.

Table 1 lists the numerical parameters of the simulations. Here, Nx, Ny and Nz
represent the number of points in physical space along the streamwise, wall-normal
and spanwise directions respectively; γ represents the fraction of the flow considered
to be turbulent, and its actual definition will be further discussed in § 4.2; L+
represents the ratio between the Monin–Obukhov length scale (Obukhov 1971; Monin
& Obukhov 1954),

L= u3
τ

Cκqw
, (2.11)

and the wall viscous length scale, l= ν/uτ , i.e.

L+ = L
l
= uτL

ν
, (2.12)

where Cκ in (2.11) is the von Kármán coefficient, i.e. Cκ ≈ 0.4. From a physical point
of view, the Monin–Obukhov length scale L is a measure of the distance from the
wall at which buoyancy forces affect the dynamics, where injection of turbulent kinetic
energy and conversion to potential energy are of similar magnitude, whereas l is the
relevant length scale for near-wall dynamics. The results at Reτ = 130 and Reτ ≈ 540
were found to be in agreement with the simulations of García-Villalba et al. (2011),
thus providing a validation of the numerical tool used in the present investigation.
When feasible, several box sizes were considered in order to check the convergence
as well as the sensitivity of our results with respect to the box dimensions. Table 1
only summarises the simulations with the largest horizontal extents. For the lowest
friction Reynolds numbers, we consider computational domains as large as Lx= 200h
and Lz= 100h, producing sustained inclined striped patterns similar to those observed
by Barkley & Tuckerman (2005), Brethouwer et al. (2012) and Duguet & Schlatter
(2013).

Following general guidelines for direct numerical simulations of wall-bounded
turbulence (Moin & Mahesh 1998), we adjust the grid spacing such that 1x+ ≈ 8,
1z+≈ 4 and y+10< 10, where y10 is the tenth point from the wall and the + superscript
represents quantities normalised using viscous scaling, i.e. using l for length scales
and uτ for velocities. As Reτ increases, the grid spacing required to resolve the
smallest turbulent length scales decreases, making it necessary to reduce the size of
the computational domain in order to reduce the computational cost. It is important
to appreciate that our results may be dependent on the size of the computational
domain and that the dimensions considered in some simulations (e.g. 15 and 16
in table 1) may well be close to marginal, according to the guidelines provided
by Flores & Jiménez (2010). However, as we will discuss below, these simulations
allow us to gain some insight into the intermittent dynamics and an estimate of the
intermittency at high Re despite the reduced dimensions. The smallest computational
domain considered (at Reτ = 1500) has Lx = 2.67h and Lz = 1.33h, corresponding in
viscous units to L+x ≈ 4000 and L+z ≈ 2000.

The size of the computational domain affects the results significantly only when
coexistence between laminar and turbulent patches arises. Figure 2(b) shows the
time evolution of Reτ for a simulation at Re = 865 and Ri = 0.02. For a small
computational domain size, turbulence cannot be sustained and full relaminarisation
is observed. When the computational domain is marginal, the flow stays turbulent,
but it exhibits temporal intermittency with large fluctuations (approximately 5–10 %)
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FIGURE 3. (Colour online) Vertical profiles of (a) 〈u〉 and (b) Rig: simulation 6 (——),
simulation 11 (- - - -) and simulation 13 (· · · · · ·).

of Reτ . As the size of the computational domain increases, temporal intermittency
is suppressed and replaced by spatial intermittency. Interestingly, we find that time
averages of global quantities (such as Reτ , Nu and the turbulent fraction γ ) vary
only by a few per cent with the size of the computational domain as long as the
flow stays at least partially turbulent. In particular, we find that for the case in
figure 2(b) (simulation 2) the time-averaged turbulent fraction γ in various domains
varies between 60 % and 65 %. However, we find that the size of the computational
domain significantly affects the qualitative patterns of the laminar/turbulent patches
in the intermittent regime. Turbulent and laminar patches tend to be aligned in the
streamwise direction in small computational domains, whereas as the domain size
increases, inclined laminar/turbulent bands similar to the findings of Duguet et al.
(2010) are found.

3. One-point statistics
Figure 3(a) shows the mean streamwise velocity profiles 〈u〉 for three different

simulations at increasing Re and Ri. In the following, we will use the overbar · to
denote a horizontal average and the brackets 〈·〉 to denote the time average extending
over the entire simulation. As Ri increases, a constant-shear region appears in the
core of the flow. It is worth noting that this region is still turbulent and the observed
linear profile results from stratified turbulent dynamics rather than from a purely
laminar flow. The development of a constant-shear region can be explained by a
suppression of the local turbulent length scale by stratification. If the interior flow
is independent of the distance from the walls, the turbulence, and hence the shear,
is only determined by local properties (momentum and buoyancy fluxes) which are
constant along y. It should be noted, however, that since the wall stress provides the
driving force for turbulence in PCF, the turbulence remains dependent on the wall
stress. As Re increases, the constant-shear region extends closer to the wall. Gradients
at the wall do not steepen extensively because of the balancing effect of stratification
which causes Reτ to increase from 130 to 520 in spite of the much larger change in
Re, from 2150 to 35 000.

The density profiles show very similar behaviour to the velocity, which is expected
due to the fact that the Pr is close to unity, Pr = 0.7. Figure 3(b) shows the time-
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FIGURE 4. (Colour online) Velocity fluctuations: (a) across the channel and (b) blow-up
near to the wall. The line types are as in figure 3.

averaged gradient Richardson number,

Rig(y)= Ri

〈
∂T
∂y

〉
〈(

∂u
∂y

)2
〉 . (3.1)

The gradient Richardson number, as defined in (3.1), is minimum at the wall and
increases towards the centre of the channel. Using the background method (Doering &
Constantin 1992), Tang, Caulfield & Kerswell (2009) identified optimal profiles that
maximise buoyancy flux in stratified PCF subject only to global energetic balances
and a constraint on the horizontal momentum, and found non-monotonic profiles of
Rig exhibiting a local maximum close to the walls. The Rig profiles in figure 3(b) are
not in agreement with such a prediction, suggesting that the constraints imposed by
Tang et al. (2009) are far too weak and neglect the importance of (weakly stratified)
near-wall dynamics crucial to sustain turbulence in PCF.

