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A numerical study based on large eddy simulation is performed to investigate a bottom
boundary layer under an oscillating tidal current. The focus is on the boundary layer
response to an external stratification. The thermal field shows a mixed layer that is
separated from the external stratified fluid by a thermocline. The mixed layer grows
slowly in time with an oscillatory modulation by the tidal flow. Stratification strongly
affects the mean velocity profiles, boundary layer thickness and turbulence levels in the
outer region although the effect on the near-bottom unstratified fluid is relatively mild.
The turbulence is asymmetric between the accelerating and decelerating stages. The
asymmetry is more pronounced with increasing stratification. There is an overshoot
of the mean velocity in the outer layer; this jet is linked to the phase asymmetry of
the Reynolds shear stress gradient by using the simulation data to examine the mean
momentum equation. Depending on the height above the bottom, there is a lag of
the maximum turbulent kinetic energy, dissipation and production with respect to
the peak external velocity and the value of the lag is found to be influenced by the
stratification. Flow instabilities and turbulence in the bottom boundary layer excite
internal gravity waves that propagate away into the ambient. Unlike the steady case,
the phase lines of the internal waves change direction during the tidal cycle and
also from near to far field. The frequency spectrum of the propagating wave field is
analysed and found to span a narrow band of frequencies clustered around 45◦.
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1. Introduction
At the bottom of the ocean, a turbulent mixed layer develops as near-bottom

currents flow over the sea floor. These currents are often oscillatory, for example,
barotropic and internal tides, surface and internal gravity waves, inertial oscillations.
The complex interplay of time-dependent currents, rotation, stratification and bottom
topography determines the properties of the bottom boundary layer. The present
large eddy simulation (LES) of a boundary layer on a flat non-sloping bottom
under an oscillating current in a uniformly stratified fluid is designed to focus on the
interaction of stratification and oscillation in the absence of other complicating factors.
The following literature survey shows that this fundamental problem, especially the
phase-dependent aspects, is not well understood.

† Email address for correspondence: ssarkar@ucsd.edu
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In the context of oscillatory flows, it is useful to distinguish between pulsatile
flows with non-zero mean and purely oscillatory flows with zero mean; the latter
is the subject of the present work. For oscillatory flow over a smooth surface, the
Reynolds number, Res =U0δs/ν based on the Stokes thickness, δs =

√
2ν/ω, where ω

is the tidal frequency, and peak external velocity U0 is often used to classify the flow
into qualitatively different regimes. Previous investigators such as Hino, Sawamoto &
Takasu (1976), Hino et al. (1983), Sleath (1987) Jensen, Sumer & Fredsøe (1989),
Akhavan, Kamm & Shapiro (1991a) and Sarpkaya (1993) have distinguished four
different flow regimes for the unstratified zero time-mean oscillatory boundary layer
based on the value of Reynolds number Res: (i) laminar flow when Res < 100; (ii)
disturbed laminar flow for 100<Res < 550, where good agreement between velocity
traces and laminar theory is found except during the accelerating phase of the cycle;
(iii) intermittently turbulent (IT) flow for Res > 550, where turbulent bursts appear
and three-dimensional nature of the turbulence is visible in contrast to the earlier
two-dimensional behaviour in the disturbed laminar regime (for further details consult
Blondeaux & Seminara 1979; Vittori & Verzicco 1998; Akhavan, Kamm & Shapiro
1991b) and (iv) fully turbulent (FT) flow at sufficiently large Reynolds number. While
Res must be quite large for turbulence to persist throughout the entire cycle, Jensen
et al. (1989) and Salon, Armenio & Crise (2007) found that turbulence is present for
most of the cycle when Res is approximately 1800 or larger.

Unstratified oscillating flow has been the subject of numerical studies as summarized
below. Direct numerical simulation (DNS) studies (e.g. Spalart & Baldwin 1987;
Akhavan et al. 1991b; Vittori & Verzicco 1998; Costamagna, Vittori & Blondeaux
2003; Sakamoto & Akitomo 2008, their case of pure oscillation) have primarily
studied the disturbed laminar and IT flow regimes. Spalart & Baldwin (1987)
performed DNS of oscillating Stokes flow over a range of Reynolds numbers up
to Res =1200, observed a change from disturbed laminar to intermittent turbulence
when Res = 600–800, identified a log-law over a portion of the cycle at Res = 1200,
and proposed a new algebraic turbulence model. Akhavan et al. (1991b) in their DNS
study of oscillating flow in a channel focused on transition to turbulence and explained
features of the transition process observed in their laboratory experiment (Akhavan
et al. 1991a) as a secondary instability of two-dimensional Tollmein–Schlichting
waves. Vittori & Verzicco (1998) performed DNS in the disturbed laminar and
the IT regime taking wall imperfections into account. They found that wall
imperfections induce transition to turbulence and have a strong effect on the
time evolution of the turbulent kinetic energy (TKE) in the disturbed laminar
regime. Costamagna et al. (2003) have examined the role of coherent boundary
layer structures in their DNS of the IT regime, and identify instability of low-speed
streaks as important for the generation and the sustenance of turbulence in oscillating
Stokes flow.

LES has been used recently to extend the scope to higher Reynolds numbers
where the FT regime applies. LES has been shown to handle turbulence where there
is a transition from laminar flow to turbulence in pulsating flows, for example, by
Scotti & Piomelli (2001). The problem of purely oscillatory boundary layers has been
studied with LES recently by Hsu, Lu & Kwan (2000), Lohmann et al. (2006), Salon
et al. (2007) and Radhakrishnan & Piomelli (2008). Hsu et al. (2000) performed LES
for Reynolds numbers up to Res = 894 that corresponds to the IT regime using a
subgrid eddy viscosity model with the dynamic procedure, and a Reynolds-averaged
Navier–Stokes (RANS) calculation of both the IT and FT regime that employed a
k − ω model. Their simulations captured the transition from disturbed laminar to
IT regime, and showed that the phase advance of peak shear stress with respect
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to peak velocity changed from its laminar value of 45◦ to about 10◦ in the IT
regime. Lohmann et al. (2006) simulated a case with Res = 3464 in the FT region
with LES using the standard Smagorinsky subgrid scale (SGS) model. Their results
for temporal evolution of the wall shear stress and first- and second-order statistics
did not reproduce the experimental results found by Jensen et al. (1989) in their test
case 10 at the same Reynolds number. The discrepancy illustrates the unsuitability of
the simple Smagorinsky SGS model for unsteady flow problems. Salon et al. (2007)
preformed LES using the dynamic mixed model (DMM). The authors studied a case
with Res = 1790, reproduced the experimental results of test case 8 by Jensen et al.
(1989), and provided insight into the phase dependent variation of near-wall and
outer-layer turbulence over a complete cycle. Recently, Radhakrishnan & Piomelli
(2008) have performed LES with various subgrid models and near-wall treatments
for simulations in the FT regime. The experimental results by Jensen et al. (1989)
of test cases 10 (Res = 3464) and 13 (same flow conditions as test case 10 but with
a rough wall) were successfully matched. These authors demonstrate the superiority
of the dynamic Smagorinsky model over the standard one as well as the necessity of
an additional wall layer model if the eddies responsible for near-wall turbulence are
unresolved.

DNS and LES studies of an oscillating boundary layer subject to stratification are
scarce. Sakamoto & Akitomo (2006) and Sakamoto & Akitomo (2009) report a DNS
of a stratified tidal bottom Ekman layer for various values of the Rossby number
Ro. The case of pure oscillation (Ro = ∞) in the study by Sakamoto & Akitomo
(2009) was at Res = 1000, and all cases had a weak stratification, N2

∞/ω2 = 47.5.
The authors mainly focused on the mixed layer growth along with energy transfer
between potential and kinetic energy. They also studied the applicability of different
turbulent scales for the mixed and the interfacial layers. There have also been
studies of stratified tidal boundary layers using the RANS equations, for example,
by Richards (1982), Davies, Jones & Xing (1997), Burchard, Petersen & Rippeth
(1998). Calculations using the RANS equations typically require additional models,
for example, stability functions based on Richardson number, to incorporate stability
effects.

