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A fully nonlinear numerical model is used to investigate spontaneous wave generation
during two-dimensional frontogenesis forced by a horizontal strain field. The model
uses the idealised configuration of an infinitely long straight front and uniform
potential vorticity, with a uniform imposed convergent strain across the front.
Shakespeare & Taylor (J. Fluid Mech., vol. 757, 2014, pp. 817–853) formulated
a generalised analytical model (ST14) for this system that extends the classical
Hoskins & Bretherton (J. Atmos. Sci., vol. 29, 1972, pp. 11–37) model (HB) to large
strain rates (α ∼ f ). Here, we use a numerical model to simulate the fully nonlinear
problem and compare the results with the predictions of the analytical model for
a variety of strain rates. Even for weak strains (α = 0.2f ), the confinement of the
secondary circulation and the spontaneous generation of waves, predicted by ST14,
are shown to be important corrections to the HB solution. These inviscid predictions
are also robust for an equilibrated front where strain-forced frontogenesis is balanced
by diffusion. For strong strains the wavefield becomes of leading-order importance to
the solution. In this case the frontal circulation is tightly confined, and the vertical
velocity is an order of magnitude larger than in the HB model. The addition of
a strain field that weakens with time allows the release and propagation of the
spontaneously generated waves. We also consider fronts with both large vorticity and
strain rate, beyond the validity of the ST14 model.

Key words: ocean circulation, ocean processes, rotating flows

1. Introduction
Density fronts are ubiquitous and important features of the upper ocean over

a vast range of scales. Large-scale balanced fronts such as the Gulf Stream are
vital components of the global circulation. However, the upper ocean, particularly
in strongly eddying regions, also exhibits a vast web of smaller-scale fronts and
filaments (e.g. Shcherbina et al. 2013). These fronts have been shown to be sources
of inertia–gravity waves, thereby providing a potential pathway for energy dissipation
in the ocean (Alford, Shcherbina & Gregg 2013). Recently, field observations and
numerical simulations have shown that submesoscale (∼1–10 km) fronts and eddies,
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in particular, are associated with enhanced vertical velocities (e.g. Mahadevan &
Tandon 2006; Thomas, Tandon & Mahadevan 2008; Levy et al. 2012).

Submesoscale dynamics presents significant theoretical challenges, not least in the
study of ocean fronts. Classical theories of front formation, or frontogenesis, in eddy
fields – such as that of Hoskins & Bretherton (1972, hereafter HB) – assume that
the background strain flow associated with the eddies is characterised by a small
Rossby number, defined as RoL = | f−1∂xŪ|, where Ū is the cross-front strain flow
and f is the inertial frequency. We emphasise that ∂xŪ in this definition is the strain
associated with a background flow field, and is not associated with the ‘self-strain’
of the frontal circulation, ∂xu, which can be large even for a small background strain
(small RoL) if the front is sharp. In the oceanic context, RoL � 1 is a reasonable
approximation for a strain field associated with mesoscale eddies. Although it is
difficult to disentangle the self-strain from the background flow, given the velocity
and length scales associated with submesoscale eddies, the assumption that RoL� 1 is
unlikely to hold. A dynamical description of frontogenesis forced by strain associated
with submesoscale eddies therefore requires an extension of HB frontogenesis theory.

Shakespeare & Taylor (2013, hereafter ST13) formulated a generalised model
of frontogenesis that encompasses arbitrary initial conditions and order-one Rossby
numbers (RoL). The basic configuration of the problem is similar to HB theory,
consisting of a fluid with uniform potential vorticity (PV) trapped between rigid
lids on which is imposed a buoyancy gradient (a front). The front is assumed to
be straight and infinitely long, such that variations in the along-front direction may
be neglected. A convergent strain field, Ū =−αx, is introduced, which squeezes the
frontal gradient, and drives a secondary circulation around the front. Whereas the HB
model requires that RoL = α/f � 1, the ST13 ‘generalised model’ permits RoL ∼ 1
and can be used to describe the frontogenetic response to strong strain flows such as
those associated with submesoscale eddies.

Shakespeare & Taylor (2014, hereafter ST14) derived the forced solution for
the generalised model introduced in ST13, defined as the solution that eliminates
propagating waves associated with initial conditions. This allowed a direct comparison
of predictions of the ST and HB models for the response of the flow to strain
forcing. In both models, the strain field sharpens the front and drives a large-scale
thermally direct secondary circulation. However, the generalised model of ST14
includes two important dynamical effects not described by the HB model: confinement
and spontaneous wave generation. These effects arise due to the presence of the strain
field modifying the propagation of waves in the system. Waves can only spread energy
away from the front in the region where the maximum outward group speed exceeds
the incoming strain flow speed, thus limiting the horizontal extent of the secondary
circulation. This confinement leads to a secondary circulation that is more localised
about the front, and consequently exhibits larger vertical velocities than predicted
by the HB model. The confinement effect thus provides a possible explanation for
enhanced vertical velocities observed near submesoscale eddies, where the stronger
strain (larger RoL) leads to a more confined secondary circulation, as compared with
the mesoscale. The trapping effect of the strain field also leads to the accumulation
of wave energy at a certain distance from the front, resulting in the spontaneous
generation of distinct ‘frontogenesis wave’ packets.

ST14 also extended the theory of ST13 to include a time-dependent strain flow,
similar to the original HB theory. This extension makes the model more relevant
to ocean fronts, which are often characterised by strongly temporally and spatially
varying strain fields (e.g. Chavanne, Flament & Gurgel 2010; Alford et al. 2013).
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ST14 showed that the weakening of a strain field with time leads to trapped
frontogenesis waves being released, and propagating freely away from the front.
The time variation in the strain was also shown to generate additional ‘transience
waves’ via an adjustment mechanism. Here we will test the validity of the generalised
analytical model of ST14 by direct comparison with fully nonlinear numerical
simulations for both constant and time-varying strain flows.

A large and growing literature examines the ‘spontaneous’ generation of inertia–
gravity waves from balanced flows in various idealised and geophysical situations (see
Vanneste (2013) and Plougonven & Zhang (2014) for recent reviews on the topic).
Previous work includes studies of inertia–gravity waves generated from Couette flow
(Vanneste & Yavneh 2004), stratified vortex dipoles (Viudez 2007) and baroclinic
life cycles (Viudez & Dritschel 2006; Plougonven & Zhang 2007). Collectively, these
studies demonstrate the ubiquity of wave generation in geophysical settings, and
that, while spontaneous generation is exponentially weak at small Rossby numbers
(near-balanced flows), it can be significant at large Rossby numbers. The ST14
model is a natural extension of this work: it provides a description of the inevitable
breakdown of classical frontal semigeostrophic balance (e.g. Hoskins 1982), and
the associated spontaneous wave generation, when the background strain (or Rossby
number, RoL) is large. Consistent with the aforementioned studies, ST14 show that
the amplitude of the waves is exponentially small for weak strain fields, RoL < 0.2,
but substantial for larger strains.

Both the HB and ST14 analytical models of frontogenesis predict the collapse
of the front to a discontinuity in finite time – known as the ‘critical time’. In real
flows, frontal collapse will be arrested by either small-scale mixing or instabilities of
the front. Previous studies have employed two-dimensional numerical simulations to
test HB theory (e.g. Gall, Williams & Clark 1987; Garner 1989; Snyder, Skamarock
& Rotunno 1993). In these simulations, the front collapses to the grid scale close
to the critical time – regardless of resolution – and the numerical solution breaks
down. Iterating the numerical solution beyond the point of frontal collapse requires
the addition of an explicit diffusion.

The numerical studies noted above (Gall et al. 1987; Garner 1989; Snyder et al.
1993) focused mostly on the case of very weak strain, RoL = 0.1, although some
studied RoL = 0.2. Snyder et al. (1993) found that differences from the HB solution
take the form of (a) higher-order corrections to the secondary circulation, and
(b) waves that appear at late time, often following frontal collapse. Here we show,
using numerical simulations, that the generalised model of ST14 is able to at least
partially capture both of these features.

In order to arrive at analytical solutions, a number of simplifying approximations
were made in formulating the ST14 model. The set-up of the problem follows the
original HB model in considering the flow between two rigid horizontal surfaces,
neglecting along-front variations, and assuming that the PV and background strain
are both uniform in space. These assumptions restrict the direct applicability of
the model results to fronts in the ocean and atmosphere, but we anticipate that the
dynamics described by the ST14 model will be present in a more realistic setting.
The scaling analysis discussed in ST14 also shows that the model solutions will
break down when the Rossby number associated with the background strain and the
Rossby number associated with the frontal circulation are both of order one. One of
the main objectives of this paper is to use numerical simulations to test the validity
of the ST14 model when applied to high-Rossby-number flows. Unlike the HB and
ST analytical models, the numerical simulations retain all nonlinear terms and include
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non-hydrostatic effects. In § 3.2 we show that the nonlinear terms become important
as frontogenesis proceeds and are responsible for the formation of intensified vertical
jets near surface fronts.