We find that the broad plateau developing in the core of the channel increases with
Ri (figure 3b) and saturates in amplitude for large values smaller than 0.25, i.e. the
limiting threshold for linear normal-mode stability of inviscid stably stratified shear
flows. Figure 4 shows the different components of the turbulent velocity fluctuations.
As shown in panel (b), the dynamics close to the wall generally retains viscous
scalings: the location of the near-wall peak of urms in wall units is not significantly
affected by changes in Re and Ri, although its intensity slightly decreases as Re and
Ri increase. The intensity of streamwise fluctuations in the centre of the channel
increases as the stratification (and the shear) in the core region increases.

Figure 5 shows the turbulent shear stress scaled by u2
τ . The decrease of the

magnitude of the plateau with increasing stratification indicates that a non-negligible
part of the momentum (up to 10 % for the highest Ri) is transferred by molecular
diffusion. Since – as we will argue below – the slopes of the mean velocity and
temperature profiles are set by the stratification, at fixed Ri we would expect that
〈u′v′〉/u2

τ approaches unity as Re → ∞. The turbulent heat flux (not shown) also
displays very similar behaviour to the turbulent momentum flux, i.e. a constant
plateau in the central region with values that asymptotically approach qw, as defined
in (2.8), as the Péclet number Pe= Re Pr→∞.



308 E. Deusebio, C. P. Caulfield and J. R. Taylor

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
–1.0

0.5

1.0

–0.5

0

–1.0

0.5

1.0

–0.5

0y

(a)  (b)

FIGURE 5. (Colour online) (a) Turbulent shear stress −〈u′v′〉, normalised by the friction
velocity, u2

τ . (b) Turbulent heat flux −〈v′T ′〉, normalised by the wall heat flux, qw. The
lines are as in figure 3.

4. Intermittent dynamics
4.1. Phenomenology of intermittency at large and low Re

In figure 6, the streamwise velocity in a horizontal plane close to the upper wall,
y = 0.95, is shown for three weakly intermittent simulations. The value of Reτ
increases from (a) to (c), corresponding to Reτ = 130, 180 and 520, simulations 8, 10
and 13 respectively. In all three cases, laminar patches appear in the flow, similar to
those observed by García-Villalba et al. (2011) in stratified channel flows. It should
be noted that in the three cases the dimension of the box varies considerably and
the laminar patches at low Reτ are significantly larger. Nevertheless, the three flows
exhibit similar dynamics with laminar patches cyclically appearing and disappearing in
the flow with time scales of the order of hundreds of convective time units. For these
simulations, spatially averaged quantities show small fluctuations in time, suggesting
that the chosen box sizes are suitable to study the intermittent dynamics. The degree
of stratification in these cases is not strong enough to lead to the generation of
sustained and steady inclined laminar/turbulent bands as observed by Brethouwer
et al. (2012) and Deusebio et al. (2014). As Ri increases, the extent of the laminar
regions increases and the dynamics becomes increasingly more intermittent in time.
Figure 7(a) shows a snapshot of the streamwise velocity close to the upper wall, at
y= 0.95, for simulation 14. There is only one band of turbulence spanning the entire
streamwise extent, and this band is surrounded by laminar flow. As is apparent from
the typical values of the streamwise velocity (the same colour bar is used in figures
6c and 7a), the streamwise velocity is substantially closer to its laminar value at
y = 0.95 for simulation 14 than for the more vigorously turbulent simulation 13. In
this simulation, Reτ varies considerably in time, ranging between 380 and 540, which
suggests that the size of the computational domain is only marginally large enough
to accommodate sustained intermittent dynamics. The topology found in figure 7 was
similarly observed in simulations 15 and 16, confirming that also in these cases the
computational domains were close to marginal.

We only observe bands similar to those observed by Brethouwer et al. (2012) at
low Reτ < 100, for which very large computational domains could be used. In smaller
computational domains, the spatial intermittency is replaced by temporal intermittency
and the turbulent bands align in the streamwise direction. However, the fact that at
Reτ = 540 we find streamwise stripes of turbulence similar to those found in low-Re
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FIGURE 6. Streamwise velocity in a horizontal plane close to the upper wall, at y= 0.95.
It should be noted that the full domain is shown in each of the three cases, which vary
in size. (a) Simulation 8; (b) simulation 10; (c) simulation 13.

small-domain simulations suggests that inclined bands might be observed at higher Re
if larger computational domains were employed.

At low Re, the laminar regions extend over the entire channel depth. However, we
find that the vertical structure of the laminar/turbulent regions is inherently different
for simulations at low and high Re. As Ri increases, laminar regions appearing at
higher Re become more confined to the walls. Brethouwer et al. (2012) found that
in stratified channel flows partial relaminarisation occurs at the walls, whereas the
dynamics in the interior remains highly turbulent, without any dominant presence
of large-scale structures. In figure 7(b) the enstrophy (a useful and simple proxy
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FIGURE 7. Flow field for a highly intermittent simulation (simulation 14). The entire
domain is shown in both panels. (a) Streamwise velocity in a horizontal plane close
to the upper wall, at y = 0.95. The full domain is shown and colours range from
blue (low values) to red (high values), using the same colour bar as figure 6(c). (b)
Three-dimensional view of the enstrophy in three planes normal to the Cartesian axes:
x-normal at x= 12 (black), y-normal at y=−0.2 (red) and z-normal at z= 1 (blue). The
scale logarithmically ranges from 1 U2/h2 to 200 U2/h2 and it is the same in all of the
plots. Colours are used only to highlight which plane the contours belong to.

for turbulence) in planes normal to the three Cartesian axis is shown for simulation
14. The contours projected onto the three Cartesian planes are coloured differently
(although with the same intensity scale). The z-normal plane clearly shows the
presence of two turbulent layers separated by a quieter laminar region close to the
channel mid-plane. This quieter region is confined horizontally and it is bordered in
the spanwise direction by a turbulent patch which originates from the bending of the
upper vertically confined turbulent layer, as shown by the x-normal plane. Figure 7(b)
highlights a rich dynamical picture in which intermittency at the wall connects to
intermittent dynamics in the centre of the channel, with streamwise turbulent layers
bending and mutually interacting. The dynamical transition between the turbulent
bands (filling the entire channel gap) observed at low Re and the layering structure
in figure 7(b) is gradual. The bands moderately develop a spanwise inclination which
leads to an inhomogeneity in the vertical direction.
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It is unclear whether the absence of intermittent dynamics in the interior as observed
by Brethouwer et al. (2012) is due to a weaker stratification or to a difference of
flow configuration with respect to our simulations. It is nevertheless worth noting that
in PCF intermittency at the wall significantly affects the overall dynamics. From an
energetic point of view, PCF is forced by shear stresses at the upper and lower walls,
and the dynamics in the interior adjusts in order to carry the momentum flux resulting
from the near-wall dynamics. Full or partial relaminarisation leads to a significant drop
in the magnitude of the wall shear stress τw, thus also strongly affecting the dynamics
in the interior. The influence of the partial relaminarisation at the walls might therefore
be significantly stronger than in other flow configurations where the driving force is
not affected by relaminarisation, such as the channel flows considered by Brethouwer
et al. (2012) driven by a constant pressure gradient or the throttling method used by
Chung & Matheou (2012) in stably stratified homogeneous turbulence.