Burchard et al. (1998) report observations at a location in the Irish Sea that
show a lag of dissipation rate with respect to the current. Lorke et al. (2002) in
their measurements in a stratified basin under a low-speed oscillating flow also
observed a lag in the dissipation rate with respect to the free-stream current. The
authors also found a considerable difference between the dissipation rate estimated
from the law of wall and that obtained using microstructure measurements. Thorpe
et al. (2008) observe a lag of dissipation with respect to the tidal velocity at
a location in the Irish Sea (water depth 43.5 m). They also observe upward
propagating bursts that reach the surface to form boils. Measurements in the
stratified boundary layer over the Oregon shelf have been employed to ascertain
the effect of stratification on the log-law by Perlin et al. (2005) and on Ekman
veering by Perlin et al. (2007). Luznik et al. (2007) have obtained PIV measurements
in the near-bottom unstratified part of a boundary layer on the continental shelf
off the coast of South Carolina and Georgia, and examined turbulence spectra
and isotropy. Recently, Lozovatsky et al. (2008a, b) examined the phase variation of
the velocity profiles, kinetic energy, dissipation rate as well as peak shear at three
locations in the northwestern East China Sea, each having a different barotropic tidal
environment.

Compared to oscillatory flows, the effect of stratification in steady wall-bounded
flows has received considerable attention. Open channel flow with fixed temperature
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difference $T was studied using DNS by Nagaosa & Saito (1997). Armenio & Sarkar
(2002) studied closed channel flow with a fixed temperature difference $T across the
channel with LES. Applying a fixed temperature difference across the channel leads
to a heat flux at the upper and lower boundaries. However, over most of the ocean,
the sea floor can be well approximated by an adiabatic boundary condition. This
motivated the study of Taylor, Sarkar & Armenio (2005) who performed LES of
open channel flow with an adiabatic bottom and constant heat flux at the top
surface. More recently, a stratified bottom Ekman layer was studied using LES by
Taylor & Sarkar (2007) who focus on the properties of internal gravity waves forced
by turbulence and by Taylor & Sarkar (2008) who discuss stratification effects on the
boundary layer characteristics. Taylor & Sarkar (2008) propose a buoyancy-related
modification of the log-law profile as an alternative to Monin–Obukhov theory (which
is inapplicable when the wall buoyancy flux is zero) and show that the modification
leads to good agreement between the friction velocity estimated from the profile
method and the true value.

After surveying the existing literature, it is clear that the effect of an external
stratification on an oscillatory boundary layer has not been the subject of systematic
study. While Sakamoto & Akitomo (2009) reported a single simulation with low
stratification in the context of a broader study, they did not consider a variety of
stratification levels. In contrast, the present study focuses on the effect of stratification
on the phase-dependent properties of turbulence and internal waves in a tidal
boundary over a range of stratifications, 0<N 2

∞/ω2 < 2500. We select Res = 1790,
which has been studied in detail when N2

∞ = 0 using LES (Salon et al. 2007) and
laboratory experiments (Jensen et al. 1989) and should result in active near-wall
turbulence over most of the cycle.

2. Formulation of the problem
The near-bottom flow resulting from a current oscillating with the M2 tidal period

of 12.4 h on a flat bottom is illustrated in figure 1(a). The bottom is adiabatic while
there is a background thermal stratification with constant buoyancy frequency N∞.
The free-stream velocity,

U∞,d(td) = U0,d sin(ωdtd), (2.1)

is forced by an imposed pressure gradient,

dpd

dxd

(td) = −ρ0,dU0,dωd cos(ωdtd). (2.2)

Here, subscript d denotes dimensional variables. The phase variation of the free-stream
velocity (figure 1b) shows that it is antisymmetric, U∞,d(−φ) = −U∞,d(φ). Furthermore,
the flow accelerates during 0 <φ< π/2 in response to a positive pressure force and
decelerates during π/2 <φ< π when the pressure force is negative. Owing to the
symmetry in the problem, it is sufficient to consider the phase variation of flow
statistics during a half-cycle, 0 <φ< π that spans 6.2 h; the response in the other
half-cycle is either the same or the mirror image. The rotation of earth is neglected
in the present work so as to focus on the effect of stratification on the turbulent
velocity and thermal boundary layers. The coordinates x, y, z denote streamwise,
spanwise (cross-stream) and vertical directions, respectively, while u, v and w are the
corresponding velocity components.
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Figure 1. (a) Schematic of the problem, (b) non-dimensional values of imposed pressure
gradient and free-stream velocity as a function of tidal phase.

2.1. Governing equations

LES is used to obtain the filtered (denoted by overbar) velocity and temperature
fields by numerical solution of the Navier–Stokes equations under the Boussinesq
approximation, written in dimensional form as

∇ · ud = 0, (2.3a)
∂ud

∂td
+ ud · ∇ud = − 1

ρ0,d

∇p′
d + U0,dωd cos(ωdtd)i + νd∇2ud + gdβdθ

′
d k − ∇ · τ d, (2.3b)

∂θd

∂td
+ ud · ∇θd = κd∇2θd − ∇ · λd . (2.3c)

Here p′
d denotes deviation from the background pressure. The quantities τ d and λd

which are the subgrid-scale stress tensor and density flux vector, respectively, require
models for closure.

The dimensional quantities in the problem are the free-stream velocity amplitude
U0,d , tidal frequency ωd , background temperature gradient dθd/dzd |∞, and the dimen-
sional fluid properties: molecular viscosity νd , thermal diffusivity κd , thermal expansion
coefficient βd and density ρd . The variables in the problem are non-dimensionalized
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as follows:

t = tdωd, x = (x, y, z) =
(xd, yd, zd)

U0,d/ωd

, p =
pd

ρ0,dU
2
0,d

,

u = (u, v, w) =
(ud, vd, wd)

U0,d
, θ =

θd
U0,d

ωd

dθd

dzd

∣∣∣∣
∞

.






(2.4)

The resulting non-dimensional form of the governing equations is

∇ · u = 0, (2.5a)
Du
Dt

= −∇p′ + cos(t)i +
1

Re
∇2u + Riθ ′k − ∇ · τ , (2.5b)

Dθ

Dt
=

1

RePr
∇2θ − ∇ · λ. (2.5c)

The flow is governed by three non-dimensional parameters: the Reynolds number
Re, Richardson number Ri and Prandtl number Pr, where

Re ≡ aU0,d

νd
=

U 2
0,d

ωdνd
, Ri ≡ βdgd

dθd
dzd

∣∣∣∣
∞

1

ω2
d

=
N2

∞
ω2

d

, P r ≡ νd

κd

. (2.6)

Here, a = U0,d/ωd and N∞ is the background value of buoyancy frequency, assumed
constant. The following Reynolds number

Res =
Uδs

νd
=

√
2Re, (2.7)

based on the Stokes boundary layer thickness, δS =
√

2νd/ωd , is a commonly used
alternative to Re. We employ Res rather than Reδ to denote the Stokes Reynolds
number since, in geophysical boundary layers, the latter expression is often used for
definitions involving the friction velocity.

2.2. Numerical method

The simulations use a mixed spectral/finite difference algorithm (see Bewley 2007 for
details). Derivatives in the horizontal directions are treated with a pseudo-spectral
method, the grid is staggered in the vertical, and derivatives in the vertical direction
are computed with second-order finite differences. A low-storage third-order Runge–
Kutta–Wray method is used for time stepping, and viscous terms are treated implicitly
with the Crank–Nicolson method. The eddy viscosity and diffusivity coefficients, νT
and κT defined by (2.8) and (2.9), are computed using current values of velocity and
temperature. Then, the subgrid eddy fluxes involving νT and κT are treated with
the Crank–Nicolson method. The code has been parallelized using message passing
interface (MPI).

Periodicity is imposed in the horizontal x and y directions. The bottom boundary,
z = 0, has zero velocity and zero temperature gradient. The top boundary is an
artificial boundary corresponding to the truncation of the domain in the vertical
direction. Rayleigh damping or a ‘sponge’ layer (see e.g. Klemp & Durran 1983)
is used so as to minimize spurious reflections from the artificial boundary into
the ‘test’ section of the computational domain. The velocity and scalar fields are
relaxed towards the background state in the sponge region by adding damping
functions −σ (z) [u(x, t) − U∞(t)i] and −σ (z) [θ(x, t) − θ∞(z)] to the right-hand side
of the momentum and scalar equations, respectively. Here θ∞(z) = z dθ/dz|∞ is the
background temperature profile and σ (z) increases exponentially from σ (z =70δs) = 0
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to σ (z =90δs) = 20. The pressure boundary conditions are p′ = 0 at the bottom wall
and ∂p′/∂z = 0 at the top of computational domain.