A major challenge arising in previous numerical studies is the presence of so-called
‘spurious’ propagating waves in the solutions. These are due to the initial condition
derived from the HB model not being precisely ‘balanced’ (Gall et al. 1987). Here we
are able to resolve this issue by initialising our numerical model in the state predicted
from ST14 theory – rather than HB theory – greatly reducing the spurious wavefield.
In other words, the initial condition implied by the generalised model of ST14 is more
‘balanced’ than that from the HB model, in the sense that it reduces the generation
of propagating waves associated with adjustment to the initial condition. In § 3 we
demonstrate this fact by comparison of numerical solutions initialised from the two
analytical models.

The layout of the paper is as follows. In § 1 we introduce the governing equations
for the system and identify the approximations made in the analytical model, as
compared to the exact equations employed in the numerics. In § 3 we directly
compare the predictions of the analytical model with the numerical solution for weak
(RoL= 0.2; § 3.1) and strong (RoL= 0.9; § 3.2) strains. Similar to Snyder et al. (1993),
in § 4 we add horizontal diffusion to the numerical model to counteract frontogenesis
and allow the front to attain steady state. The structure of this steady state agrees
with ST14 analytical predictions for the long-time behaviour of the system. Lastly,
in § 5 we summarise the results and discuss the usefulness of the ST14 model in
understanding frontogenesis and wave generation in more complex flows.

2. Model equations
Here, we consider the incompressible non-hydrostatic Boussinesq equations for a

rotating fluid in Cartesian coordinates. We will use (U, V,W) to denote the velocity
components in the (x, y, z) directions, respectively, P the pressure, ρ0 the reference
density, b the buoyancy and f the (constant) Coriolis parameter. The front is assumed
to be infinitely long and oriented along the y axis. Following ST14, an explicit
background non-divergent deformation field of Ū = −αx and V̄ = αy is introduced,
where α is a function of time only. The net velocity and pressure fields may be
written as

U = Ū + u(x, z, t), (2.1a)
V = V̄ + v(x, z, t), (2.1b)
W = w(x, z, t), (2.1c)
P = P̄+ p(x, z, t), (2.1d)

where the perturbation fields (denoted by lower-case symbols) are explicitly assumed
to be independent of the along-front coordinate (y). Upon substitution of (2.1), the
governing equations for the two-dimensional perturbation fields become

Du
Dt
− fv = αu− 1

ρ0

∂p
∂x
+ κh

∂nu
∂xn
+ κv ∂

nu
∂zn

, (2.2a)

Dv
Dt
+ fu=−αv + κh

∂nv

∂xn
+ κv ∂

nv

∂zn
, (2.2b)

Dw
Dt
= b− 1

ρ0

∂p
∂z
+ κh

∂nw
∂xn
+ κv ∂

nw
∂zn

, (2.2c)
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Db
Dt
= κh

∂nb
∂xn
+ κv ∂

nb
∂zn

, (2.2d)

∂u
∂x
+ ∂w
∂z
= 0, (2.2e)

with the material derivative defined as

D
Dt
≡ ∂

∂t
+ (u+ Ū)

∂

∂x
+w

∂

∂z
. (2.3)

Variables κh and κv are horizontal and vertical diffusivities/viscosities (the Prandtl
number is assumed to be unity), respectively for n = 2 (or hyperdiffusion for n = 4,
6, 8, . . . ; note that κh, κv < 0 for n= 4, 8, . . .).

We are primarily interested in frontogenesis in the ocean surface layer. We
therefore consider the idealised problem of a flow trapped between rigid lids at
the ocean surface, z = 0, and at depth (e.g. the thermocline), z = −H. An initial
horizontal buoyancy gradient is imposed at the surface, and is then amplified by
the convergent strain, thus driving frontogenesis. Within this context, (2.2) may be
non-dimensionalised using the same scales as in ST13/14, which are also listed in
table 1 for reference. The physical scales are the initial width of the frontal zone
L, layer height H, buoyancy transition across the front 1B, background stratification
N2, inertial frequency f , strain α and horizontal diffusivity κ . The time evolution
of the system is thus entirely controlled by the six independent non-dimensional
parameters: frontal Rossby number Ro=√1BH/( fL), non-dimensional strain δ=α/f ,
Burger number Bu = (NH)/( fL), aspect ratio A = L/H, horizontal Reynolds number
Reh =

√
1BH L(n−1)/κh and vertical Reynolds number Rev = Reh(κh/κv)(H/L)n. The

non-dimensional strain is equal to the large-scale Rossby number characterising the
background eddy-induced strain field, δ = RoL = | f−1∂xŪ|. With these scales, the
governing equations (2.2) take the non-dimensional form

Du
Dt
− v = δu− Ro

∂p
∂x
+ Ro

Reh

∂nu
∂xn
+ Ro

Rev

∂nu
∂zn

, (2.4a)

Dv
Dt
+ u=−δv + Ro

Reh

∂nv

∂xn
+ Ro

Rev

∂nv

∂zn
, (2.4b)

A−2 Dw
Dt
= Ro b− Ro

∂p
∂z
+ A−2Ro

Reh

∂nw
∂xn
+ A−2Ro

Rev

∂nw
∂zn

, (2.4c)

Db
Dt
= Ro

Reh

∂nb
∂xn
+ Ro

Rev

∂nb
∂zn

, (2.4d)

∂u
∂x
+ ∂w
∂z
= 0, (2.4e)

with the non-dimensional material derivative defined as

D
Dt
≡ ∂

∂t
+ Ro

(
u− δ

Ro
x
)
∂

∂x
+ Ro w

∂

∂z
. (2.5)

All variables are henceforth assumed to be non-dimensional, unless otherwise stated.
ST14 formulated an analytical solution to (2.4) in the inviscid (κh = κv = 0),

hydrostatic (A→∞), uniform PV limit, for appropriately balanced initial conditions.
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Buoyancy scale 1B

Horizontal velocity scale
√
1BH

Vertical velocity scale

√
1BH3

L2

Pressure scale ρ01BH

Time scale
1
f

Rossby number (frontal) Ro

√
1BH
fL

Strain ratio δ
α

f

Burger number Bu
NH
fL

Aspect ratio A
L
H

Reynolds number (horizontal) Reh

√
1BH L(n−1)

κh

Reynolds number (vertical) Rev Reh
κh

κv

(
H
L

)n

Froude number (Ro/Bu) Fr

√
1B
N2H

TABLE 1. Non-dimensional parameters and variable scales employed herein, consistent
with ST13/14. The fundamental physical scales are the inertial frequency f , horizontal
buoyancy step across the front 1B, buoyancy frequency N, strain α, initial horizontal
width L, height H, horizontal diffusivity κh and vertical diffusivity κv . The strain ratio
is equivalent to the large-scale Rossby number introduced in § 1: δ ≡ RoL.

The analytical solution proceeds through the introduction of a coordinate transformation,

X = eβ(t)(x+ Ro v), Z = z, T = t, (2.6a−c)

where β is the time-integrated strain,

β(t)=
∫ t

0
δ(t′) dt′. (2.7)

The coordinate X in (2.6) is conserved in inviscid flow for any strain δ. It is called
the generalised momentum coordinate (ST13), since it is a generalisation of the
momentum coordinate, X = x + Ro v, used by Blumen (2000) (among others),
which is conserved in the absence of a strain field. Frontogenesis, and ultimately the
formation of a discontinuity in the inviscid buoyancy and velocity fields, emerges
as a breakdown of the coordinate transformation (2.6). Specifically, a discontinuity
forms when the inverse Jacobian of the transformation,

J−1 = ∂x
∂X
= e−β(T)

(
1+ Ro

∂v

∂x

)−1

= e−β(T) − Ro
∂v

∂X
, (2.8)
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vanishes. The derivative transforms employed in (2.8) and other relevant quantities are
listed in table 2 of ST13. The vanishing Jacobian implies a breakdown of inviscid
dynamics since two fluid parcels of differing X (a materially conserved quantity for
inviscid flow) will be brought into contact. The minimum value of the inverse Jacobian
at a given time, d =min J−1, provides a scale for the non-dimensional frontal width.
Here, we will refer to d as simply the ‘frontal width’.