4.2. Quantifying intermittency
One of our main aims here is to describe the intermittent regime arising due to a
stable stratification. In order to quantify the degree of intermittency, an objective
metric based on the identification of laminar and turbulent regions is needed. Several
choices are possible, including evaluation of shear stress, vertical velocity (Brethouwer
et al. 2012) and vorticity (Corrsin & Kistler 1955; Pope 2000).

We base our criterion on the wall enstrophy,

η±(x, z, t)=
(
∂u
∂y

)2

+
(
∂w
∂y

)2

at y=±1, (4.1)

and identify the turbulent fraction γ using moments of the distribution of η± as
discussed below. We are motivated to use the wall enstrophy by two considerations.
First, as observed by Brethouwer et al. (2012), at large Re when intermittent dynamics
appears laminar patches are generally confined close to the walls. Second, as discussed
in § 4.1, because the driving force is applied at the solid walls, near-wall dynamics
plays an important role in maintaining turbulence in PCF. In order to identify γ , we
consider the horizontal spatial fluctuation of η± at the wall,

η±,mbf =
√

1
A

∫
x+,z+

η2± dx+ dz+ −
[

1
A

∫
x+,z+

η± dx+ dz+
]2

, (4.2)

over subdomains corresponding to a minimal flow unit (Jiménez & Moin 1991),
specifically 1x+ ≈ 200 and 1z+ ≈ 100, with A=1x+1z+ being the subdomain area.
The subscript mbf in (4.2) stands for minimal box fluctuation. Although here we use
η± as a proxy in (4.2), alternative quantities could also be used, such as velocity,
temperature or turbulent stresses. When the flow is laminar, the wall enstrophy η±
is nearly homogeneous within the subdomains and small values of (4.2) are to be
expected. On the other hand, in turbulent regions the streaky patterns associated
with the near-wall dynamics lead to significantly larger fluctuations. This measure is
similar to the measure used by Deusebio et al. (2014), although here there is a greater
focus on identifying an appropriate threshold between laminar and turbulent regions.
Figure 8(a) shows some examples of the probability density function (p.d.f.) of (4.2).
The cases are characterised by different levels of intermittency: fully developed
turbulence has a p.d.f. resembling a log-normal shape (the x-axis has a logarithmic
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FIGURE 8. (a) Examples of p.d.f.s of small-box fluctuations of η± for a typical
fully turbulent simulation (· · · · · ·, simulation 9), weakly intermittent simulation (- - - -,
simulation 10) and strongly intermittent simulation (——, simulation E). (b) Variation of
T with Reτ .

scale) with a single well-identified peak (Örlü & Schlatter 2011). As intermittent
dynamics occurs in the flow, the p.d.f. skews towards the left part of the plot and, in
sufficiently strongly intermittent cases, a double peak appears. The double-peak shape
also allows us to identify a threshold T separating turbulent and laminar regions as
the local minimum between the two peaks of the p.d.f. We identify laminar flow at
the upper or lower wall as the region for which η±,mbf < T and turbulent flow as
the region for which η±,mbf > T . In general, the threshold T may depend on Reτ
and we have determined its Reτ dependence (shown in figure 8b) by considering
the most intermittent simulations at several values of Reτ . Although the value of the
threshold increases with Reτ , it does not vary as strongly as the range spanned by
the p.d.f., which in intermittent cases extends over several orders of magnitude. In
the following we will consider the intermittency factor γ for all of the simulations
in table 1 by taking the average of the fraction of the upper and lower wall area
for which η± >T respectively. Typically, these two values are close. The algorithm
described above was applied to single flow fields and results were averaged over at
least 30 different sample times approximately equally spaced during the simulation.

Although we mostly focus on the near-wall value of γ , in order to study the mixing
properties of laminar and turbulent regions separately (as discussed in § 5), we have
further extended the algorithm to horizontal planes away from the wall using the total
enstrophy in place of its wall value η±. To account for the vertical inhomogeneity, we
have adjusted the value of the threshold T based on the local turbulent kinetic energy
dissipation, εK = Re−1〈∂u′i/∂xj∂u′i/∂xj〉, as

Ts(y)= T

εK,±1
εK(y), (4.3)

where the ±1 subscript denotes upper and lower wall values respectively. Using the
threshold Ts, we define the vertically varying intermittency factor γs as the ratio
of the turbulent area to the total area for each horizontal plane. Figure 9 shows an
example of the identification of laminar/turbulent regions for the flow field shown
in figure 6(c). Laminar and turbulent boundaries are well estimated, both close to
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FIGURE 9. (Colour online) Identification of laminar and turbulent regions using the
automatic algorithm outlined in § 4.2 for a snapshot of simulation 13 at (a) y= 0.95 and
(b) y= 0. The thick line represents the boundary between laminar and turbulent regions
which has been overlaid on the enstrophy field for reference. The flow corresponds to
the same time instant as the flow depicted in figure 6(c) (simulation 13). (c) Wall-normal
evolution of the intermittency factor γs (averaged over roughly 30 snapshots).

the wall, as shown in figure 9(a) and in the centre of the channel, as shown in
figure 9(b). The average value of γs using roughly 30 flow fields (shown in figure 9c)
slightly varies in the vertical direction, with somewhat smaller values close to the
wall, where an overall intermittency factor of 82 % is found. This is consistent with
the observation of Brethouwer et al. (2012), who found laminar patches to be mostly
confined at the wall. That the smallest value of γs generally corresponds to the wall
value γ also supports our conjecture that the relaminarisation process in stratified
PCF originates in the near-wall region.