The unstratified, oscillating flow is initialized with the velocity field from fully
developed channel flow with a steady dp/dx = −1 after damping the velocity
fluctuations outside of the boundary layer. After at least 15 cycles of the oscillating
flow, a linear temperature gradient is applied at φ∼ 0◦, this point will be taken to be
t = 0 for the rest of the paper. Variable time stepping with a fixed CFL number of 0.72
is used. The time step varies significantly, from 10−4 in the turbulent phase to 10−3

in the quasi-laminar phase. One cycle of the passive scalar case took approximately
80 CPU processor hours while the strongly stratified case took 40 CPU processor
hours.

2.3. Subgrid scale model

The mixed model (Zang, Street & Koseff 1993; Vreman, Geurts & Kuerten 1997)
that is used here for the SGS stress tensor, τ , has a scale similarity part and a eddy
viscosity part. The SGS heat flux λ is obtained using a dynamic eddy diffusivity model
(Armenio & Sarkar 2002). The expressions for the SGS models are as follows:

τij = −2νT Sij + ûiuj − ûi ûj , νT = C$
2|S| (2.8)

and

λj = −κT

∂θ

∂xj

, κT = Cθ$
2|S|. (2.9)

Here, C and Cθ are the Smagorinsky coefficients evaluated through a dynamic
procedure introduced by Germano et al. (1991). Averaging over horizontal planes is
employed to prevent excessive back scattering owing to large local fluctuations. The
dynamic procedure involves the introduction of an additional test filter denoted by
(̂·). The model coefficient C in the SGS stress model is given by

C =
〈Mij (Lij − Hij )〉

〈MklMkl〉
, (2.10)

where

Lij = ûiuj − ûi ûj , Mij = 2
̂
$

2|S|S ij − 2$̂
2

|Ŝ|Ŝ ij , (2.11)

Hij =
̂̂
uiûj −

̂̂
ui

̂̂
uj −

(
ûiuj − ûjuj

)
. (2.12)

The model coefficient Cθ in the SGS heat flux model is given by

Cθ =
〈Mθ

i Lθi 〉
〈Mθ

j Mθ
j 〉 , (2.13)

where

Lθi = θ̂ui − θ̂ ûi , Mθ
i = 2

̂
$

2|S| ∂θ
∂xi

− 2$̂
2

|̂S| ∂θ̂
∂xi

. (2.14)

The test filter, denoted by (̂·), and grid filter, denoted by (·), are applied over only the
horizontal directions using a trapezoidal interpolation rule. For instance, application
of the explicit filters to a LES variable Ψ i at node i is given by

Ψ̂ i =
1

4
[Ψ i−1 + 2Ψ i + Ψ i+1], (2.15)

Ψ i =
1

8
[Ψ i−1 + 6Ψ i + Ψ i+1]. (2.16)
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Case Res Ri Pr lx ly lz Nx Ny Nz

1 1790 0 0.7 50δs 25δs 70δs 64 64 360
2 1790 500 0.7 50δs 25δs 70δs 64 64 360
3 1790 2500 0.7 50δs 25δs 70δs 64 64 360

Table 1. Simulation parameters.

The filter width ratio $̂/$ is taken as
√

6, recommended by Lund (1997) to be the
optimal choice for filters evaluated using the trapezoidal rule.

2.4. Domain resolution and initialization

The computational domain size in the horizontal directions is lx = 50δs and ly = 25δs .
The vertical domain size is lz = 70δs , significantly larger than the boundary layer
thickness (15δs for the unstratified case), so as to allow sufficient vertical space for
propagation of internal waves. The sponge region spans 70δs–90δs . The computational
grid has 64 × 64 × 360 points in the x, y and z directions, respectively, leading to grid
steps of $x+ = 60, $y+ = 30, $z+

min = 2 and $z+
max =20 in viscous units ν/uτ . The

resolution is sufficient to resolve the near-wall eddies that carry the Reynolds stress;
thus, the present simulation is a resolved LES that does not require an additional
near-wall model. The domain size and resolution chosen here is the same as in the C2
case of Salon et al. (2007). Since the present simulation has spectral accuracy in the
horizontal directions, the larger horizontal grid size, 96 × 96, of the C4 case needed
by the second-order accurate finite difference method of Salon et al. (2007) is not
required here.

The flow is statistically homogeneous in the horizontal and the x–y plane average
is used to compute the time dependent mean, 〈A〉xy (z, t), as follows:

〈A〉xy(z, t) =
1

lxly

∫ lx

0

∫ ly

0

A(x, y, z, t) dx dy. (2.17)

The Reynolds average 〈A〉 (z, φ), which is a function of the height above the bottom
z and the tidal phase φ, is calculated by a further ensemble average of the x–y plane
averages taken at an interval of π. Thus,

〈A〉(z, φ) =
1

N
1

lxly

N∑

n=1

∫ lx

0

∫ ly

0

A(x, y, z, φ + nπ) dx dy. (2.18)

The ensemble average over N half-cycles, calculated after accounting for a sign
change if any, takes advantage of the fact that the flow statistics repeat in either
symmetric or antisymmetric fashion after every half-cycle; for example, the mean
velocity is antisymmetric, 〈u〉 (−φ, z) = − 〈u〉 (φ, z). The velocity statistics are obtained
by ensemble averaging after at least 15 cycles and over a period of 10, 15 and 15
cycles for cases 1, 2 and 3, respectively, so that the initial transient (spin up to a
mixed layer from the initial linear thermal profile) of the thermal field is excluded.
The thermal statistics are generally computed using plane averages since the mixed
layer grows, albeit at a small rate.

2.5. Selection of simulated cases

The physical parameters imposed in our present numerical study are given in table 1.
All cases have a Reynolds number, based on the Stokes boundary layer thickness
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of Res = 1790, corresponding to the flow studied by Salon et al. (2007) and also to
test case 8 from the experimental study of Jensen et al. (1989). Turbulence is present
during most of the cycle at Res = 1790. This choice also allows us to perform a
comparison with the results of Jensen et al. (1989) and Salon et al. (2007), and thus
validate the computational model. The focus of the current study is the assessment
of stratification effects on the oscillatory boundary layer and, therefore, Ri is varied
between cases from 0 (temperature is a passive scalar in this case) to a high value
of Ri= 2500. The Prandtl number, Pr= 0.7, is kept constant between cases. This
choice, lower than the value of Pr - 5 for heat transport in water, is motivated by
our desire to keep the computational cost manageable; note that the ratio of smallest
scale of the thermal field to that of the velocity field is proportional to Pr−1/2 when
Pr = O(1) or Pr . 1. At high values of Pr, the thermocline that caps the turbulent
mixed layer could be stronger owing to reduced molecular diffusion of temperature
and the characteristics of stratified turbulence in that region could be different than
the Pr =1 case considered here. The effect of Pr in a stratified bottom boundary layer
is deserving of a separate systematic study.

The choice of simulation parameters can be placed in the context of the oceanic
bottom boundary layer as follows. Take the viscosity of water to be ν=10−6 m2 s−1,
amplitude of current velocity as U0 = 1.5 cm s−1 and take ω= 1.407 × 10−4 rad s−1

corresponding to the M2 tidal period of 12.4 h. The Stokes boundary layer thickness
is δs =

√
2ν/ω= 0.119 m. The Stokes Reynolds number becomes Res = U0δs/ν= 1788,

very close to the value chosen here, while Re=Res
2/2 = 1.6 × 106. The computational

domain size of 50δs × 25δs × 70δs is equivalent to 5.95 × 2.975 × 8.925 m. A range
for the typical buoyancy time period in the ocean is 1 h–15 min corresponding to
153.7 < Ri < 2460 for the environmental parameter, Ri= N2

∞/ω2. The choices of Ri in
table 1 correspond to a low and a high value in the expected range.

3. Passive scalar case, Ri= 0

Results from the Ri= 0 case are summarized here with the objective of setting up
the context for discussing stratification effects and validating the numerical model by
direct comparison with results from the numerical study of Salon et al. (2007) and
from the laboratory study of Jensen et al. (1989) at the same Res =1790.