As shown in ST13/14, the PV, q, in momentum coordinates has a very simple form,

q= ∂b
∂Z

(
1− eβ(T)Ro

∂v

∂X

)−1

. (2.9)

Since PV is conserved in inviscid flow, the assumption of uniform PV, q=Fr−2 (where
Fr is the Froude number, see table 1), implies a uniform background stratification.
As shown in ST13, conservation of buoyancy (2.4d) on the upper rigid-lid boundary
(Z= 0), where w= 0, requires that the buoyancy is a function only of the momentum
coordinate X; that is, b(Z= 0)= b0(X). Since the background stratification is uniform,
the lower lid must have a buoyancy of b(Z = −1) = b0(X) − Fr−2. It is therefore
sufficient to prescribe the buoyancy along one boundary. Here, the function b0(X)
provides the initial buoyancy gradient that is amplified by the strain, giving rise to
frontogenesis on both boundaries simultaneously.

ST14 showed that the general solution to (2.4) with κh = κv = 0 (inviscid) and
A→∞ (hydrostatic) can be reduced to the following partial differential equation in
φ(X, Z, T):
[(

∂2

∂T2
+ 1− δ(T)2 + δ′(T)

)
∂2

∂Z2
+ Bu2e2β(T) ∂

2

∂X2

]
φ(X, Z, T)= Ro b′0(X) eβ(T) +N ,

(2.10)
where φ is the integral of the along-front velocity v,

φ(X, Z, T)=
∫ Z

−1
v(X, Z′, T) dZ′. (2.11)

The function N on the right-hand side of (2.10) is the sum of the nonlinear terms,

N = Ro
∂

∂Z

[
w
∂u
∂Z
+
(
δ − ∂

∂T

)(
w
∂v

∂Z

)]
− Ro eβ(T)

[
∂v

∂X
∂va

∂Z
− ∂v
∂Z
∂va

∂X

]
, (2.12)

where va ≡ v − Ro ∂xp is the ageostrophic velocity. The dynamical fields may be
determined from φ via

v(X, Z, T)= ∂

∂Z
φ(X, Z, T), (2.13a)

b(X, Z, T)= b0(X)+ Fr−2 Z − Ro Fr−2eβ(T)
∂

∂X
φ(X, Z, T), (2.13b)

ψ(X, Z, T)=
(
−δ(T)− ∂

∂T

)
φ(X, Z, T), (2.13c)

where
u= ∂ψ

∂z
and w=−∂ψ

∂x
. (2.14a,b)
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A key feature of the solution to (2.10) is that it permits inertia–gravity waves, owing
to the double time derivative on the left-hand side. These waves can arise from
unbalanced initial conditions (ST13), or, as discussed in ST14, emerge spontaneously
from balanced initial conditions. The analytical solutions presented in ST14 involved
the neglect of the nonlinear terms N in (2.10). ST14 showed that the overall error
in the solution due to the neglect of these terms scales with Ro2δ2, implying that the
neglect of the nonlinear terms is valid for sufficiently small Ro δ. The error in the
wave part of the flow was estimated to scale with Ro2, implying that the analytical
prediction of the wavefield (which for δ� 1 is at least an order of magnitude smaller
than the mean flow) is only accurate for sufficiently small Rossby number. In the
present work, we will use a numerical solution to (2.4) first to validate the accuracy
of the analytical model in the above limits, and then to investigate the behaviour of
the system in regimes where the analytical model is no longer valid (e.g. order-one
Ro and δ).

ST14 showed that for constant strain a ‘quasi-balanced’ solution may be obtained
to (2.10) (with N = 0) that eliminates propagating waves associated with initial
conditions. The only time dependence in the solution arises from the strain-driven
contraction of the horizontal momentum coordinate,

φ(X, Z, T)=
∫ ∞

−∞
φI((X − X0) e−δT, Z) b′0(X0) dX0, (2.15)

where φI(X, Z) is the Green’s function for the problem (see equation (4.12) of ST14).
Equation (2.15) may be written more intuitively in the regular momentum coordinate
as

φ(X , Z, T)=
∫ ∞

−∞
φI(X −X0, Z)

∂

∂X0
b0(X0 eδT) dX0. (2.16)

Since the boundary buoyancy gradient function in (2.16) approaches the delta function
at large time, the solution φ approaches the Green’s function φI . Hence, the Green’s
function may be interpreted as the late-time limit of the solution (see § 5). The Green’s
function can be separated into two components: a stationary non-propagating wave
part, and a thermally direct secondary circulation (see equation (4.15) of ST14). ST14
demonstrated that the wave part is exponentially small at small strain, approximately
δ < 0.2, but of order one at larger strains. The secondary circulation component –
which ST14 called the ‘generalised secondary circulation’ – has differences at O(δ2)

compared with the HB model. An equivalent statement is that the HB model is
the first term in a Taylor expansion in δ of the generalised model solution (2.16).
Thus, (2.16) more accurately represents the secondary circulation about the front,
and thus is more ‘balanced’ than the HB model. Given its higher degree of balance,
the generalised model solution will be used to generate the initial condition (T = 0)
for the constant-strain numerical simulations considered below. The fact that the
generalised model solution is more ‘balanced’ than the HB ‘semigeostrophic balance’
solution is demonstrated numerically in § 3.

Note that the analytic solution computed from (2.16) is always smooth and well
defined in momentum (X ) coordinates. In both the HB and ST14 models, frontal
collapse and singularities only emerge through the coordinate transformation from
momentum to Eulerian coordinates, x = X − Ro v. Convolutions like (2.16) are
computed using a Fourier transform method.
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2.1. Numerical set-up
The numerical model to be employed is DIABLO (Taylor 2008), which solves
the incompressible, non-hydrostatic Navier–Stokes equations. Here it will be used
to solve the non-dimensionalised system of (2.4) in a two-dimensional box. The
numerical method is pseudospectral in the horizontal (x) direction, and periodic
boundary conditions are applied in this direction, while finite differences are used in
the vertical (z) direction. The boundary conditions applied in the numerical model on
the rigid lids (z=−1, 0) are no vertical flow, w= 0, free-slip horizontal flow,

∂u
∂z
= ∂v
∂z
= 0, (2.17)

and a vertical buoyancy gradient fixed to the value of the background stratification,

∂b
∂z
= Fr−2. (2.18)

These numerical boundary conditions differ from the analytical ones in that they are
inconsistent with conservation of PV on the boundary. The analytical model boundary
conditions are determined implicitly from the uniform-PV relations (2.13) – and
therefore must satisfy conservation of PV – and the constraint that w and therefore φ
vanish on the rigid-lid boundaries. While it is theoretically possible to apply numerical
boundary conditions that agree precisely with the analytical ones, these would be time
dependent and rather complicated, and hard to relate to physical boundary conditions
typically used in more sophisticated numerical models. Instead, we have chosen to use
simple free-slip and constant-flux numerical boundary conditions (2.17) and (2.18),
which, while minimising the PV boundary layers appearing in the numerical solution,
also show that the ST14 analytic results are relatively insensitive to a change in the
boundary conditions and therefore more robust.

Here, we will describe model runs without explicit diffusion (κh= κv=0 in (2.2)) as
‘inviscid numerical solutions’, although there will inevitably be some small amount
of numerical diffusion. For these inviscid model runs, the numerical solution will
break down once the frontal width becomes smaller than the numerical resolution,
d ∼1x, where 1x is the horizontal resolution. The numerical simulations are ended
upon reaching this threshold. The horizontal resolution is set to 1x = 0.005, or
1/200th of the initial frontal width, allowing a contraction in the front of over two
orders of magnitude before the numerical model breaks down. The vertical resolution
is set to 1z = 0.01 or smaller. For the diffusive simulations in § 4, we employ
a horizontal hyperdiffusion to prevent the collapse of the front to the grid scale.
The explicit vertical diffusion is set to zero, κv = 0 or Rev→∞, as the addition of
explicit vertical diffusion leads to boundary layers that complicate the comparison
of the numerical and analytical solutions.

Given the pseudospectral numerical method, care must be taken to ensure that
equations (2.4) are periodic in the horizontal direction. In particular, the material
derivative contains a non-periodic operator, −αx∂x, corresponding to the horizontal
advection of the perturbation fields by the background strain flow. However, the
perturbation fields are guaranteed to vanish sufficiently far from the front, owing to
the trapping effect of the strain field studied in ST14. Thus, selecting a numerical
domain of width LN� 2 Bu/δ (see ST14), with the front located in the centre, ensures
that the solution vanishes at the edge of the domain, and hence −αx∂x = 0 there.
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3. Comparison of numerical and analytical solutions
Here we compare the solution from the generalised analytical model (2.10) with that

arising from the fully nonlinear numerical solution to the inviscid governing equations
(2.4). As noted above, the numerical model is initialised with the constant-strain
generalised model solution (i.e. (2.15) with T = 0), since this is the most ‘balanced’
state available and will minimise any generation of waves associated with adjustment
to the initial condition.