4.3. Scaling of intermittent dynamics
As discussed in the introduction, the most appropriate indicator for the onset of
intermittent dynamics is still an open issue and several criteria have been proposed.
The general disagreement on the relevant quantity generally reflects the fact that
it is not yet clear which physical process governs relaminarisation and how to
model it. The Miles–Howard criterion (Howard 1961; Miles 1961), based on linear
stability analysis of a stratified shear layer, is sometimes invoked to explain the
suppression of turbulence, although there is now a growing consensus that turbulence
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FIGURE 10. A plot of γ versus Nu− 1 for the entire set of simulations listed in table 1.
The colour code represents Reτ , ranging from 40 (blue) to 1500 (red).

may still be observed even when Rig > 1/4 (see, for example, Zilitinkevich et al.
2008). As shown in figure 3(b), Rig attains small values at the wall and increases
towards the centreline, the location at which higher values are generally found. The
maximum values of Rig before the onset of intermittency and relaminarisation show an
approximate dependence with bulk Ri, and no single value describes the appearance
of intermittency. Besides, intermittency is observed at the wall where Rig is small,
Rig < 1/4.

García-Villalba & del Álamo (2011) used the Nusselt number Nu, as defined in
(2.10), as a criterion to identify the appearance of intermittency in stratified channel
flows, arguing that relaminarisation occurs as Nu approaches unity. This criterion is
tested in figure 10, where γ is plotted against Nu − 1. Although as intermittency
increases the data generally tend to lower values of Nu, a general scaling cannot be
observed and the data show a large scatter with Reτ .

As noted in the introduction, another criterion was proposed by Flores & Riley
(2010), who hypothesised that relaminarisation is observed when L+ ≈ 100, thus
suggesting that relaminarisation is a near-wall process since L+ is a criterion only
based on inner-scaling quantities. We test this hypothesis in figure 11, where the
turbulent fraction γ is plotted versus L+ for all of the simulations listed in table 1.
We note that, apart from the two lowest values of Reτ (plotted with the four darkest
blue points in the plot), the data collapse onto a single curve, unlike the data shown
in figure 10. This is quite remarkable given the Reτ span considered in the study,
which covers more than one order of magnitude. The failure to collapse the two
lowest values of Reτ is also not surprising as the L+ criterion is expected to apply
only when the onset of intermittency is determined by the imposed stratification as
opposed to by viscous effects. For smaller Re values, viscosity becomes crucial and
leads to a viscosity-driven intermittency, which in the unstratified limit occurs when
Re ≈ 325, corresponding to Reτ ≈ 35. Nevertheless, the asymptotic regime in which
intermittency dynamics is buoyancy-driven and the intermittency factor γ becomes
independent of Re is already reached at a value of Reτ that is only three times larger
than the unstratified value of 35. As shown in figure 11, in the asymptotic regime of
high Re, Re> 4000, intermittent dynamics appears at L+≈ 200, and the intermittency
factor γ quickly drops for smaller values.
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FIGURE 11. A plot of γ versus L+ for the entire set of simulations. The colour code
represents Reτ , ranging from 40 (blue) to 1500 (red).

5. Mixing
One of the most controversial issues regarding stably stratified shear flows concerns

the quantification of the irreversible mixing across isopycnals and its ratio with the
energy lost to internal energy through viscosity. At least part of the problem is that
there are many possible measures that can be constructed for the ‘mixing efficiency’
(see, for example, Salehipour & Peltier 2015). In the context of shear flow, turbulent
kinetic energy is typically extracted from the mean flow by the turbulence production
term,

P=
〈
−u′v′

∂u
∂y

〉
, (5.1)

and undergoes a down-scale turbulent cascade until it is dissipated by viscous effects
at small scales. In the presence of a stable stratification, turbulent kinetic energy can
also be converted to potential energy (and vice versa) via the buoyancy flux,

B = Ri 〈−v′T ′〉. (5.2)

Similarly to turbulent kinetic energy, potential energy also generates a down-scale
turbulence cascade, and diffusive effects convert it to background potential energy at
small scales. A classical measure of the efficiency of mixing is the flux Richardson
number (see, e.g., Turner 1979),

Rif (y)= Ri 〈−v′T ′〉〈
−u′v′

∂u
∂y

〉 , (5.3)

representing the ratio between the buoyancy flux B and the turbulence production P.
Figure 12 shows the Rif (y) profiles for simulations 9, 11 and 13. The bands around the
solid lines represent the standard deviation of Rif calculated from the time variation
of Rif . It can be seen that Rif (y) shows a very similar behaviour to Rig, with low
values at the wall and a rather broad maximum at the centre, even though the values
of Rif are slightly larger. This indicates that for the simulations considered here the
turbulent Prandtl number PrT =Ri/Rif = νT/κT is slightly smaller than unity, where νT
and κT are the eddy viscosity and the eddy diffusivity respectively. Fluctuations around
mean values are significantly stronger at the centre and rapidly reduce near the walls.
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FIGURE 12. Vertical variation of Rif (y), as defined in (5.3). The shaded regions represent
the ±σ intervals, where σ is the standard deviation. Lines: left, simulation 9; middle,
simulation 11; right, simulation 13.
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FIGURE 13. Comparison of different measures of Rif for the simulations listed in table 1.
The symbols represent (A) RiC

f , derived from Rif (y) vertically averaged in the centre
−0.1< y< 0.1, (E) RiE

f , derived from Rif (y) averaged over the entire channel −1< y< 1,
and (@) RiG

f given by (5.9). The error bar corresponds to ±σ , where σ represents the
standard deviation of time varying quantities. The dashed black thin line represents the
bisect, i.e. Rif =Ri. Data markers are colour-coded proportional to the simulation value of
log10 Reτ , ranging from 40 (blue) to 1500 (red), with the size of the markers proportional
to the turbulent fraction γ .

Thus, Rif (y) is a spatially varying local measure of the mixing efficiency. In figure 13,
we compare two different derived measures of Rif . The triangles represent values of
RiC

f , i.e. Rif (y) averaged locally at the centre of the channel 0.1< y<−0.1, and the
circles represent values of RiE

f , i.e. Rif (y) averaged globally across the entire channel
−1< y<+1. Because of the lower values of Rif observed at the wall, RiC

f is larger
than RiE

f . Nevertheless, both sets of data show a clear increase with Ri and a tendency
to saturate for large values. Unfortunately, the relatively small Re did not allow us to
obtain turbulent states for Ri> 0.175, where the behaviour of Rif is most debated and
non-monotonic dependence in Ri is sometimes seen in experiments (see, e.g., Linden
1979; Park et al. 1994; Holford & Linden 1999; Oglethorpe et al. 2013).
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The simplified wall-bounded nature of stratified PCF also allows us to identify
another global measure of mixing in terms of properties of the wall forcing. By
integrating the kinetic energy and the potential energy, defined as −Ri