The streamwise velocity < u+ > (z+) is plotted in semilog coordinates at an intervals
of 30◦, along with previous data, in figure 2. The log-law, u+ = (1/κ) log(z+) + B ,
applicable to the steady case, is also shown. Here κ is the von Kármán constant taken
to be 0.41, and B is the intercept with the u+ axis taken as 5.2. A log-law is observed
between 50◦–140◦. A significant asymmetry is observed between the accelerating and
decelerating phases of the half-cycle, for example, the range of the log-law is larger
during the decelerating phase. Figure 2 shows that, over the central span where well-
developed turbulence exists, the current result (in grey line) is in excellent agreement
with both previous results. In the remaining portion of the cycle, the agreement is
still very good especially with respect to the previous laboratory data of Jensen et al.
(1989).

Figure 3 shows profiles of the streamwise turbulence intensity urms at several phases.
The peak values occur close to the bottom while, at large z, the turbulence dies down
to zero (not shown in the figure). The peak value of urms occurs just past φ= 90◦, the
point of maximum free-stream velocity. The agreement with previous results is very
good throughout the cycle. There is a pronounced outer-layer bulge of the profiles
during 120◦ <φ< 180◦, similar to experimental observations, that occurs in response
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Figure 2. Ensemble-averaged profiles of the streamwise velocity in a semilog plot. The present
simulation with Ri= 0 is shown in a light grey solid line; case C4 of Salon et al. (2007) in
filled circles; experimental results of Jensen et al. (1989) in unfilled circles. The straight dashed
line shows the log-law with κ =0.41 and B = 5.2. (a) φ= 0◦, 30◦ and 60◦; (b) φ=90◦, 120◦

and 150◦. Each profile is staggered by 30 units in the horizontal.
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Figure 3. Profiles of streamwise turbulence intensity urms in the passive scalar case. Each
profile is staggered by 0.2 units in the horizontal.

to the adverse pressure gradient. Turbulent intensities in the spanwise and vertical
directions, which also agree well with data from the previous studies, are not shown
here.
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Figure 4. Time evolution of vertical profiles of plane-averaged temperature gradient: (a)
Ri= 500 and (b) Ri= 2500. The lower and upper white lines show contours of ∂θ/∂z = 0.3 and
0.5, respectively.

4. Overall thermal field
4.1. Mixed layer growth and entrainment

The development of the plane-averaged temperature gradient as a function of time
is shown in figure 4. The mixed layer (indicated by dark shading) is separated from
the outer stratified layer by a thermocline where the temperature gradient changes
rapidly exhibiting an overshoot before approaching the background value. Figure 4(a)
shows that the mixed layer exhibits a small but persistent growth after an initially
rapid transient. An interesting phenomenon of periodic modulation of mixed layer
growth is also observed, a point that we will return to later. When the stratification
level is intensified, the mixed layer height exhibits a substantial decrease as shown by
comparison of figures 4(a) and 4(b).

The mixed layer height hm is defined by the location where ∂ 〈θ〉xy /∂z =0.1. The
gradient Richardson number, defined by

Rig =
Nd

2

Sd
2

= Ri
N2

S2
, (4.1)

is often used to demarcate regions of mixing. It is found here that hm is smaller,
by approximately 10 %, relative to the height of the Rig = 0.25 location. Profiles of
the plane-averaged thermal field are shown in figure 5. Figure 5(b) illustrates the
mixed layer with small temperature gradient as well as a capping thermocline. The
unsteadiness of the thermal statistics is clearly shown by comparison of the dashed
lines at t = 15 with the solid lines at t =50. The mixed layer height, indicated by
circles in figure 5, increases with time with the amount of increase strongly inhibited
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Figure 5. Profiles of thermal field: (a) temperature and (b) temperature gradient. In both
plots, lines and symbols in grey correspond to Ri= 500 and those in black to Ri= 2500.
Dashed lines correspond to t = 15 and solid lines to t = 50. The symbol ◦ denotes the location
of ∂ 〈θ〉xy (z, t)/∂z = 0.1 while the symbol / locates Rig(z, t) = 0.25.

in the Ri=2500 case with respect to the Ri=500 case. The thermocline thickens as
time goes on and, correspondingly, the overshoot of temperature gradient decreases.
Examination of the data shows that both molecular and turbulent diffusion contribute
to decreasing the overshoot in the simulation.

4.2. Behaviour of thermal field over a tidal cycle

The periodic modulation of the thermal field that occurs over a tidal cycle is examined
here. Since the mixed layer height increases continually, plane-averaged quantities are
plotted instead of an average over an ensemble with the same phase but different
times. Figure 6(a) shows that the tidal phase has a strong influence over the mixing
of the thermal field and, in particular, the mixed layer height hm. During most of the
deceleration stage, whose extent is from t = 111.55 (φ= −90◦) to t = 113.1 (φ= 0◦),
the mixed layer height increases. This is linked to an increase of TKE in the outer
region of the boundary layer during this time span (see figure 6b). After reaching
its peak value at about t =112.82 (16◦ before the zero velocity point), the value
of hm decreases consistent with a sharp drop of outer layer TKE. The isotherms
at z ∼ 7–10 show periodic modulation; they are compressed during the decelerating
phase when turbulence moves into the outer layer and then relax when the turbulence
level plummets towards the end of the deceleration and early acceleration.

The plane-averaged vertical heat flux is shown in figure 6(c). The region of intense
thermal flux (dark black) is patchy in space/time and occurs in the vicinity of the
location of mixed layer height and during the deceleration stage. Interestingly, the
upper boundary of this region corresponds to the location of Rig = 0.25. Finally,
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Figure 6. Contours, as a function of z and t , in case 3 with Ri= 2500 that illustrate the
behaviour of the thermal statistics over a half-cycle. The symbol ◦ denotes the location of
∂ 〈θ〉xy (z, t)/∂z = 0.1 while the symbol / locates Rig(z, t) = 0.25. The two upper insets shows
the background velocity with two downward arrows that show the locations of the local
maxima of the mixed layer height hm. (a) Plane-averaged temperature; (b) Plane-averaged
TKE normalized by U 2

0 ; (c) Plane-averaged vertical heat flux, 〈θ ′w′〉xy (z, t) normalized by
U 2

0 dθ/dz|∞/ω; (d ) Eddy diffusivity, κT (z, t) normalized by molecular diffusivity κ .

the eddy diffusivity κT , defined by

κT = −
〈θ ′w′〉xy

∂ 〈θ〉xy /∂z
, (4.2)

is plotted in figure 6(d ). Large values of κT occur close to the bottom corresponding
to the location of large TKE; however, since the fluid is already mixed in that region,
the heat flux is not large.

5. Velocity field
Statistics of the velocity field are examined here to investigate the dependence on

tidal phase and, in particular, the influence of stratification.

5.1. Mean velocity

Vertical profiles of streamwise velocity at different phases are shown in figure 7.
During the acceleration stage, the velocity increases rapidly throughout the boundary
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Figure 7. Profiles of streamwise velocity at different phases. Case with Ri= 0, 500 and 2500
are shown in light grey, dark grey and back lines, respectively. (a) φ= 0◦, 30◦ and 60◦; (b)
φ= 90◦, 120◦ and 150◦. Each profile is staggered by 1.0 unit in the horizontal.

layer, and the profiles become progressively fuller until φ= 90◦. Later, during the
deceleration stage with adverse pressure gradient, the velocity decreases and the
profile become flatter. A phase with zero wall shear stress occurs and, eventually,
reverse near-wall flow commences, for instance at φ- 175◦ for Ri= 500 (although not
plotted here, see the bottom panel in figure 20a for a similar example), and a new
boundary layer forms in the opposite direction.

The mean velocity exhibits an overshoot with respect to the prevailing free-
stream value. The position of maximum overshoot occurs close to the wall at the
beginning of the acceleration stage and progressively moves upwards. At φ=90◦, the
velocity exceeds unity, the free-stream amplitude. The outer layer ‘jet’ at φ= 90◦ is
especially prominent in the Ri= 2500 case. The velocity overshoot and its sensitivity
to stratification can be explained by the following analysis. Consider the x-momentum
equation and integrate it with respect to phase from φ=φo to φ=φt to obtain,

∫ φt

φ0

∂

∂t
〈U〉(z, φ′) dφ′ = −

∫ φt

φ0

〈dp/dx〉 (φ′) dφ′

−
∫ φt

φ0

[
∂

∂z
〈u′w′〉(z, φ′) − 1

Re

∂2

∂z2
〈U〉(z, φ′)

]
dφ′,

〈U〉(z, φt ) − 〈U〉(z, φ0) = 〈U〉∞(φt ) − 〈U〉∞(φ0)

−
∫ φt

φ0

[
∂

∂z
〈u′w′〉(z, φ′) − 1

Re

∂2

∂z2
〈U〉(z, φ′)

]
dφ′.