As an explicit demonstration of this fact, figure 1 compares the numerical model
solution when initialised from the generalised (GM) and semigeostrophic (HB) models
for parameter values of Ro= 0.6, Bu= 1.5, and δ = 0.2. The initial streamfunctions
from the GM and HB models are shown in figure 1(a) and (b), respectively. The
difference between the initial conditions is O(δ2) and is shown in figure 1(e). The
initial GM streamfunction is narrower than the HB streamfunction, with increased
amplitude in the centre but reduced amplitude on the periphery (owing to the
confinement effect discussed in ST14, and below). The numerical model is allowed
to evolve freely from these initial conditions, and around t = 14.5 approaches a
discontinuity on the boundaries. The streamfunctions just prior to this critical time
are shown in 1(b) and (d), and the difference in ( f ). The large-scale secondary
circulation is similar for both model runs, but the HB-initialised run displays an
order δ2 ∼ 0.04 transient wave signal that is not present in the GM-initialised run.
These are the ‘spurious’ waves reported in previous numerical frontogenesis studies
(e.g. Snyder et al. 1993, see their figure 3). The presence of these waves implies
that the HB initial condition is less balanced than the GM initial condition, owing to
the neglect of effects at O(δ2) in the semigeostrophic model that are included in the
generalised model (see ST14). In other words, the constant-strain generalised model
solution (2.15) represents a higher-order balance than semigeostrophy. As seen in
the Hovmöller plot in figure 1(g), the O(δ2) imbalance in the HB initial condition
gives rise to an adjustment process, and wave emission and trapping by the same
mechanism as studied in ST13 (e.g. compare figure 1(g) here to figure 15(a) of
ST13). Given the above analysis, the numerical simulations presented below will be
initialised from the generalised model to minimise wave generation associated with
the initial condition.

In figure 2, the analytical and numerical solutions are compared for five sets of
parameter values with a Burger number Bu = 1.5, a range of Rossby numbers Ro,
and either weak strain (characterised by δ = 0.2) or strong strain (characterised by
δ=0.9). Figure 2 displays time series of (a) frontal width d and (b) maximum vertical
velocity for each of the five cases as derived from the generalised (long-dashed line),
HB (short-dashed line) and numerical (solid line) models. Each case is colour-coded
according to the legend in figure 2(a). The smaller-Rossby-number cases (Ro = 0.6;
green and black) have relatively weak broad fronts at time zero (i.e. d' 1) and only
form a discontinuity for time t� δ−1. By contrast, larger Rossby numbers correspond
to a sharper initial front (smaller d) and thus more rapid formation of a discontinuity
on times t∼ δ−1. As expected, the frontal width and maximum vertical velocity derived
from the generalised, HB and numerical models are essentially indistinguishable for
the small strain cases (black, magenta). The generalised and numerical models also
agree for small Rossby number, but strong strain (green). The vertical velocity in this
case increases exponentially during the course of frontogenesis, unlike the weak strain
cases, and is an order of magnitude larger than the HB prediction. Such behaviour
indicates that strong strain is a different dynamical regime to weak strain and that
these dynamics are well captured by the generalised model. By contrast, for a given
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FIGURE 1. (a,c) A comparison of the streamfunctions from the numerical model when
initialised in the state predicted by the generalised model (GM) and semigeostrophic
balance (HB), for parameter values Ro= 0.6, Bu= 1.5, δ= 0.2 and A= 100: (a) GMI and
(c) HBI . Buoyancy contours are overlaid in grey. (e) The difference between the initial
states, HBI −GMI . (b,d) The streamfunctions just prior to the critical time (t= 14.5) for
the GM- and HB-initialised runs: (b) GMF and (d) HBF. ( f ) The difference between the
final states, HBF −GMF. (g) The time evolution of the difference at mid-depth (z=−0.5),
HB−GM. Positive (anticlockwise) values are represented by black contours, and negative
by grey. The contour interval in (e–g) is 10 % of that in (a–d).

Rossby number (e.g. Ro = 0.6, green/black, or Ro = 1.5, magenta/red), the time
evolution of the frontal width, d(δt), predicted by the HB model is the same for all
strains, and the HB maximum vertical velocity differs only via scaling by a constant.

The numerical results in figure 2 depart from the generalised model prediction at
late times, for cases with both order-one Rossby numbers and order-one strains (red,
blue), indicating that neglected nonlinear effects are becoming important. The most
notable difference in the numerical model is the super-exponential increase in the peak
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FIGURE 2. Time series of the (a) frontal width d = min J−1 and (b) maximum vertical
velocity w, from the generalised model (long-dashed), HB model (short-dashed) and
numerical model (solid). The colours correspond to different values of Rossby number
Ro and uniform strain δ as indicated in panel (a). The Burger number is Bu = 1.5 in
each case. The time axis is in units of δt; that is, time is normalised by the strain rate
rather than the inertial frequency. The evolution of the frontal width, d(δt), from the HB
model is independent of strain, meaning that the red/magenta lines and green/black lines
in panel (a) are overlaid.

vertical velocity as the front collapses (the GM prediction only increases exponentially,
not super-exponentially). The critical time – that is, the time taken for frontal collapse
– is also increased relative to the analytical prediction, particularly for Ro= 1.5 (red).

In the next sections (§§ 3.1 and 3.2) we will examine each of the cases shown in
figure 2 in more detail, beginning with the two weak-strain (δ = 0.2) examples. The
five cases are also summarised in table 2 for reference, along with the estimated and
observed errors in the HB and generalised model predictions.

3.1. Weak strain

Traditionally, the HB model has been employed for weakly strained fronts, δ2�1, and
has been found to be accurate at first order (e.g. Snyder et al. 1993). However, the
HB model does not include a description of inertia–gravity waves. In contrast, ST14
argued that, where the Rossby number is small, the generalised model will be able to
accurately describe the wavefield associated with frontogenesis. ST14 also proposed
that, even at order-one Rossby numbers, while not able to accurately describe the
wavefield, the generalised model is more accurate than the HB model, owing to the
inclusion of additional O(δ2) terms from the governing equations. Here we test these
predictions.
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HB error GM error

Case Ro δ Fig. Scaling RMS Scaling RMS

(i) 0.6 0.2 3 0.05 0.10 0.01 0.06
(ii) 1.5 0.2 4 0.13 0.14 0.09 0.12
(iii) 0.6 0.9 5 1.1 0.95 0.29 0.34
(iv) 1.0 0.9 6 1.6 0.75 0.81 0.43
(v) 1.5 0.9 7 2.6 0.64 1.8 0.55

TABLE 2. Parameter values for cases (i)–(v) shown in figure 2 and discussed in § 3. The
strain is constant in time, and Bu= 1.5 for each case. The structure of the generalised, HB
and numerical model solutions for each case are shown in the figure listed in the ‘Fig.’
column. The table lists the fractional error expected from scaling arguments for the HB
model, (Ro2+ 1)δ2, and the GM model, Ro2δ2, in addition to the root-mean-square (RMS)
error (in the vertical velocity field) computed from comparison of the analytic solutions at
their critical times with the numerical solutions at their critical times, as shown in each
of the figures.

Case (i)
Consider a front with parameter values of Ro = 0.6, δ = 0.2 and Bu = 1.5 – the
same parameter values as used in figures 4 and 5 of ST14. Figure 3 shows the
vertical velocity fields just prior to the critical time arising from the (a) generalised
analytical (GM) and (b) numerical models. The fields arising from the two models are
remarkably similar. Both are dominated by a large-scale thermally direct circulation,
similar to that predicted by the HB model (shown in figure 3c). However, the
generalised and numerical models also include wave structures – most notably the
bands of intensified vertical flow on the periphery of the front. These wavepackets
form during the course of frontogenesis as the strain shrinks horizontal scales – or
increases horizontal wavenumbers k = k0eδt – meaning that all wavenumbers with
a given vertical mode number n approach a constant phase speed, c = Bu/(nπ),
which equals the maximum group speed (cg) of hydrostatic inertia–gravity waves
of vertical mode n. Waves of all horizontal scales therefore accumulate at the same
location where the maximum outward group speed equals the incoming strain flow
speed, or cg= δx. We call these locations the ‘stagnation points’. The wave signals in
figure 3(a,b) appear at the first vertical mode stagnation points, x=±Bu/(πδ)=±2.4.