∫
Ty dV , over

the whole domain, we can derive an evolution equation for the total energy of the
system:

dETOT

dt
= 2τw −

∫ +1

−1
(εM + εK + εP) dy, (5.4)

where 2τw represents the forcing due to the counter-moving walls and the εi terms
represent the dissipation of mean kinetic energy,

εM = 1
Re

〈
∂u
∂xj

∂u
∂xj

〉
, (5.5)

turbulent kinetic energy,

εK = 1
Re

〈
∂u′i
∂xj

∂u′i
∂xj

〉
, (5.6)

and potential energy,

εP = 1
Re Pr

〈
∂T̃
∂xj

∂T̃
∂xj

〉
, (5.7)

where u′ is the velocity fluctuation around the mean and T̃ is the temperature
fluctuation around a linear stratification. In a statistically steady state, equation (5.4)
can be reduced to the dimensionless form

1− RiG
f = (ε̃M + ε̃K)

Re2

Re2
τ

, (5.8)

where ε̃M is the y-integrated mean kinetic energy dissipation and ε̃K is the integrated
turbulent kinetic energy dissipation. Thus, RiG

f is a global measure of the mixing,

RiG
f =

Ri Re (Nu− 1)
Re2

τ Pr
, (5.9)

and we also plot this measure in figure 13 with squares. It is seen that RiG
f attains

smaller values than Rif , due to the fact that RiG
f also includes contributions of mean

kinetic energy dissipation in the denominator, which is large near the wall. This effect
can be identified directly by rewriting RiG

f as

RiG
f =

−Ri
∫
〈v′T ′〉 dy∫ 〈

∂

∂y

[(
1

Re
∂u
∂y
− u′v′

)
u
]〉

dy
=

−Ri
∫
〈v′T ′〉 dy∫

〈ε̃M〉 dy−
∫ 〈

u′v′
∂u
∂y

〉
dy
, (5.10)

where the fact that the total shear ν∂u/∂y − u′v′ is constant has been used.
Equation (5.10) indicates that reductions relative to RiC

f and RiE
f arise as a consequence

of mean kinetic energy dissipation (first term in the denominator), which is large close
to the walls.
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FIGURE 14. Comparison between the conditional average based on turbulent regions
(- - - -) and the conditional average based on laminar regions (· · · · · ·) for simulation 13.
Conditional values are obtained by averaging the horizontally averaged values over roughly
30 snapshots. The non-conditional values (——) obtained by averaging in time, i.e. 〈·〉,
are also shown for reference. Vertical variation of (a) turbulent shear stress −u′v′/u2

τ , (b)
turbulent heat flux −v′T ′/qw and (c) flux Richardson number Rif as defined in (5.3).

The RiG
f data points approximately follow a straight line corresponding to RiG

f =Ri,
suggesting that velocity and temperature are closely related and show very similar
behaviour such that qw≈ τw. This is consistent with the finding of Cenedese & Adduce
(2008) and Wells, Cenedese & Caulfield (2010), who suggest a scaling of the mixing
efficiency at ‘weak’ stratification proportional to the inverse square of an appropriate
Froude number, which here is equivalent to the first power of the bulk Richardson
number, Fr−2 ∼ Ri. It is apparent that simulations at large Re and Ri generally
show a somewhat larger degree of fluctuations of RiG

f . In particular, simulation 14
exhibits the largest variance, possibly due to the strong degree of intermittency
found in this case. In order to investigate to what extent Rif depends on the global
intermittency of the flow, the size of the symbols in figure 13 has been modified to
reflect the value of γ . Surprisingly, the dependence of Rif on γ is relatively small.
To understand better how laminar and turbulent regions contribute to the total mixing
separately, we have calculated the turbulent shear stresses −u′v′, the turbulent heat
fluxes −v′T ′ and the flux Richardson number Rif in laminar and turbulent regions
separately for a number of flow fields (approximately 30) of simulation 13 and
averaged their values (figure 14). Fluctuations have been computed using averages
applied in laminar regions and turbulent regions separately in order to avoid spurious
fluctuations due to the variation of mean profiles in laminar and turbulent regions. In
laminar regions, velocity and temperature fluctuations are greatly reduced with respect
to their turbulent counterparts. The magnitudes of u′v′ and v′T ′ in laminar regions
drop to approximately 20–25 % of the equivalent magnitude in turbulent regions.
Nevertheless, despite this reduction, Rif does not significantly change, indicating
that u′v′ and v′T ′ decrease proportionately such that their ratio remains close to
constant. This highlights once more the close relationship between the velocity and
the temperature fields. Momentum fluxes and heat fluxes both originate from the
vertical advection of mean velocity and mean temperature gradients, and they reduce
in the same manner as the vertical velocity fluctuation drops. This is an unexpected
result as it is typically argued that more quiescent (i.e. laminar) regions should
be associated with smaller mixing efficiencies since the surviving waves can still
transport energy but not heat. It is important to remember that the regions that we
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FIGURE 15. Interpolated surface of Rif on (a) an Re–Ri and (b) an Rb–Ri plane. The
symbols mark the values for the simulations in table 1.

refer to as ‘laminar’ are in fact constantly deformed and convected by the surrounding
turbulence, still retaining 20–25 % of the turbulent fluctuations. This, together with
the imposed mean velocity gradients, generates momentum and heat fluxes associated
with Rif similar to the ones found in turbulent regions.

An understanding of how the efficiency of mixing varies as a function of Re and
Ri is one of the most important problems in stratified turbulent dynamics and is
certainly of central importance for parametrisation of mixing in large-scale models
(see Ivey, Winters & Koseff 2008). We have attempted to unravel the shape of
the Rif = f (log10 Re, Ri) surface by finding the surface that best approximates our
observations. In appendix A, we outline the interpolation method in more detail. The
contour levels of Rif , shown in figure 15(a), display a weak non-monotonic behaviour
in Re with the presence of a local maximum close to the region where intermittency
appears. It would be interesting to explore whether this reduction of Rif observed at
large Re is real or is an artefact of the interpolation. Unfortunately, this regime is
currently inaccessible due to the large computational cost associated with large Reτ .
In order to frame our results in the light of the recent advances in the understanding
of stratified turbulence (e.g. Billant & Chomaz 2001; Lindborg 2006; Brethouwer
et al. 2007), figure 15 shows the Rif surface in a plane where Re has been replaced
by the buoyancy Reynolds number (Brethouwer et al. 2007),

Rb = εK Re
Ri

. (5.11)

On the Rb–Ri plane, the variation of Rif is somewhat smoothed and Rif is
approximately constant with Rb, with Rb in the range between 30 and 650.
Figure 15(b) also shows the intrinsic limitations and difficulties of simulating stratified
turbulent flows. Because of the reduction of vertical length scale due to a stable
stratification, Rb decreases as we move towards the top right corner of figure 2(a),
corresponding to larger values of both Re and Ri.