(5.1)

The second line of (5.1) follows from the first after using the relationship,
〈dp/dx〉 = −d〈U〉∞/dt . Denote the velocity overshoot at an arbitrary phase by
〈δU〉(z, φ) = 〈U〉(z, φ) − 〈U〉∞(φ). Since the streamwise velocity behaves like an odd
function of φ, it follows that 〈δU〉(z, −φ) = −〈δU〉(z, φ) for any given φ. Now evaluate
(5.1) for φt =φ and φ0 = −φ and use the relation, 〈δU〉(z, −φ) = −〈δU〉(z, φ), to obtain
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Figure 8. Explanation of the velocity overshoot. (a) Contribution of Reynolds shear shear
stress and viscous shear stress to the overshoot, see ( 5.2), at φ= 90◦ for Ri= 0 (shown in light
grey shade) and Ri= 2500 (black shade), (b) variation of various terms in the x-momentum
equation at a location z0 as a function of phase.

the following expression for the velocity overshoot:

〈δU〉(z, φ) = −1

2

∫ φ

−φ

[
∂

∂z
〈u′w′〉(z, φ′) − 1

Re

∂2

∂z2
〈U〉(z, φ′)

]
dφ′,

〈δU〉(z, φ) = 〈δU〉Rey(z, φ) + 〈δU〉vis(z, φ).
(5.2)

Here 〈δU〉Rey(z, φ) and 〈δU〉vis(z, φ) are velocity overshoots owing to Reynolds shear
stress and to viscous stress, respectively.

The overshoot in streamwise velocity profile at φ=90◦ is explained by figure 8(a)
where 〈δU〉Rey and 〈δU〉vis , evaluated using their definitions in (5.2), and their sum,
〈δU〉tot , are plotted for cases 1 and 3. The total over shoot 〈δU〉tot (z, φ) for both
cases is consistent with the overshoot observed in the streamwise velocity at φ= 90◦

in figure 7. The maximum overshoot occurs at z ∼ 8.2 when Ri= 2500 while, for the
passive case, it occurs higher at z ∼ 14.5 owing to a thicker turbulent boundary layer.
Other than a region very close to the wall, 〈δU〉vis is negligible compared to 〈δU〉Rey .
It is the momentum flux provided by the Reynolds shear stress that, when integrated
over the cycle, provides a net positive acceleration to give the overshoot. Furthermore,
the gradient of 〈u′w′〉 is larger in the presence of stratification, leading to a larger
overshoot compared to the passive case and the formation of a jet at the top of the
boundary layer.

In order to better understand the net positive acceleration provided over a cycle,
the different x-momentum flux terms are evaluated over the range −90◦ ! φ ! 90◦

and plotted in figure 8(b). The evaluations are performed at locations, zo = 8.2
and zo = 14.5, corresponding to cases Ri=2500 and Ri= 0, respectively, in order
to focus on the location of the maximum overshoot at φ= 90◦ for each case. The
pressure gradient force (solid line with triangles), responsible for the acceleration of
the background velocity, behaves as cos(φ). At the wall, it is always balanced by
the viscous force; however, since the chosen z0 are away from the wall, the viscous
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Case Ri Log-law zone cf Phase lead of τmax
w cf,avg (

∫
ε dz)avg/U0u

2
τ,avg

1 0 40◦–140◦ 0.0043 17◦ 0.0023 0.2554
2 500 60◦–130◦ 0.0045 23◦ 0.0024 0.2438
3 2500 80◦–125◦ 0.0048 25◦ 0.0025 0.2275
Laminar case – – – 45◦ – –

Table 2. Comparison of the overall boundary properties between various stratified cases. The
subscript avg denotes an average over the complete tidal cycle.
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Figure 9. Profiles of the streamwise velocity in semilog plot. Each profile is staggered by
30 units in the horizontal.

contribution (dashed lines) is small. The flux due to 〈u′w′〉 (solid black curve for the
Ri= 2500 case) is larger than the viscous term in magnitude and it is strongly positive
during the deceleration stage, almost zero during most of the acceleration stage, and
has a short region in the vicinity of φ= 90◦ where it is negative. The dashed curve with
circles, corresponding to the sum ∂〈τ 〉(z, φ)/∂z of all the component fluxes, shows
the asymmetry as well as the pronounced positive excess with respect to the pressure
gradient which, after integration over the half-cycle, leads to the observed overshoot
of mean velocity at φ= 90◦.

The effect of stratification on the log-law is shown in figure 9. Although a
logarithmic law is present in the stratified cases too, the range of phases where
the logarithmic law holds becomes shorter with increasing stratification. Table 2
shows that, during a half-cycle of 180◦, the log-law holds for a range of 45◦ at
Ri= 2500 instead of 100◦ as in the passive scalar case. Figure 9 shows that u+ = z+

in the viscous sublayer (z+ < 5) for all cases. However, there is a noticeable variation
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of the wall shear stress given by

τw = µ

[(
∂〈u〉
∂z

)2

+

(
∂〈v〉
∂z

)2
]1/2

z=0

. (5.3)

The wall stress leads in phase with respect to free-stream velocity as shown in
figure 10. τw commences a rapid increase at φ∼ 30◦, attains its maximum value
before the mean velocity does and, during the decelerating phase, it decreases almost
linearly until it becomes zero at φ∼ 160◦, signifying commencement of reverse flow.
Finally, the wall stress grows slowly along with the development of a new boundary
layer in the reverse direction during the late decelerating stage and during the
early accelerating phase of the next half-cycle. The maximum value of τw leads
the maximum value of free-stream velocity by 17◦ in the passive scalar case. With
intensifying stratification, this lead increases to approximately 25◦ for the case with
Ri= 2500. The laminar value of the phase lead is 45◦. The skin friction coefficient
given by

cf =
τw,max

(1/2)ρU 2
0

(5.4)

has been evaluated. The values, listed in table 2, show that there is a small increase
in cf with increasing Ri.

5.2. Turbulent kinetic energy

TKE contours, shown in figure 11(a) for the passive scalar case, show the phase
dependence of vertical profiles of TKE. Note that, owing to the problem symmetry,
the TKE repeats at a period of 180◦. At φ= 90◦, the maximum value of TKE occurs
very close to the wall. The contours, which slant upwards and to the right after φ∼ 90◦,
show that the location of maximum TKE in a given vertical profile shifts upwards.
The TKE near the bottom decreases during the late deceleration phase, becomes
negligible at about 170◦ (the point of zero mean wall shear stress), and remains
small until φ= 200◦, equivalently 20◦. Nevertheless, during this late deceleration and
early acceleration stage, there is significant TKE in the outer layer, associated with
residual large-scale turbulence from earlier, that decays slowly. Small-scale turbulence
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Figure 11. (a) Contour plot of the TKE over a half-cycle, normalized by u2
τ,max for Ri= 0.

(b) Turbulent layer thickness, based on the TKE isocontour at 10 % of the global maximum
value, shown as a function of phase for Ri= 0, 500 and 2500.

is generated after approximately 30◦ when the near-wall shear becomes sufficiently
large and a new cycle of turbulence production commences.

The strong variation of mean velocity within a cycle, including an overshoot with
respect to the free stream, complicates the definition of a representative boundary
layer thickness. One possibility is the definition of a turbulent layer thickness δt
based on the TKE. The upper boundary of the turbulent layer, defined by the region
where the TKE is 10 % of the maximum of its global value, is shown by the dark
dotted thick line in figure 11(a). The behaviour of δt (φ) is compared between cases
in figure 11(b). Stratification leads to substantial reduction in the value of δt by
suppressing the length scale over which turbulence, generated at the wall, can mix
momentum. Furthermore, the residual outer-layer turbulence, which occurs during
135◦ <φ< (180 + 25)◦ in the passive scalar case, is diminished by stratification, and
there is a sudden collapse of large-scale structures once the flow proceeds beyond
the stage of turbulence production by near-wall shear. It is worth noting that the
maximum value of δt occurs during the decelerating stage.