Case (ii)
Now consider a case with large Rossby number, Ro = 1.5, but the same Burger
number and strain as employed above (i.e. Bu= 1.5, δ= 0.2). This choice of Rossby
and Burger numbers is similar to those employed by Snyder et al. (1993) to compare
the HB model with numerical solutions. Figure 4 shows the vertical velocity fields just
prior to the critical time arising from the (a) generalised, (b) numerical and (c) HB
models. The large-scale thermally direct secondary circulation is similar in all three
models, although the GM and numerical circulations are narrower compared with
the HB prediction (similar to figure 1a,c,e). The narrower GM/numerical circulation
is due to the convergent strain flow confining the spread of energy associated with
an element of boundary gradient to the region where the maximum group speed
of inertia–gravity waves exceeds the strain flow speed. By contrast, the HB model
permits the spread of energy far from the front, giving rise to a broader circulation.
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FIGURE 3. Case (i). The vertical velocity field from the (a) generalised (GM),
(b) numerical (NUM) and (c) semigeostrophic (HB) models, just prior to the time of
discontinuity formation in each model, for parameter values of Ro = 0.6, Bu = 1.5 and
constant strain δ = 0.2. Contours of buoyancy from each model are overlaid in grey.
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While the confinement of the circulation by the convergent strain is an O(δ2) effect
and is relatively weak in this example, the correction associated with the GM solution
is important in preventing the generation of spurious waves in the numerical solution,
as demonstrated in figure 1. In § 3.2 we will see that confinement becomes of
leading-order importance for strong strain.

The numerical solution in figure 4(b) displays some notable differences from both
the HB and GM predictions. For example, there is a distinct double jet over the
surface fronts x ∼ ±1 (also noted by Snyder et al. 1993), not present in either
analytical solution, which appears to be associated with a vertical mode-2 wave. This
mode-2 wave becomes particularly prominent if the numerical model is iterated past
the critical time through the introduction of explicit diffusion (see § 4). Figure 4(b)
also displays some additional vertical mode-1 wave structures, for example, near
x ∼ ±1.75. These waves are generated in part due to the adjustment of a slight
imbalance in the initial conditions, since the nonlinear terms N in (2.10), which are
neglected in the generalised model, are not exactly zero at time zero and increase
with Rossby number. The behaviour and propagation of such ‘imbalance waves’ in a
strain field was examined in ST13.

3.2. Strong strain
Here we consider order-one values of strain (δ∼ 1), where the wavefield becomes of
similar order to the secondary circulation. For strong strains, the HB model, which
omits waves and assumes that the cross-front acceleration is small, is not valid even
at first order. By contrast, for sufficiently small Rossby number, Ro2 � δ−2, the
generalised model of ST14 is valid. We first examine this small-Rossby-number limit,
before considering order-one Rossby numbers, for which the generalised model is
expected to break down.

Case (iii)
Consider a front with Rossby number Ro = 0.6, strain δ = 0.9 and Burger number
Bu = 1.5 – the same parameter values as employed in figure 6 of ST14, which
displayed the analytical prediction for the time evolution of the streamfunction.
In figure 5 we show the vertical velocity field just prior to the critical time
(t = 2.7) from the (a) generalised and (b) numerical models. The vertical velocity is
dominated by two wavepackets located at the first vertical mode stagnation points,
x=±Bu/(πδ)=±0.53. These stagnant waves form by the same mechanism discussed
in the weak strain example (i.e. case (i); figure 3), although in that case the waves
are a small second-order correction to the flow. The strain shrinks the horizontal
scale of the wavepackets indefinitely, giving rise to the exponential increase in the
maximum vertical velocity seen in figure 2(b).

The structure of the solution in this strong-strain case is qualitatively different
from the previous weak-strain cases (figures 3 and 4), where the vertical velocity
was dominated by a thermally direct large-scale overturning, and waves appeared as
second-order features. To emphasise this distinction, in figure 5(c) we display the
vertical velocity from the HB model for the parameter values under consideration, just
prior to the critical time predicted by that model, t= 3.3. Even at this later time, the
HB vertical velocity is an order of magnitude weaker than the numerical/generalised
models, and displays the broad, thermally direct overturning characteristic of the
small-strain limit.
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FIGURE 5. Case (iii). The vertical velocity field from the (a) generalised (GM),
(b) numerical (NUM) and (c) semigeostrophic (HB) models, just prior to the time of
discontinuity formation in each model, for parameter values of Ro = 0.6, Bu = 1.5 and
constant strain δ = 0.9. Contours of buoyancy from each model are overlaid in grey.

Case (iv)
Now consider a front with larger Rossby number, Ro= 1, but the same Burger number
and strain as considered previously (δ = 0.9, Bu = 1.5). Since the product Ro δ is
now of order one, the scaling arguments of ST14 suggest that the generalised model
will not be valid, even at first order. Figure 6 displays the vertical velocity from
the (a) generalised and (b) numerical models, just prior to the critical time. Both
models predict a thermally direct circulation, strongly confined about the surface
front. For comparison, the relatively weak broad circulation predicted by the HB
model is shown in figure 6(c). The numerical model exhibits intensified vertical jets
directly over the surface fronts that are not present in the generalised analytical model.
These jets emerge at late time, close to frontal collapse, and are associated with the
super-exponential growth in the maximum vertical velocities shown in figure 2(b).
It is difficult to distinguish between the secondary circulation and waves in this
case. The absence of distinct waves is a result of the larger Rossby number driving
more rapid frontal collapse. The front is not strained for a sufficiently long period
before frontal collapse to permit the accumulation of energy and the formation of the
stagnant wavepackets seen previously in figure 5.

Case (v)
As noted above, the generalised model breaks down at late times for order-one
strain and Rossby number, as strong vertical jets form over the surface fronts.
Here we examine this behaviour at an even larger Rossby number, using parameter
values of Ro = 1.5, δ = 0.9 and Bu = 1.5. Figure 7 displays three snapshots of the
streamfunction from the numerical model at (a) time zero, (b) 50 % of the critical
time and (c) just prior to the critical time. The net cross-front velocity vectors,
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FIGURE 6. Case (iv). The vertical velocity field from the (a) generalised (GM),
(b) numerical (NUM) and (c) semigeostrophic (HB) models, just prior to the time of
discontinuity formation in each model, for parameter values of Ro = 1.0, Bu = 1.5 and
constant strain δ = 0.9. Contours of buoyancy from each model are overlaid in grey.

(u − δx/Ro, w), are displayed as black arrows. The locations of the surface fronts,
defined as the maximum of ∂xb on the boundary, are denoted by red circles. Three
momentum coordinate contours, X = x + Ro v = 0, ±Bu/(πδ), are also displayed
on each plot. The outer contours are the so-called ‘stagnation lines’ (predicted from
the ST14 analytical model) along which the maximum outward wave group speed in
momentum coordinates equals the strain-forced contraction of the coordinate, or

DX

Dt
=−δX =±max cg =±Bu

π
. (3.1)

The use of momentum coordinates accounts for the effect of the perturbation
horizontal flow (u, v) on the propagation of the wave. As can be seen from figure 7(c),
the circulation is largely confined within the outward limits of these contours (x∼±1)
by the critical time. Thus, despite the ST14 generalised model breaking down, the
confinement effect predicted by that model still operates for order-one strain and
Rossby numbers. For these larger Rossby numbers, the greater buoyancy difference
across the front drives a larger along-front velocity v, and thus significant slumping of
the X = x+Ro v contours, such that a balance is established between buoyancy-driven
flow and rotation. Consequently, the circulation is broader for larger Rossby numbers
(but the same Burger number and strain), as may be confirmed by comparison of
figures 5–7.

Figure 7(a) shows the numerical model streamfunction at time zero, initialised from
the generalised analytical model. The overturning circulation is relatively broad and
smooth. As time progresses (t= 0.5; figure 7b), the surface front (red circle) slumps
outwards, buoyancy gradients increase, and the circulation becomes narrower and more
intense as it is squeezed inwards by the strain flow. However, the interior flow and
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FIGURE 7. Case (v). The streamfunction, buoyancy field and net velocity vectors from the
numerical model at times (a) 0, (b) 0.5 and (c) 1.0 (critical time), for parameter values
of Ro = 1.5, Bu = 1.5 and constant strain δ = 0.9. The net cross-front velocity vectors,
(u− δx/Ro,w), are displayed as black arrows.

buoyancy contours remain relatively smooth. The time series in figure 2 (red curve)
indicates good agreement with the generalised model up to this time. Between t= 0.5
and t= 1 (the critical time; figure 7c), sharp ‘kinks’ develop in the interior buoyancy
field, directly over the surface fronts, associated with intense vertical jets. The vertical
velocity and interior buoyancy gradient grow super-exponentially over this period.