6. Models for predicting the intermittency boundary
The L+ criterion (i.e. L+ 6 200) tested in figure 11 can be particularly useful to

predict where the boundary separating intermittent and turbulent dynamics lies in the
Re–Ri plane. In order to construct this prediction, we rewrite L+ as

L+ = Re4
τ Pr

Cκ Re2 Ri Nu
. (6.1)
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Since throughout our simulations Pr is held fixed, modelling of the functional
dependence of L+ on the externally fixed parameters Re and Ri is equivalent
to constructing models for the dependence of Reτ and Nu on Re and Ri. In the
following, we compare two such models: one simple analytical model and a more
complex Reynolds-averaged Navier–Stokes (RANS) model, which potentially provides
an increasing degree of accuracy at the expense of simplicity.

6.1. Monin–Obukhov self-similarity theory
The analytical model is derived from the self-similarity theory proposed by Obukhov
(1971) and Monin & Obukhov (1954). It provides analytical expressions for velocity
and temperature profiles in unstable and stable stratifications. More generally, turbulent
statistical moments are assumed to depend only on the vertical momentum transfer
−u′v′ (at first approximation equal to the wall shear stress τw), the buoyancy
parameter gαV , the height from the surface y and the turbulent heat flux −v′T ′
(at first approximation equal to the wall heat flux qw). Dimensional analysis therefore
leads to only one independent dimensionless group, suggesting that any statistical
quantity, when properly normalised, is only a function of such a group, which could
be (arbitrarily) identified by

ξ = y
L
, (6.2)

where L is the Monin–Obukhov length scale, as defined in (2.11). In particular, the
mean velocity and temperature gradients (dimensional) can therefore be written as

∂u
∂y
= uτ

Cκy
φm(ξ) and

∂T
∂y
= Tτ

Cκy
φh(ξ), (6.3a,b)

where φm and φh are dimensionless functions, the von Kármán coefficient, Cκ , is
historically included in the definitions and Tτ is the friction temperature, i.e. Tτ =
qw/uτ . At first approximation, φm and φh are assumed to be linear functions of ξ , i.e.

φm(ξ)= 1+ βξ and φm(ξ)= PrT + βξ , (6.4a,b)

with PrT being the turbulent Prandtl number and β a dimensionless constant. Despite
its simplicity, Monin–Obukhov self-similarity theory has been successfully compared
with in situ field measurements (Businger et al. 1971; Kaimal et al. 1976) and
numerical simulations (García-Villalba & del Álamo 2011; Ansorge & Mellado
2014; Deusebio et al. 2014). In the following we develop a model based on it. By
integrating the mean gradients given by (6.3) together with definitions (6.4), we arrive
at an expression for the velocity and buoyancy jumps between the upper and lower
walls,

U = 2
uτ
Cκ

(
log Reτ + β h

L
+CκC1

)
(6.5)

and

T = 2
Tτ
Cκ

(
PrT log Reτ + β h

L
+CκC2

)
, (6.6)

with C1 and C2 being constants. We note that Monin–Obukhov theory assumes a very
similar shape for the velocity and temperature mean profiles, consistently with our
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FIGURE 16. (a) Comparison between numerical simulations (——) and the analytical
model (- - - -) defined in (6.5) and (6.6). The three profiles correspond to 〈u〉 velocity
profiles for the simulations 6, 11 and 13, shown in figure 3. (b) Percentage errors in
the estimation of L+ using the Monin–Obukhov model, as defined in (6.9). The symbols
represent all of the simulations given in table 1 and are coloured by the turbulent fraction
γ , ranging from blue (laminar) to red (fully turbulent).

simulations, as shown by the empirically observed scaling RiG
f ∼ Ri. Equations (6.5)

and (6.6) can be rearranged to provide expressions relating Reτ , Re, L and Ri, i.e.

Re= Reτ
Cκ

(
log Reτ + βReτ

L+
+C1

)
(6.7)

and

Ri= h
L

PrT log Reτ + βReτ
L+
+C2(

log Reτ + βReτ
L+
+C1

)2 , (6.8)

from which the value of L+ can be estimated. Here, we set β = 4.8, PrT = 0.7 and
C1=C2= 5.5 in (6.7) and (6.8), similar to the values suggested by Wyngaard (2010)
and consistent with our simulations, indicating a PrT slightly smaller than unity.

Figure 16(a) shows a comparison between the velocity profiles from the numerical
simulations (already presented in figure 3) and the predictions provided by the
Monin–Obukhov theory. Despite its simplicity, we observe a reasonable agreement,
particularly in the core region of the flow. On the other hand, the agreement close to
the walls is less good (especially for the unstratified simulation 6 for which Re may
well be too small to allow the development of a proper logarithmic layer), resulting
in an error in the prediction of Reτ and L+. In figure 16(b) we plot the percentage
error difference,

|L+DNS − L+M|
L+DNS

%, (6.9)

between the value obtained from the numerical simulations, L+DNS, and the estimated
value of the model using (6.7) and (6.8), L+M. It is worth noting that the error in the
prediction of L+ tends to be larger when intermittency appears in the flow. In fully
developed turbulent regimes the predicted value of L+ is within a relative error of
20–40 %, which we believe is acceptable.
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6.2. Explicit algebraic models
The more complex model we consider here is an EAM for turbulent Reynolds
stresses and heat fluxes for stably stratified flows. An EAM is generally developed
from differential Reynolds-stress models (DRSMs) in which the evolution equations
for the Reynolds stresses and heat fluxes take the form (Pope 2000)

Duiuj

Dt
−Dij =Pij +Πij − εij + Gij (6.10)

and
Duiθ

Dt
−Dθ i =Pθ i +Πθ i − εθ i + Gθ i, (6.11)

where the terms correspond to (from left to right) advection, diffusion, production,
pressure redistributions, dissipation and buoyancy. Following Lazeroms et al. (2013),
equations (6.10) and (6.11) can be recast as evolution equations for the dimensionless
counterparts aij= uiuj/K− 2/3δij and ξi= uiθ/

√
K Kθ , where K is the turbulent kinetic

energy, uiui/2, and Kθ is the scalar variance, θ 2/2. In EAMs, the weak-equilibrium
assumption (Rodi 1976) is generally made at this stage, neglecting advection and
diffusion terms in the evolution equations for aij and ξi. This allows one to reduce
these equations to an algebraic form in which time derivatives and higher-order spatial
derivatives of Reynolds stresses disappear, i.e.