From the preceding discussion it is clear that, during the decelerating stage, there is
a strong increase of TKE in the outer layer. To better understand this phenomenon,
the TKE equation given below is investigated.

∂k

∂t
= P − ε + B − ∂T

∂z
. (5.5)

Here k is TKE defined by 1/2 〈u′
iu

′
i〉. The term ∂T /∂z denotes the transport of the

TKE containing pressure transport, turbulent transport, viscous transport and SGS
transport where

T ≡ 1

ρ0
〈p′w′〉 +

1

2
〈u′

iu
′
iw

′〉 − 1

Re

∂k

∂z
+ 〈τ ′

i3u
′
i〉.

P is the production term defined as

P ≡ −〈u′
iu

′
j 〉 〈Sij 〉 − 〈τij 〉〈S ij 〉,
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respectively. Light grey and black are used for Ri= 0 and 2500, respectively. Here all terms
are normalized by u4

τ,max/ν.

where the last term is the SGS production. The turbulent dissipation rate ε is defined
as the sum of the resolved and SGS components:

ε ≡ 1

Re

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
−

〈
τijS ij

〉
.

Finally, B is the buoyancy flux defined as

B ≡ Ri〈θ ′w′〉.

The terms in the TKE transport equation are evaluated, and the production,
dissipation and transport plotted in figure 12. At φ= 60◦, significant values of all
three terms are confined to near the wall. In the passive scalar case, the vertical span
of all terms extends progressively upwards as φ increases to 90◦ and then to 150◦.
Thus, the increased outer layer TKE is a consequence of enhanced turbulent transport
as well as enhanced shear production in the outer layer as a response to the adverse
pressure gradient. At larger z, transport eventually dominates. The Ri=2500 curves
in black show that the upward extension of the transport, production and dissipation
during the stage of deceleration is substantially less than in the passive scalar case.
Nevertheless the shape of the profiles, especially the production and dissipation, are
similar between cases.

The overall strength of turbulence can be assessed through a depth-integrated value
of TKE where TKE is integrated from z = 0 to z = lz where lz = 70δs is the height
of the computational domain. The behaviour of integrated TKE as a function of
phase is shown in figure 13(a) and that of integrated production, dissipation and
buoyancy flux in figure 13(b). The maximum value of

∫
TKE dz occurs during the

deceleration stage at a phase that decreases from φ=135◦ at Ri= 0 to φ= 100◦ at
Ri= 2500. Although there is a strong suppression of TKE with increasing Ri as clearly
shown in figure 13(a), the integrated production and dissipation terms are relatively
unaffected since the near-wall turbulence does not feel the overlying stratification.
The integrated dissipation and production are negligible during 0◦ <φ< 25◦ after
which there is a sharp increase owing to the formation of small-scale near-wall
turbulence until a peak is attained at approximately φ∼ 90◦. Subsequently, during
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the deceleration stage,
∫

P dz and
∫
ε dz decrease. The depth-integrated buoyancy

flux,
∫

B dz, strongly depends on the phase. Although the integrated heat flux is
always downwards, its magnitude is large when the integrated production is small,
that is, when the mean velocity is small. This observation is consistent with the
larger turbulent heat flux and larger mixed layer height during the decelerating
phase.

The behaviour of TKE, production and dissipation at a location near the bottom
boundary is illustrated by a plot of their phase variation at z = 1.1δs in figure 13(c).
At this location, TKE, P and ε attain their peak values at φ∼ 90◦ without any
phase lag with respect to the maximum of the free-stream velocity. However, in the
outer layer (z = 10δs), all of these quantities show a significant lag, approximately
δφ∼ 40◦–50◦, with respect to the free-stream peak as shown in figure 13(d ). Thus,
the observed phase lag of the peak TKE and other related quantities depend on the
measurement location from the bottom surface. Such a phase lag has been observed
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Figure 14. Vertical profiles of streamwise turbulence intensity urms/U0. Each profile is
staggered by 0.2 units in the horizontal.

in the tidal boundary layer. For instance, Burchard et al. (1998) show observations
of dissipation in the Irish Sea that show a lag of 1 h, equivalently δφ= 29◦, between
dissipation and current at a height 12 m above the seabed. It is worth noting that the
phase lag that prevails away from the wall for both P and ε does not impact their
depth-integrated values, because the regions of large production and dissipation are
confined to a small region close to the wall throughout the cycle. On other hand, a
significant amount of TKE is transported away from the wall into the outer layer
during the decelerating phase (see figure 11a) so that the observed outer layer lag
gives rise to a corresponding phase lag in the depth-integrated value

∫
TKE dz.

5.3. Reynolds stresses

Vertical profiles of Reynolds stresses are discussed in this section. As shown by
figure 14, during the fully turbulent phases (φ∼ 60◦–120◦), the streamwise intensities
in the near-wall region behave similarly among cases. The maximum value of urms for
Ri= 2500 is somewhat greater than the corresponding value in the passive case owing
to a somewhat higher wall stress. In the outer layer, where the flow is dominated by
buoyancy, urms is significantly lower in the stratified cases. At φ= 150◦ and φ=0◦,
phases with low wall stress, the maximum value urms for all cases occurs away from
the bottom wall.

The vertical turbulent intensity, wrms , is shown as a function of phase and height in
figure 15. The suppressing effect of buoyancy in the outer region is also present in the
wrms profiles and in the profiles of spanwise turbulence intensity (not shown here).

Figure 16 shows profiles of the Reynolds shear stress 〈u′w′〉(φ, z)/U 2
0 at various

phases during the tidal cycle. At φ= 90◦, the maximum value of 〈u′w′〉/U 2
0 occurs

close to the wall with the value for the stratified cases slightly larger than in the
passive scalar case. In the outer layer, 〈u′w′〉/U 2

0 decreases more rapidly in the
stratified cases compared to the passive scalar case. During the late deceleration
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stage, there is significant Reynolds shear stress away from the wall owing to large-scale
turbulent structures. During the early acceleration stage, 0◦ <φ< 30◦, the Reynolds
shear stress away from the wall decreases associated with the collapse of these large-
scale structures while that near the wall increases as a consequence of progressively
increasing near-wall shear.
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and semilog axes. Each profile is staggered by 4.0 units in the horizontal.

5.4. Scaling of turbulence profiles

In figure 17(a), we have replotted the streamwise turbulent intensity in the fully
turbulent phases using a different normalization: the turbulent boundary layer
thickness δt (φ) for the vertical coordinate and the friction velocity uτ (φ) for urms .
The profiles tend to collapse between the two stratified cases. The Ri= 0 profile
agrees well with the other two cases for z/δt < 1; however there is some difference at
larger values of height over the bottom. This normalization cannot be used during
the less energetic phases since δt and uτ become very small and may drop to zero
during these phases. The applicability of inner layer scaling is assessed in figure 17(b).
In the viscous sublayer and the buffer layer that span z+ < 20, the profiles are
almost indistinguishable between cases. When z+ is not too large, the differences
between cases is small during the acceleration stage and increases somewhat during
deceleration. Production, dissipation rate and transport, the three leading terms in
the TKE equation, given in (5.5), are plotted in figure 18 as a function of z∗ = z/δt
for different phases. The normalization factor is u4

τ /ν, customary for wall-bounded
flows. Importantly, the use of δt as the appropriate length scale enables good collapse
of the profiles among all Ri cases over a wide range of phases φ∼ 55◦–110◦ when
the turbulence is energetic. The viscous dissipation rate peaks at the wall where it is
balanced by viscous transport, 1/Re

(
∂2k/∂z2

)
. Production reaches it maximum value

within the buffer layer, a location where the transport term is negative signifying
that it is a sink transporting TKE away to other locations. At the edge of the
boundary layer where production and dissipation are negligible, the buoyancy flux
and the vertical energy flux, 〈p′w′〉 due to internal wave activity, become important
in the stratified cases as will be shown later. In the region with significant turbulence,
the balance is, for the most part, between production and dissipation. Since uτ and
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Figure 19. Cartoon of internal wave generation from the thermocline excited by turbulent
boundary layer. Here Cg and Cp are the group and the phase velocity, respectively.

δt become very small during the less energetic phases, this normalization cannot be
used for those phases.