The super-exponential growth in the vertical velocity and interior buoyancy gradient
results from a combination of two effects discussed above: the slumping of the front
for large Rossby number, and the strong confinement of the circulation for large strain.
These two effects lead to the surface front (red circle), associated with large surface
and near-surface gradients, becoming coincident with the stagnation lines, associated
with large vertical velocities, at late time, as shown in figure 7(b,c). Consequently,
there is strong vertical advection of the near-surface buoyancy gradient into the interior
of the flow (associated with the nonlinear terms that are neglected in the analytical
model, N in (2.10)), thereby steepening isopycnal slopes directly above/below the
surface fronts. The horizontal strain flow converging across the steepened isopycnals
then drives an increased vertical flow at these locations. This result is readily derived
from buoyancy conservation,

Db
Dt
= 0 H⇒ w=

−∂b
∂t
− Ro

(
u− δ

Ro
x
)
∂b
∂x

∂b
∂z

' Fr2δx
∂b
∂x
, (3.2)

where we have, at first approximation, neglected perturbations from the background.
Thus, for the upper boundary front at x ∼ −1, the advection of a positive buoyancy
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gradient into the interior of the flow will drive an increased downward velocity (and
vice versa for lower boundary front). The larger vertical velocity will then lead to even
greater advection of the near-surface frontal gradient into the flow interior, giving rise
to sharper interior buoyancy gradients, and thus even larger vertical velocities as per
(3.2). This positive feedback mechanism drives the formation of the sharp ‘kinks’ in
the buoyancy fields in figure 7(c) and the associated vertical jets. The result is the
super-exponential growth (exponential on a log scale) in the vertical velocity seen
in figure 2(b). The feedback effect also delays frontogenesis by advecting buoyancy
gradient away from the boundary, thereby increasing the interior buoyancy gradient,
but reducing the boundary gradient. This behaviour is shown in figure 2(a) (red curve),
where the frontal width in the numerical model is increased relative the generalised
model prediction at late time, δt> 0.45.

3.3. Time-varying strain
Ocean fronts typically exist within strain fields with significant temporal and spatial
variation. The ST14 analytical model only directly incorporates temporal variations
in strain, δ(t). However, we can approximate spatial variations by considering how
the strain experienced by a patch of fluid will vary as it is advected in a strain
field. For example, a patch of fluid in the ocean mixed layer initially in a region
of convergence between two eddies will ultimately be advected out of that region,
implying an effective decrease of the strain with time. As discussed in ST14, this
decrease in strain allows waves generated spontaneously by the front and trapped
by the strain flow to be released and propagate freely. ST14 also showed that time
variation in the strain field drives additional wave generation by continually forcing
imbalances in the flow. Below we will examine how these analytical predictions
compare with the results of the numerical model for a case with strong strain and
moderate Rossby number. The comparison provides insight into the dynamics that
are captured by the GM solution, and those features that are missed.

Consider a front subject to large strain (δ=0.9) with initial Rossby number Ro=0.6
and Burger number Bu = 1.5, as in figure 5. These parameters are representative
of, for example, frontogenesis between submesoscale eddies in the ocean mixed
layer. In the previous example (figure 5), the constant strain drove the spontaneous
generation of stagnant wavepackets, and ultimately the collapse of the surface front
to a discontinuity on the boundary. Here, we will consider an initially constant strain,
leading to the generation of frontogenesis waves as in figure 5. We will then decrease
the strain smoothly to zero prior to the formation of a discontinuity, permitting the
release and propagation of these waves; that is,

δ(T)=





δ0 T < τ1,

δ0 cos2

(
T − τ1

τ2 − τ1

π

2

)
τ1 6 T 6 τ2,

0 T > τ2,

(3.3)

with δ0 = 0.9, τ1 = 1.5 and τ2 = 3. Figure 8 displays Hovmöller plots of the vertical
velocity just below the surface (z=−0.25) from the (a) generalised and (b) numerical
models. The analytical and numerical solutions are very similar; we will first describe
the common features before examining the differences. Contours of surface (z = 0)
buoyancy are overlaid in black on each plot, showing the collapse of the initially
broad surface front into a relatively sharp front by time τ2 = 3. Associated with
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FIGURE 8. Hovmöller plot of the vertical velocity just below the surface, at z=−0.25,
from the (a) generalised (GM) and (b) numerical (NUM) models for the time-dependent
strain defined by (3.3), and parameter values of Ro = 0.6, Bu = 1.5, δ0 = 0.9 and A =
100. Contours of surface (z= 0) buoyancy are overlaid in black, showing the collapse of
the front with time. The strain field δ(T) is overlaid at x = −4, and time series of the
maximum of the velocities u, v and w near x= 4. The characteristics predicted from the
analytical model (see equation (5.3) of ST14) for vertical modes n= 1 to 3 are overlaid
in grey.

the surface front collapse, the vertical velocity (and buoyancy gradient) just below
the surface is concentrated into two distinct bands on the periphery of the front
(x ∼ ±0.5); these are the same frontogenesis wavepackets from the constant-strain
case (figure 5). As the strain is decreased to zero, these waves are released and
propagate outwards as free inertia–gravity waves. The waves propagate parallel to
the characteristics (see equation (5.3) of ST14) for the first vertical mode predicted
from the analytical model (overlaid in grey; characteristics for modes 2 and 3
also shown). The maximum vertical velocity (the time series of which is overlaid in
black) is located at the leading edge of these outward-propagating waves. The velocity
gradually decreases with time as the horizontal scales in the mode-1 wavepackets
disperse. The propagation of the wavepacket in figure 8(a) is indicated by the arrow
labelled ‘FG1’. A relatively weak third vertical mode frontogenesis wavepacket is
also visible propagating outwards in each model, following the mode-3 characteristic
(labelled ‘FG3’). This wave was visible in the constant-strain velocity fields (figure 5)
at the critical time.

Apart from the frontogenesis wavepackets, generated spontaneously during the
collapse of the front, there are many other waves visible in figure 8 that are
generated due to the time variation in the strain (3.3); we call these ‘transience
waves’. Specifically, as shown in ST14, these waves arise due to a change in the
strain magnitude altering the secondary circulation that can be supported at the
front, thus causing a ‘momentum imbalance’ and driving a continuous adjustment
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process in response. This adjustment process is analogous to the mass imbalance
problem discussed in ST13, and leads to a decaying oscillation in the frontal zone
and the continual emission of inertia–gravity waves as the front adjusts back towards
geostrophic balance. Slowly decaying near-inertial oscillations are clearly visible in
figure 8, both in the surface buoyancy contours and in the time series of maximum
horizontal velocities overlaid on figure 8. With each period of surface front oscillation,
figure 8 shows the production of a near-inertial wavepacket, which slowly propagates
away from the front. The propagation of these wavepackets is indicated by the arrow
labelled ‘T1’.

Let us now consider the differences between the numerical and analytical solutions.
First, as in the constant-strain example (figure 5), the numerical mode-1 frontogenesis
wavepackets are intensified compared with the analytical ones, corresponding to
a greater vertical velocity. There are also mode-2 wave signals in the numerical
model generated both during frontogenesis (arrow labelled ‘FG2’ in figure 8b) and
associated with the frontal oscillations once the strain field is turned off (arrow
labelled ‘T2’) – by contrast, the generalised model solution has no even modes.
The mode-2 wavepacket generated during frontogenesis can be seen in the vertical
velocity field from the constant-strain case (figure 5), in between the primary mode-1
wavepacket and the mode-3 wavepacket. This wavepacket propagates outwards along
the mode-2 characteristic in figure 8(b), once the strain is turned off. Interestingly,
subsequent oscillations of the surface front, as shown in figure 8(b), generate
additional high-horizontal-wavenumber mode-2 wavepackets, propagating parallel
to the mode-2 characteristic. These generation events are indicated by four black
arrows in figure 8(b). The horizontal scale of these waves is much smaller than the
other transience waves seen in the solution. Indeed, the waves appear to be generated
from a ‘pinching’ of the surface frontal gradient (indicated by the black ellipse in
figure 8b) that occurs during each oscillation in the numerical model – but is not
seen in the analytical model. The generation of additional transience waves in the
numerical solution leads to more rapid loss of energy from the oscillating front, and
hence a more rapid decay in the oscillation amplitude. Despite these differences, the
error in the analytical solution remains less than approximately 20 % over the time
period shown.

4. Equilibrated fronts

As seen in earlier sections, larger Rossby numbers lead to greater slumping of
the surface front and more rapid frontal collapse. One consequence of such rapid
frontogenesis is that wave energy has insufficient time to accumulate at the wave
stagnation points prior to frontal collapse, and thus distinct wave features are not
readily observed in the flow fields at the critical time for large Rossby numbers
(e.g. Ro = 1.5, figure 4) – in contrast to smaller Rossby numbers (e.g. Ro = 0.6,
figure 3). Since many fronts in the ocean mixed layer may be characterised by
Ro= O(1), an important question is whether waves will develop after the formation
of a sharp front, and whether the generalised analytical model can be of use in
predicting the structure of these waves.