uiuj

K
(P − ε+ G )=Pij +Πij − εij + Gij (6.12)

and
uiθ

2

(
P − ε+ G

K
+Pθ − εθ

Kθ

)
=Piθ +Πiθ − εiθ + Gij. (6.13)

In (6.12) and (6.13), the terms Πij and Πiθ − εiθ can be modelled following Launder
(1975), with expressions involving K, Kθ and the other variables, i.e. Ui, T , aij and
ξi. The dissipation term εij is assumed to be isotropic, i.e. εij = (2/3)εδij, where ε
is the turbulent kinetic energy dissipation. Equations (6.12) and (6.13) are implicit
in aij and ξ and highly nonlinear. However, explicit algebraic equations relating
aij and ξ to the other mean quantities can be derived by expanding aij and ξ in
tensor groups (Pope 1975) and using an approximate equation for the kinetic energy
production-to-dissipation ratio (Lazeroms et al. 2015). These relations together with
suitable expressions for K, Kθ and ε such as the K–ω model (Menter 1992) form a
closed set of equations which can be numerically solved in time. For further details
on the derivation of the model we refer the interested reader to Lazeroms et al. (2013,
2015).

Explicit algebraic models have been successfully applied to stably stratified shear
parallel flows and stably stratified channel flows, and provide fair agreement with
simulations and significant improvements with respect to standard eddy-viscosity and
eddy-diffusivity models (Lazeroms et al. 2013). In the following, we extend this
comparison to PCF. It is worth emphasising here that all of the modelling constants
are the same as in Lazeroms et al. (2013). The velocity (figure 17a) and density
profiles (not shown) agree reasonably well with the numerical simulations over the
entire channel depth. Figure 17(b) shows the percentage error, as defined in (6.9)
using EAMs for estimating the model value L+M. The agreement is somewhat poor at
low Re but improves for increasing Re, providing good predictions for Re> 5× 103.
That models and simulations do not agree at low Re< 5× 103 is not surprising since
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simulations 6, 11 and 13, shown in figure 3. (b) Percentage errors in the estimation of L+
using the analytical model. The symbols represent the simulations given in table 1 and are
coloured by the turbulent fraction γ , ranging from blue (laminar) to red (fully turbulent).

at such low Re diffusive effects may well be important and the weak-equilibrium
assumption may be inappropriate. Nevertheless, as long as Re is large enough,
the relative errors for estimating Reτ and L+ are approximately 10 % and 20 %
respectively, slightly better than for the Monin–Obukhov self-similarity theory.

6.3. The intermittency boundary
We now use the models outlined in §§ 6.1 and 6.2 to predict the intermittency
boundary in the Re–Ri plane between turbulent and intermittent dynamics. According
to figure 11, we predict that intermittency onsets at L+≈ 200. Using the two models,
we have estimated L+ as a function of Re and Ri, with Re between 103 and 106 and
Ri between 0 and 0.2. A summary of the simulations together with the intermittency
boundaries predicted by the two models is shown in figure 18. The colours represent
the turbulent fraction γ . The two models show an overall similar behaviour, and
they are indistinguishable for most of the Re range. Remarkably, the model based
on the Monin–Obukhov self-similarity theory is able to provide good agreement
with the numerical simulations and with the more complex EAM. It is nevertheless
worth noting that PCF is a simple and idealised geometry in which, in statistically
steady states, momentum and heat fluxes are constant across the channel. Analytical
models may provide somewhat poorer performance in more complex flow geometries,
where more refined models, such as EAM, have already been shown to provide better
results. As shown in figure 18, at least at smaller Re and Ri, the intermittency and
relaminarisation boundaries are quite close. It is still an open question whether this
observation carries over to larger values of Re and Ri, particularly in sufficiently large
computational domains.

7. Conclusions
We have studied the onset of global intermittency in stably stratified PCFs using

numerical simulations, in an attempt to identify the intermittency boundary depicted
schematically by the solid line in figure 1. We have explored the flow dynamics
for a number of Re–Ri values, ranging from low Re ∼ 700 (close to providing
intermittent dynamics in unstratified conditions) to high Re ∼ 2.8 × 105. The Ri
at which intermittency arises increases with Re, and no turbulent states have been
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EAM (dashed grey line). The symbols are coloured by the turbulent fraction γ , ranging
from blue (laminar) to red (fully turbulent). Triangles representing simulations that fully
relaminarised are also shown for reference.

found for Ri > 0.2 for the Re considered here. At the largest Re we have considered,
Re= 2.8× 105, a value of Ri= 0.175 already leads to intermittency, with a significant
portion of the flow being laminar.

Intermittency first appears in the form of laminar spots which grow and decay
within the flow. As Ri increases, these regions grow larger and turbulent bands span
the entire domain, similar to the behaviour reported by Brethouwer et al. (2012).
The dynamics of the laminar/turbulent patches show remarkably different features
depending on Re. At low Re, viscously driven intermittency is characterised by
laminar and turbulent regions which fill the entire channel gap and align horizontally
along inclined bands, similar to the behaviour that has been previously reported in
unstratified PCF. On the other hand, at high Re and Ri, buoyancy-driven intermittency
leads to inhomogeneity in the vertical direction with an interplay of turbulent and
laminar layers. At high Re, we find the layers to be homogeneous in the streamwise
direction, although the size and structure of these layers might be affected and
constrained by the size of the computational domain. Further investigation is needed
in order to address the effect of the size of the computational domain on the laminar
and turbulent structures.

The smallest turbulent fraction is generally found at the walls where the relaminari-
sation process of PCF is most likely to initiate. We argue that the wall dynamics
in PCF is particularly important as it determines the amount of energy injected into
the system and the vertical momentum flux. Based on this observation, we have
developed a method for identifying laminar and turbulent regions based on local
variations of wall enstrophy and we have estimated the intermittency as the fraction
γ of the total wall area that is turbulent. One of our major findings is that γ depends
only on L+ when Re is sufficiently high, i.e. Reτ > 100. This value can be used to
determine the onset of intermittency as suggested by Flores & Riley (2010), allowing
the identification of the intermittency boundary. We find continuously statistically
steady turbulent states only when L+ > 200. For L+ < 200, γ quickly decreases,
thus suggesting L+ ≈ 200 as the criterion separating fully developed turbulence and
intermittent flows for buoyancy-driven intermittency. Although we have not attempted
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to identify the relaminarisation boundary, we note that in simulations close to full
relaminarisation, L+ ≈ 60–70. It is worth comparing these values with the results
of Jiménez & Pinelli (1999), who simulated synthetic wall-bounded flows where the
turbulent fluctuations in the outer flow were filtered out. This allowed them to study to
what extent the near-wall cycle evolves independently and/or relies on sources/events
in the outer layer. They found that the flow relaminarised (the horizontal sizes were
larger but comparable to the minimal flow unit of Jiménez & Moin 1991) when the
filter height δ+ < 60.