6. Internal waves
Flow instabilities and turbulence in the bottom boundary layer can lead to internal

gravity waves that propagate in the overlying stratified fluid. For the boundary layer
under a steady free-stream (Taylor & Sarkar 2008) internal waves are generated by
vertical modulation of the thermocline by a broad spectrum of eddies in the boundary
layer. The lines of constant phase are inclined towards the direction of the source
velocity relative to the free-stream velocity, similar to waves generated by flow over
corrugated surfaces like hills and mountains (Lighthill 1990). Figure 19 provides a
schematic of internal gravity waves in a steady current. The group velocity cg , relative
to the free stream, is aligned with the phase line, is orthogonal to the wavenumber
vector, and transfers energy upwards from the boundary layer to the background.

The source of internal waves is the turbulent flow in the mixed layer that consists
of a broad range of scales. The inclination of the phase line of the internal wave
radiated by an eddy depends on the flow induced by the eddy, the mean velocity at
the source location, and the free stream velocity and the combination of all those
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Figure 20. Slice of ∂w′/∂z in the x–z plane for the case with Ri= 500 at different tidal phases:
(a) φ= −5◦, (b) φ= 90◦, (c) φ= 180◦ and (d ) φ= −90◦. Each part is divided into three panels:
top panel shows the waves in the far-field, z = 35−86; middle panel shows the turbulent source
and near-field waves; bottom panel shows the streamwise velocity profile with black and light
grey indicating positive and negative signs of the velocity relative to the free steam. The !

symbols on the velocity profiles show the location of ∂θ (z, t)/∂z = 0.1 to demarcate the mixed
layer.

phase lines gives rise to the observed wave pattern. For the steady case, the velocities
at the internal wave source with respect to free-stream current have mostly the same
sign whose value determines the tilt of the phase lines with respect to the vertical: the
tilt is forward when the sign of the relative velocity is positive and backward when
the sign is negative. In the oscillating flow considered here, the direction of the source
velocity with respect to the free stream is phase dependent leading to a more complex
wave pattern. This is illustrated by figure 20(a–d ) that shows x–z slices of the ∂w′/∂z
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field in a frame moving with free-stream velocity at four different phases of the tidal
cycle. The upper panels in the figure show the far-field waves while the middle panel
shows turbulence as well as the near-field waves adjacent to the generation region.
Clearly, the slope of the phase lines depends on tidal phase and the slope differs
between far- and near-fields. The bottom panel, which shows mean velocity profiles
at the corresponding times with black showing values positive with respect to the free
stream and grey showing negative values, helps to explain the observed phase lines.
Although, it is difficult to exactly demarcate the wave source, the generation region is
bounded from above by the location of ∂θ(z, t)/∂z =0.1, the top of the mixed layer.
The snap in figure 20(a) corresponds to a late decelerating phase (φ∼ −5◦) where a
new boundary layer with reverse flow in the bottom relative to the free stream has
been formed. The flow velocity, relative to the free stream, is positive in the source
region as shown in the bottom panel of figure 20(a) leading to phase lines inclined to
the front as shown in the middle panel of figure 20(a). These forward-inclined waves
do not have enough time to propagate into the outer region and the backward-inclined
phase lines in the outer region, shown in the upper panel of figure 20(a), correspond
to internal waves generated during the early accelerating stage of the previous cycle,
for example, those in the middle panel of figure 20(c–d). When the flow progresses in
time, a near-bottom region of negative velocity with respect to the free stream, similar
to the conventional steady boundary layer, progressively develops. Figure 20(b) shows
φ= 90◦ where, as shown by the middle panel, waves are generated from the source
with no preferred inclination of the phase lines, see middle panel, but the outer
region shown in the top panel exhibits forward-inclined waves that were generated
previously, for example at φ= −5◦ shown in figure 20(a). Now, examination of the
velocity profile at φ= 90◦ reveals that most of the mixed layer has negative relative
velocity compared to a small portion with positive relative velocity. Therefore, one
would expect generation of backward waves from the source region and, indeed, such
phase lines were observed in the steady stratified Ekman boundary layer by Taylor &
Sarkar (2007) where the streamwise velocity profile has a shape similar to that seen
here at φ= 90◦. However, the history of the mean flow is important in the oscillating
case; forward phase lines emitted by the predominantly positive velocity at an earlier
nearby phase remain adjacent to the boundary layer at φ=0◦ if cg,z is sufficiently
small and, consequently, both forward and backward phase lines are observed in the
middle panel of figure 20(b). Thus, owing to history effects, arriving at a conclusion
based on steady currents that, at φ= 90◦ in the present oscillating flow, the phase lines
would tilt backward is clearly erroneous. During the following deceleration stage, the
source is dominated by fluid with negative relative velocity giving rise to waves with
phase lines inclined towards the back (middle panel of figure 20c) while the outer
region still has the forward phase lines of internal waves generated in the previous
acceleration stage. In figure 20(d ), the phase of −90◦ corresponding to negative free-
stream velocity is shown. Here, similar to the phase of 90◦ shown in figure 20(b),
there is no clear direction of phase lines adjacent to the boundary layer. However,
the phase lines in the far field tilt backward.

The generation of internal gravity waves from the source over a tidal cycle is
shown more elaborately in figure 21 through a sequence of nine snaps of the vertical
strain field. The corresponding streamwise velocity profile plotted in two different
colours (discussed before) is shown above each snap. The sequence begins with
figure 21(a), corresponding to φ= −90◦, and ends at figure 21(i ), a time corresponding
to approximately the same phase as in figure 21(a). In figure 21(a–b), the wave source
has both positive and negative values of relative velocity and therefore the phase
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Figure 22. (a)Power spectra of the ∂w′/∂z(t) field (log-scale) as a function of frequency in
the case with Ri= 500. The time series is taken in a frame moving with free-stream velocity at
z = 50 and x = 10 over a a time span 40.95 < t < 43.9 which corresponds to −175◦ <φ< −5◦,
and the resulting spectra at different spanwise locations are averaged. The dotted vertical line
indicates N∞. (b) The two-dimensional power spectrum (log-scale) of ∂w′/∂z(x, t) at z = 50
plotted as a function of the streamwise wavenumber and intrinsic frequency space. Spanwise
averaging is used again. Here, the wavenumber has been normalized with δs .

lines have no directional preference. In figure 21(c–d ), the wave source is dominated
by positive relative velocity and, consequently, generates waves inclined towards the
front. At φ=90◦, there is an overshoot of velocity and formation of a jet as discussed
previously, leading to a small region of positive relative velocity in addition to the
negative velocity of near-bottom fluid. Therefore, both backward and forward phase
lines are generated from the source in figure 21(e) due to combined effect of the
relative velocity condition during the current phase and previous nearby phases. In
figure 21(f ), phase lines start bending towards the back and stay backwards at the
phases shown in figures 21(g) and 21(h). During the remainder of the acceleration
stage, the fluid region very close to wall is retarded and has slower speed than the
free stream but the outer layer develops an overshoot in speed leading to figure 21(i ),
similar to the situation back in figure 21(a), where there are phase lines of both tilts.

In order to quantify the properties of the internal wave field, we have performed a
power spectrum analysis of the ∂w′/∂z field. Unless otherwise mentioned, the ∂w′/dz
field is taken in a frame moving with the free-stream velocity. Figure 22(a–b) show one
and two-dimensional power spectra, respectively, for the Ri= 500 case. The intrinsic
frequency or frequency in a frame moving with the free-stream velocity U∞ is defined as

Ω = ωapp − U · k, (6.1)

where k = (kx, ky) is the horizontal wavenumber vector and ωapp is the apparent
frequency in the fixed frame. The time span of the analysed data is taken to be
40.95 < t < 43.9, a range over which phase lines in the outer layer have a backward
tilt. Turbulence generated internal waves are characterized by broadband spectra
in both wavenumber and frequency. But eventually, in the far-field the internal
waves occupy a narrow band of frequencies as shown in figure 22(a). This frequency
range corresponds to phase lines whose angle with the vertical span 40◦ <Θ < 62◦.
Similar narrow-band internal wave propagation has been observed in laboratory
experiments by Sutherland & Linden (1998) and Dohan & Sutherland (2003, 2005).
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Figure 23. Same as figure 22 for Ri= 2500.