We can address this question by adding explicit horizontal diffusion to the numerical
model to arrest frontogenesis before the front collapses to the grid scale. For this
purpose, we use horizontal hyperdiffusion (n = 4 in (2.4)) to localise the smoothing
to regions of large horizontal gradient (i.e. the front), without substantially affecting
the larger-scale flow. In this context, the hyperdiffusion is intended as a crude
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representation of the small-scale processes that are not captured by the numerical
model but may arrest frontogenesis. The addition of hyperdiffusion will be unable to
realistically represent the often fully three-dimensional process of frontal equilibration.
However, it is sufficient for the present investigation, since our focus is on the
wavefield and not on the surface front itself, and, in particular, determining whether
the wavefield is substantially modified by the local dynamics at the surface front.

With horizontal diffusion and a steady, uniform strain, the numerical model
eventually achieves a steady state where strain-driven advection (and sharpening
of the front) is balanced by diffusion. Figure 9(a) displays the steady-state vertical
velocity field for a front with parameter values of Ro= 1.5, Bu= 1.5, δ= 0.2, A= 100
and |Reh| = 107. These are the same parameter values as for the inviscid solution
shown in figure 4(b); we note that waves are not clearly identifiable in that case. The
steady state has a large-scale thermally direct circulation as would be expected from
both the generalised and HB models. It also possesses intense wavepackets at the first
vertical-mode stagnation points (x = ±Bu/(πδ) = ±2.4), similar to those observed
for smaller Rossby numbers in the inviscid simulations (e.g. Ro = 0.6, figure 3).
However, the largest-amplitude features are the pair of mode-2 wavepackets at the
second vertical-mode stagnation points (x = ±1.2). These wavepackets were also
visible in the inviscid solution prior to frontal collapse (near x∼±1 in figure 4b).

Figure 9(b) displays the time evolution of the vertical velocity at mid-depth towards
the steady state. The mode-1 wavepackets near ±2.4 noted above develop in the
solution around t= 15. There are also propagating waves that appear to be generated
around the analytical critical time (t ∼ 5.3), near the location of the surface fronts
(x∼±1). This time and location of generation suggest that the waves are associated
with the action of diffusion in counteracting frontal collapse and developing a steady
state. The generation of these propagating waves may also be associated with the
formation of PV anomalies in the numerical solution, since the numerical boundary
conditions (2.17) and (2.18) and hyperdiffusion are inconsistent with PV conservation.
As shown by the thick grey PV contours in figure 9(a), the PV anomalies in the
numerical solution are largest near the surface fronts, where the propagating waves
appear to originate.

In order to better understand the dynamics of the waves in figure 9(b), it is useful
to consider how the ST14 solution would be modified in the presence of diffusion. As
described in § 2, the constant-strain GM solution is determined from the convolution
of a Green’s function with the boundary buoyancy gradient in momentum coordinates
as per (2.16). The presence of diffusion will modify the buoyancy on the rigid
boundary as per (2.4d) with w= 0,

∂b
∂T
− δX ∂b

∂X
= Ro(−1)n/2+1

|Reh|
∂nb
∂xn

, (4.1)

where the left hand-side is written in regular momentum coordinates (X , Z, T) and
the right-hand side in Eulerian coordinates (x, z, t). The inviscid (|Reh|→∞) solution
to (4.1) is simply b = b0(X eδT) for an arbitrary function b0, giving rise to the
boundary gradient in the GM solution (2.16). We can derive an approximate solution
for a finite Reh by replacing the buoyancy gradient in (2.16) by an approximation
to the solution of (4.1) for finite Reh. To solve (4.1) we assume that the Eulerian
derivative on the right-hand side of (4.1) is equivalent to the momentum coordinate
derivative, ∂x ∼ ∂X , which is true except near the location of the surface front. With
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FIGURE 9. Numerical solution for parameter values of Ro = 1.5, Bu = 1.5, δ = 0.2
and A = 100, as in figure 4, but with horizontal hyperdiffusion of |Reh| = 107. (a) The
steady-state vertical velocity field with buoyancy contours overlaid (thin grey lines). The
presence of diffusion modifies the PV from the background value of q = Fr−2; the PV
contours for 90 % and 110 % of the background value are displayed (thick grey lines).
PV is reduced along the boundary between the fronts and increased in the interior along
the frontal axis. (b) Hovmöller plot of the vertical velocity at mid-depth. (c) The diffusive
analytical prediction from (4.3) for the vertical velocity at mid-depth. (d) The difference
between panels (b) and (c).

this approximation, the solution to (4.1) for the buoyancy gradient ∂X b, written in
terms of its Fourier transform (denoted by a hat), is

∂̂X b= ∂̂X b0(k e−δT) exp
(
−kn Ro

nδ|Reh|(1− e−nδT)

)
, (4.2)

where k is the horizontal wavenumber. The solution (4.2) satisfies the initial condition
b= b0, and boundary conditions ∂X b(X →±∞)= 0. Taking the Fourier transform of
the generalised model solution (2.16), and replacing the inviscid boundary buoyancy
gradient with our diffusive approximation (4.2), we have an estimate for the diffusive
solution of

φ̂(k, Z, T)= φ̂I(k, Z) ∂̂X b0(k e−δT) exp
(
−kn Ro

nδ|Reh|(1− e−nδT)

)
. (4.3)
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Equation (4.3) is well defined in momentum coordinates at all times, and collapses to
a steady state at late time. The steady state is defined by

φ̂SS(k, Z)= φ̂I(k, Z) exp
(
−kn Ro

nδ|Reh|
)
, (4.4)

assuming an appropriately normalised b0. The corresponding (approximate) velocity
and buoyancy fields at a given time can be generated from φ through the relations
(2.13), assuming that the interior flow is essentially inviscid and uniform PV. The
solution given by (4.3) will still become multivalued in Eulerian coordinates (x =
X − Ro v) near the locations of the surface fronts, but will be well defined for all
time at mid-depth (z=−0.5) where v = 0 and hence x=X .

The time evolution of the vertical velocity at mid-depth predicted from (4.3) is
shown in figure 9(c). The prediction is remarkably similar to the numerical result
shown above (figure 9c). The prediction captures the overall confinement of the
circulation within the first vertical mode stagnation points, |x|< 2.4. It also predicts
the formation of stagnant wavepackets near x = ±2.4 with the same amplitude and
structure as those seen in the numerical solution. The origin of these wavepackets
is the same accumulation mechanism as discussed in the inviscid case that gave rise
to the wavepackets seen in the inviscid generalised model and numerical solutions
at smaller Rossby numbers (e.g. figure 3). As noted above, larger Rossby numbers
– as in the present example – lead to more rapid frontal collapse, and hence these
wavepackets are not visible in the inviscid solution (e.g. figure 4) since there is
insufficient time for energy to accumulate. Here, with frontal collapse arrested by
the introduction of diffusion, energy continues to accumulate beyond the inviscid
critical time and the wavepackets ultimately develop as seen in figure 9. However,
the structure of these wavepackets is modified by the presence of the diffusion. In
the inviscid case, the scale of the wavepackets shrinks continually with time, and
the amplitude increases. With the addition of diffusion, the wavepacket shrinks to
the diffusive length scale, at which point a steady state is reached. The structure of
the steady-state wavepacket is controlled by the balance between the strain-driven
sharpening and the diffusive smoothing, as described by the steady-state solution (4.4).
Since the Green’s function φI is a delta function at the location of the wavepackets
(see ST14), we have φ̂I→ 1, and thus the steady wavepacket structure is defined by
the second factor in (4.4) and depends on the type of diffusion (i.e. n = 2, 4, . . .).
For Laplacian diffusion (n = 2), the structure is a simple Gaussian profile. For
the hyperdiffusion used in the present example (n= 4), the structure has a dominant
central maximum, and decaying oscillations to either side – exactly as seen in figure 9.

The difference between the numerical vertical velocity at mid-depth and the
diffusive approximation (4.3) is shown in figure 9(d). The apparently diffusively
generated waves are clearly visible propagating outwards from the locations of the
surface fronts (x∼±1). There is a weak near-inertial oscillation in the region |x|< 1
at early times, possibly associated with the initial conditions being slightly out of
balance. The stagnant wavepackets discussed above also contribute to the difference
field in figure 9(d), owing to the fact that they are slightly shifted between the
numerical solution (centred on the dashed grey line at x=±2.37) and the analytical
prediction (centred at x = ±2.4, outside of the dashed grey line). The shift is due
to the analytical prediction (4.3) not including the reduction in group speed of
the wavepacket associated with the fact that it has a diffusion-limited maximum
wavenumber (minimum scale), and hence a maximum group speed less than the
inviscid maximum of Bu/π that occurs as k→∞. The lower group speed results in
the wavepacket stagnating at a slightly smaller value of |x|.
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5. Discussion
Here we have used fully nonlinear numerical simulations to test the generalised

model of strain-forced frontogenesis developed in ST14, which extends the model
of Hoskins & Bretherton (1972, HB) to larger values of strain. Consistent with the
scaling analysis of ST14, the examples considered in § 3 show that the generalised
model is accurate at first order for both small (α= 0.2f ) and large (α= 0.9f ) values of
strain so long as Ro2δ2� 1. Even for small strain, the generalised model represents an
improvement on the HB model by correctly describing the confinement of the frontal
circulation by the strain field (e.g. figure 3). Further, for sufficiently small Rossby
number, the examples in § 3 (particularly figures 3 and 5) show that the generalised
model is capable of accurately describing the spontaneous generation of waves at a
strained front. In the case of constant strain, these waves take the form of stationary
bands of vertical flow a fixed distance ahead of the surface front.