It is natural to draw a comparison between L+ and δ+, as L+ is generally interpreted
from a physical standpoint as the distance from the wall at which stratification
becomes of leading importance. At y+=L+, buoyancy conversion becomes comparable
to shear production and substantially affects the overall energy budget. Thus, the
stabilising effect of stratification damps the turbulent fluctuations for y > L and
buoyancy might act in an analogous manner to the filter of Jiménez & Pinelli (1999),
although the stabilising effect is here provided by a physical process. Stratified flows
genuinely offer the physical possibility (thus allowing experiments to be carried out)
to study the interaction of outer structures and near-wall structures, and represent a
powerful testbed to understand their interplay at high Re.

Not surprisingly, the L+ criterion does not apply for moderately low Re, and marked
intermittency already appears at L+≈ 300 for the set of simulations at the two lowest
values of Reτ , as listed in table 1. At such low Re, the onset of intermittency and
ultimate relaminarisation is not buoyancy-driven but rather viscosity-driven, and the
L+ criterion alone is not expected to be relevant. Previous simulations in intermittent
stably stratified Ekman layers (Deusebio et al. 2014) have shown laminar patches
around L+ ≈ 500, although the Re considered in that study may well have been too
low for the flow to be in the range of buoyancy-driven intermittency. A comparable
Reτ might be estimated using their friction velocity uτ and the height of the low-level
jet, providing a value of Reτ ≈ 150, slightly larger but comparable to the threshold
for buoyancy-driven intermittency Reτ > 100 that we give here. We nevertheless point
out that if relaminarisation is a near-wall process involving the suppression of the
near-wall cycle, we do not expect the actual value of L+ to vary greatly depending
on the flow geometry and on the exact form of the outer structures. Whether the
L+ = 200 value would change with Pr is an important question to be investigated,
especially in the context of oceanic turbulence and mixing.

The identification of a particular value, L+ = 200, as the criterion for partial
relaminarisation also makes it possible to predict where the intermittency boundary
between turbulent and intermittent regimes lies in the Re–Ri plane (the solid line in
figure 1). In order to construct the intermittency boundary in the Re–Ri plane, a model
able to determine the functional dependence of L+ on Re and Ri is needed, as is clear
from (6.1). We have compared two models with different degrees of accuracy and
complexity, one analytical model based on the Monin–Obukhov self-similarity theory
(Obukhov 1971; Monin & Obukhov 1954) and an EAM for the Reynolds-averaged
Navier–Stokes equations for stably stratified flows (Lazeroms et al. 2013). The models
are able to determine Reτ and L+ as functions of Re and Ri within a few tens of per
cent and provide very similar predictions for the intermittency boundary. The fact that
Monin–Obukhov self-similarity theory provides fair agreement with the full numerical
results is consistent with the empirical observation that the velocity and temperature
profiles show very similar behaviour. This is also reflected by the striking observation
that the global mixing measure RiG

f , as defined in (5.9), scales linearly with Ri for
flows that are mostly turbulent, and the conditional averages of the flux Richardson
number in laminar and turbulent regions are quite similar.
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a0 −0.22
a1 2.9× 10−2

a2 1.9× 10−2

a3 4.8× 10−2

a4 3.9× 10−2

a5 −2.1× 10−3

a6 −9.1× 10−3

a7 6.0× 10−2

a8 −9.6× 10−3

a9 4.4× 10−4

TABLE 2. Coefficients of the polynomial expansion in (A 1) used to approximate Rif on
the Re–Ri plane.

The intermittency boundary in Re–Ri space predicted by the models becomes
independent of Ri at sufficiently high Re. Therefore, it is natural to ask whether
the intermittency boundary asymptotes and there exists a value of Ri for which the
flow would always be intermittent, or even laminar, regardless of the value of Re.
Irrespective of the answer to these questions, the fact that the intermittency boundary
curve flattens in figure 18 poses a severe challenge to increasing the external density
contrast between the walls to produce strongly stratified interiors with Ri > 0.2 in
PCF, without inevitably leading to relaminarisation of an at least initially turbulent
flow. Nevertheless, an intriguing possibility may be offered by a change in the density
boundary conditions. In particular, if salt were used instead of temperature to stratify
the flow in an experiment, the Dirichlet boundary conditions used here would be
naturally replaced by homogeneous (no-flux) Neumann boundary conditions at the
walls, i.e. ∂ρ/∂y = 0. This would ensure an unstratified flow near the wall and
the maintenance of near-wall turbulence with high momentum transfers. With large
shear stresses at the wall, a large amount of power would be required to drive the
system, which would in turn be dissipated by stratified turbulent dynamics. Even
for large Ri, the momentum fluxes through the walls must be carried throughout the
system, thus requiring efficient transport in the interior that can only be provided
by highly turbulent dynamics with potentially more efficient mixing, as observed in
stratified mixing layers subject to primary and inevitably transient Kelvin–Helmholtz
instabilities (see, e.g., Mashayek, Caulfield & Peltier 2013).
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Appendix A
In order to interpolate the data points in figure 15 we use a cubic polynomial

P(log10 Re, Ri),

a0 + a1 log Re+ a2Ri+ a3 log Re2 + a4 log Re Ri+ a5Ri2

+ a6 log Re3 + a7 log Re2 Ri+ a8 log Re Ri2 + a9Ri3, (A 1)
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and find the coefficients aj that minimise the residual,

i=N∑
i=1

[P(log10 Re(i), Ri(i)|aj, j= 0, . . . , 9)− Ri(i)f ]2 +
j=9∑
j=1

a2
j λ, (A 2)

where the i sum extends over all the N simulations of table 1. The coefficients aj for
j= 1, . . . , 9 are penalised in order to avoid a perfect fit of the data, as is a common
procedure in standard regression analysis. We have tested several values of λ and used
λ= 0.1 as a reasonable trade-off between a general global interpolation and a small
error in the prediction of the observations. Although the method outlined here allows
us to capture the general trend of Rif , caution should certainly be used in extrapolation
away from the range of our observations. Values of the coefficients aj are given in
table 2.
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