More recently, Taylor & Sarkar (2008) in their numerical study have also observed
a similar narrow band of angles for the steady Ekman bottom boundary layer and
have offered a frequency-selective viscous decay model to explain this phenomenon.
Similar results are obtained for the strongly stratified case as shown in figure 23.

The relative importance of the energy flux 〈p′w′〉 carried by the internal waves at
a particular level, say z = z′, with respect to the other energy fluxes can be obtained
by integrating the TKE equation up to height z′ and measuring the terms in the
resulting equation (6.2). Here z′ is taken to be sufficiently larger than the boundary
layer height δt so that viscous and turbulent transport are negligible:

∫ z

0

P (z′, φ) dz′

〈p′w′〉(z, φ)
−

∫ z

0

ε(z′, φ) dz′

〈p′w′〉(z, φ)
+

Ri

∫ z

0

〈θ ′w′〉(z′, φ) dz′

〈p′w′〉(z, φ)
= 0. (6.2)

The inverse of the three terms of (6.2) quantifies the internal wave energy flux
relative to the integrated dissipation, production and buoyancy flux, respectively.
These quantities are shown for Ri= 500 and 2500 at φ= 90◦ in figure 24. For both
cases, the vertical energy flux is less than 1 % compared to the integrated dissipation
and production indicating that the internal waves have negligible direct effect on
the boundary layer turbulence. However, as shown by figure 24(c), the integrated
buoyancy flux and the vertical energy flux are comparable suggesting that the energy
carried away by internal waves that could then potentially cause non-local mixing (for
more complicated background conditions than the one considered here) is comparable
to the local mixing of density. The average vertical energy flux, defined by

〈p′w′〉avg(φ) =
1

lz − hm

∫ lz

hm

〈p′w′〉(z′, φ) dz′, (6.3)

where hm is the height of the mixed layer as defined previously, also varies over
the phase as shown in figure 25. The average vertical energy flux peaks during
the laminar phase (φ∼ 0◦) of the cycle because of the buildup of internal waves
generated during the previous turbulent portion of the cycle. According to the profile
of 〈p′w′〉/Ri

∫ z

0 〈θ ′w′〉 dz′ at φ∼ 0◦ (not shown here), its value is somewhat larger in
the outer region, approximately 0.3 compared to 0.2 at φ= 90◦.
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integrated production and (c) the integrated buoyancy flux at φ= 90 for Ri= 500 and 2500.

0

1.5

1.0

0.5

0° 45° 90°
φ

135° 180°

!p
′w

′"
av

g(
φ

) 
× 

10
2

Ri = 500

Ri = 2500

Figure 25. Variation of the averaged vertical energy flux normalized by ρ0u
3
τ,max over a

phase for Ri= 500 and 2500.

7. Conclusions
We have used LES to investigate the dynamics of a stratified bottom boundary

layer under an oscillating current driven by a pressure gradient that oscillates at a
low frequency, 12.4 h, corresponding to a M2 tide. A DMM is used, buoyancy-related
stability functions are not necessary and the near-bottom turbulence is resolved at
the moderate Reynolds number, Res =1790, considered here. The effect of increasing



LES of a stratified turbulent boundary layer 263

the background stratification, measured by Ri= N2
∞/ω2, on the flow evolution is

systematically studied with particular attention to the dependence on tidal phase.
The fluid has a uniform background stratification while the bottom boundary is

adiabatic. A bottom mixed layer forms and grows with an entrainment rate which
is reduced by the external stratification, and with a periodic modulation owing to
the tidal oscillation. The mixed layer height decreases during the acceleration stage
when the production of turbulence is confined to the wall region whereas, during the
deceleration stage, the height increases due to the upward spread of the turbulence in
response to an adverse pressure gradient. The turbulent mixed layer is separated from
the stratified outer layer by a thermocline with an overshoot in temperature gradient
that gradually weakens over time due to both turbulent and molecular diffusion. The
turbulent heat flux has significant modulation over the tidal cycle: its depth-integrated
value is low when the free-stream velocity is high and increases rapidly during the
early decelerating phase.

Stratification has a strong influence on the flow statistics. When stratification
increases, the range of phases where the log-law is applicable shortens, and the
thickness of the log layer decreases. Stratification changes the wall stress τw , leading
to a small increase of the friction coefficient cf . During a portion of the tidal cycle,
the mean velocity exhibits an appreciable overshoot with respect to the prevailing
free-stream current and, in particular, the peak velocity exceeds the peak value of
the external velocity. By examination of terms in the mean momentum equation, it
is shown that the velocity overshoot is caused by the asymmetric dependence on
tidal phase of the Reynolds shear stress gradient. The overshoot is intensified by
stratification since the gradient of the Reynolds shear stress increases owing to the
significant reduction in vertical length scale at high stratification. Stratification leads
to a pronounced suppression of turbulence intensities in the outer layer although the
inner, near-bottom values show little effect.

In oscillatory flow, flow statistics can have a noticeable phase lag or lead with
respect to the external current. Stratification substantially changes the observed phase
difference. The maximum value of the wall shear stress τw,max leads (occurs before)
the maximum free-stream current by a phase of up to 25◦ compared to 17◦ when
stratification is absent. TKE in the outer layer lags the current for all cases because
of the increase of outer layer turbulence during the decelerating part of the cycle
when an adverse pressure gradient acts on the flow. Similarly, there is considerable
phase lag of turbulent production and dissipation, as much as 60◦ (equivalently 2 h),
depending on the height above bottom. Phase lags of peak turbulent dissipation
rate with comparable magnitude have been reported in field data but it is worth
emphasizing that the present simulations show that the value of the lag depends
critically on the measurement location with respect to the boundary layer height. The
depth-integrated production and dissipation attain their peak values at approximately
the same time as the external current; however, the depth-integrated buoyancy flux
and TKE have a substantial phase lag.

A definition of boundary layer height based on mean velocity is difficult given the
change in the shape of velocity profiles over a cycle. One definition of the turbulent
boundary layer thickness δt is based on the location of a specific TKE contour, taken
here to be 10 % of the maximum TKE. The value of δt (φ) increases continuously from
its minimum value in the early acceleration stage to reach a maximum during the
late deceleration stage followed by an abrupt decrease corresponding to a collapse of
turbulence. The value of δt is suppressed when stratification increases; its maximum
value at Ri= N2

∞/ω2 = 2500 decreases to about 0.6 of the corresponding unstratified
value. The turbulent boundary layer height δt (φ) is found to be a suitable length scale
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for profiles of the outer layer statistics. The friction velocity uτ (φ) is found to be a
good scale for the velocity statistics in both the inner and the outer layer. However,
the scales, uτ (φ) and δt (φ) cannot be used when their values approach zero.

Fine-scale turbulence is initiated close to the wall during the late acceleration
phase of the cycle (45◦ <φ< 90◦) and achieves its maximum level during the
early deceleration stage (90◦ <φ< 135◦). Visualizations show that, during the late
deceleration stage (135◦ <φ< 180◦), fine-scale turbulence is advected away from the
wall and larger scale eddies develop consistent with the larger intensity of the TKE
field in the outer layer that was shown in figure 11(a). Thorpe et al. (2008) observed
a similar development of large-scale eddies from fine-scale near-wall turbulence in a
tidal current in a weakly stratified shallow-water region of the Irish Sea. Turbulence
was found by the authors to move upwards in the form of bursts which, on reaching
the sea surface, formed boils.

Turbulence in the bottom boundary layer excites internal gravity waves that
propagate upwards into the overlying stratified fluid. The source of the generation of
the internal waves is bounded from above by the top of the mixed layer. The tilt of the
phase lines of the internal waves with respect to the vertical depends of the relative
velocity of the eddies with respect to the external background current. The tilt changes
as a function of phase and between near and far fields because, first, the predominant
sign of the relative velocity changes with phase and, second, there is a history effect,
i.e. the phase lines observed at current time are emitted from the boundary layer at
a prior time when a different mean flow and state of turbulence prevails. Although
broadband with Ω < N∞ in the region above and close to the boundary layer, the
internal waves span a narrower band in the far field with phase lines clustered within
40◦ <Θ < 62◦. More energetic waves are observed during the late decelerating and
the early accelerating stages of the tidal cycle. The internal wave flux is comparable
to the buoyancy flux but substantially smaller than the depth-integrated turbulent
dissipation or production.

We are grateful for the support provided by ONR N000140810504, program monitor
Scott Harper, to B. Gayen and S. Sarkar.
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