The generalised model also accurately describes frontogenesis, and the generation
and propagation of waves, in a time-varying strain flow. As shown in § 3.2, the waves
generated at constant strain and trapped by the strain field are released when the strain
weakens and propagate away from the front. As predicted by the generalised model,
the presence of a weakening strain field also drives additional wave generation and
oscillations by way of a geostrophic adjustment process (see figure 8). These wave
dynamics are likely to be relevant to ocean fronts, which often exist within strongly
time-varying strain fields (e.g. Alford et al. 2013).

Furthermore, the dynamics described by the generalised model – including
confinement and wave generation – remain relevant beyond the point of discontinuity
formation in the inviscid model if some diffusive process is introduced to counteract
frontogenesis. In § 5 we added a horizontal hyperdiffusion to the numerical model in
order to allow the front to attain a steady state; the hyperdiffusion can be interpreted
as a parametrisation of missing frontolytic processes. We introduced a simple method
to expand the generalised analytical model of ST14 to (approximately) incorporate the
effects of diffusion (i.e. (4.3)). As seen in figure 9, this approximate solution provides
a good estimate of both the secondary circulation and spontaneously generated waves
observed in the numerical model, even though these waves are generated beyond
the time of discontinuity formation in the generalised model (when it is formally
invalid). Thus, the spontaneous generation of wavepackets on the periphery of the
front appears to be a generic feature of any sharp front that has been subject to
a convergent strain for a sufficiently long period of time, t � α−1, such that wave
energy has time to accumulate.

In § 3.2 we used the numerical model to explore the dynamics of two-dimensional
fronts in the limit of large Rossby numbers and large strains (Ro δ ∼ 1), where the
generalised analytical model is no longer expected to be valid. Even in this parameter
regime, numerical simulations produce a frontal circulation that is horizontally
confined within the region of possible wave propagation at large time, dimensionally
x + v/f < NH/(απ), as would be predicted by the generalised model. Hence, the
confinement effect appears to be a fundamental constraint on the system that is
independent of approximations made in the generalised model. One important
consequence of confinement is increased vertical velocity on the edges of the
confinement region. The breakdown of the analytical model for order-one Ro and δ
is due to the combination of strong confinement (due to large δ), and hence large
vertical velocities, and significant outward slumping of the surface front (due to
large Ro). As a consequence, the surface front is coincident with the large velocities
(e.g. see figure 7), and the vertical advection terms neglected in the ST14 analytical
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model (2.10) become important in the numerical solution. The vertical velocities
advect the near-surface frontal gradient into the interior of the flow, leading to large
interior gradients, whereupon convergence of the strain field across these gradients
further amplifies the vertical flow. The positive feedback results in super-exponential
growth of the vertical velocity at sharp fronts. This feedback mechanism may provide
a dynamical explanation for the exceptionally large vertical velocities directly below
submesoscale fronts in the ocean mixed layer, where Ro and δ may both be order-one
quantities (Mahadevan & Tandon 2006).

The generalised model of frontogenesis developed in ST14 provides an accurate
description of frontal sharpening and spontaneous wave generation in a simple
idealised theoretical framework. In particular, the validity of the ST14 model for
order-one values of strain, α ∼ f , makes it applicable to regimes such as the ocean
submesoscale. Further, the ST14 model includes important dynamical differences –
which we have shown here to be robust – compared with the classical Hoskins &
Bretherton (1972) model even for relatively small values of strain, α∼ 0.2f . However,
neglected factors such as frontal curvature, spatial variation in the background strain,
vertical variations in shear and stratification, and many other features of more realistic
frontal systems, will modify the dynamics of frontogenesis and wave generation
predicted by the model.

Acknowledgements
C.J.S. was supported by a Gates Cambridge Scholarship, and J.R.T. was supported

by the Natural Environment Research Council award NE/J010472/1. The authors
would like to thank P. Haynes, J. Methven, M. McIntyre, R. Plougonven and
L. Thomas for helpful comments and discussion.

REFERENCES

ALFORD, M. H., SHCHERBINA, A. Y. & GREGG, M. C. 2013 Observations of near-inertial internal
gravity waves radiating from a frontal jet. J. Phys. Oceanogr. 43, 1225–1239.

BLUMEN, W. 2000 Inertial oscillations and frontogenesis in a zero potential vorticity model. J. Phys.
Oceanogr. 30, 31–39.

CHAVANNE, C., FLAMENT, P. & GURGEL, K. W. 2010 Intereactions between a submesoscale
anticyclonic vortex and a front. J. Phys. Oceanogr. 40, 1802–1818.

GALL, R., WILLIAMS, R. & CLARK, T. 1987 On the minimum scale of surface fronts. J. Atmos.
Sci. 44, 2562–2574.

GARNER, S. T. 1989 Fully Lagrangian numerical solutions of unbalanced frontogensis and frontal
collapse. J. Atmos. Sci. 46, 717–739.

HOSKINS, B. J. 1982 The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 14, 131–151.
HOSKINS, B. J. & BRETHERTON, F. P. 1972 Atmospheric frontogenesis models: mathematical

formulation and solution. J. Atmos. Sci. 29, 11–37.
LEVY, M., FERRARI, R., FRANKS, P. J. S., MARTIN, A. P. & RIVIERE, P. 2012 Bringing physics

to life at the submesoscale. Geophys. Res. Lett. 39, L14602.
MAHADEVAN, A. & TANDON, A. 2006 An analysis of the mechanisms for submesoscale vertical

motion at ocean fronts. Ocean Model. 14, 241–256.
PLOUGONVEN, R. & ZHANG, F. 2007 On the forcing of inertia–gravity waves by synoptic-scale

flows. J. Atmos. Sci. 64, 1737–1742.
PLOUGONVEN, R. & ZHANG, F. 2014 Internal gravity waves from atmospheric jets and fronts. Rev.

Geophys. 52 (1), 33–76.
SHAKESPEARE, C. J. & TAYLOR, J. R. 2013 A generalized mathematical model of geostrophic

adjustment and frontogenesis: uniform potential vorticity. J. Fluid Mech. 736, 366–413.



534 C. J. Shakespeare and J. R. Taylor

SHAKESPEARE, C. J. & TAYLOR, J. R. 2014 The spontaneous generation of inertia–gravity waves
during frontogenesis forced by large strain: theory. J. Fluid Mech. 757, 817–853.

SHCHERBINA, A. Y., D’ASARO, E. A., LEE, C. M., KLYMAK, J. M., MOLEMAKER, M. J. &
MCWILLIAMS, J. C. 2013 Statistics of vertical vorticity, divergence, and strain in a developed
submesoscale turbulence field. Geophys. Res. Lett. 40, 4706–4711.

SNYDER, C., SKAMAROCK, W. & ROTUNNO, R. 1993 Frontal dynamics near and following frontal
collapse. J. Atmos. Sci. 50, 3194–3211.

TAYLOR, J. R. 2008 Numerical simulations of the stratified oceanic bottom boundary layer. PhD
thesis, University of California, San Diego.

THOMAS, L. N., TANDON, A. & MAHADEVAN, A. 2008 Submesoscale processes and dynamics. In
Ocean Modeling in an Eddying Regime, Geophysical Monograph Series, vol. 177. American
Geophysical Union.

VANNESTE, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid
Mech. 45, 147–172.

VANNESTE, J. & YAVNEH, I. 2004 Exponentially small inertia–gravity waves and the breakdown of
quasigeostrophic balance. J. Atmos. Sci. 61 (2), 211–223.

VIUDEZ, A. 2007 The origin of the stationary frontal wave packet spontaneously generated in rotating
stratified vortex dipoles. J. Fluid Mech. 593, 359–383.

VIUDEZ, A. & DRITSCHEL, D. G. 2006 Spontaneous generation of inertia–gravity wave packets by
balanced geophysical flows. J. Fluid Mech. 553, 107–117.


	The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: numerical solutions
	Introduction
	Model equations
	Numerical set-up

	Comparison of numerical and analytical solutions
	Weak strain
	Strong strain
	Time-varying strain

	Equilibrated fronts
	Discussion
	Acknowledgements
	References




