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ABSTRACT

A simple analytical model is presented describing the spontaneous genera-

tion of inertia-gravity waves at density fronts subjected to strong horizontal

strain rates. The model considers fronts of arbitrary horizontal and vertical

structure in a semi-infinite domain, with a single boundary at the ocean sur-

face. Waves are generated due to the acceleration of the steady uniform strain

flow around the density front, analogous to the generation of lee waves via

flow over a topographic ridge. Significant wave generation only occurs for

sufficiently strong strain rates, α > 0.2 f , and sharp fronts, H/L > 0.5 f/N.

The frequencies of the generated waves are entirely determined by the strain

rate. The lowest frequency wave predicted to be generated via this mechanism

has a Lagrangian frequency ω = 1.93 f as measured in a reference frame mov-

ing with the background strain flow. The model is intended as a first-order de-

scription of wave generation at submescoscale (1 to 10km wide) fronts where

large strain rates are commonplace. The analytical model compares well with

fully non-linear numerical simulations of the submesoscale regime.
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1. Introduction25

Recent observations and numerical simulations show significant inertia-gravity wave generation26

at density fronts (e.g. Alford et al. 2013; Danioux et al. 2012). Density fronts are regions of large27

horizontal density gradient, and are commonplace near the ocean surface. Wave generation at these28

fronts is a potential mechanism for the transfer of energy from large-scale balanced flow to waves,29

and from the surface into the deep ocean. Once in the ocean interior, these waves contribute to the30

internal wave field which includes large contributions from wind and tides. Some of this internal31

wave energy may be reabsorbed into the large-scale flow via wave-mean interactions (Booker and32

Bretherton 1967; Nagai et al. 2015). The remaining internal waves from all sources are ultimately33

dissipated via breaking in the ocean interior, driving turbulence and mixing, and thus contributing34

to the maintenance of the global overturning circulation (Polzin and Lvov 2011; Wunsch and35

Ferrari 2004).36

The generation of waves at density fronts occurs through a variety of mechanisms including37

baroclinic instability of the front (e.g. Zhang 2004; Viudez and Dritschel 2006), non-linear pro-38

cesses at very sharp fronts (e.g. Snyder et al. 1993; Ford 1994), and forcing (e.g. from surface39

wind stresses or buoyancy fluxes) that varies rapidly in time (e.g. Snyder et al. 1993; Griffiths and40

Reeder 1996; Rossby 1938; Gill 1984; Blumen 2000) — for a detailed discussion of these and41

other wave generation processes the reader is referred to the review articles of Plougonven and42

Zhang (2014) and Vanneste (2013). Here we investigate the specific case of wave generation at43

fronts subject to strong confluent strain flows, defined by strain rates α ∼ f . In the present work,44

we will use the term ‘strain rate’ to describe the cross-frontal confluence — that is, α ≡−∂xu for45

a front oriented along the y-axis — and not the (larger) modulus of the strain rate tensor, which we46

will call the ‘net strain rate’. The straining is considered to arise from a larger scale background47
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flow — for example, an eddy field — which then acts on the relatively smaller scale front. A48

front in such a confluent strain field will sharpen with time in a process known as frontogene-49

sis (Hoskins and Bretherton 1972). Recent observations (e.g. Shcherbina et al. 2013; Hosegood50

et al. 2013; Rudnick and Luyten 1996; D’Asaro et al. 2011) and numerical simulations (e.g. Rosso51

et al. 2015; Capet et al. 2008; Gula et al. 2014; Mahadevan and Tandon 2006) have shown that52

large strain rates are commonplace on the ocean submesoscale, which is characterized by horizon-53

tal scales of 1 to 10km (see also the review article of Thomas et al. 2008). For example, Rosso54

et al. (2015) observe large-scale (mesoscale) net strain rates of up to 0.4 f in their submesoscale55

resolving numerical model, and show that the vertical velocity on the submesoscale is strongly56

correlated with the mesoscale strain rate, suggesting active submesoscale frontogenesis is present.57

Shcherbina et al. (2013) observe very large net strains — in places exceeding 2 f — although58

this figure is the net strain rate, including the self-strain associated with the submesoscale fronts59

(and other phenomena). Nonetheless, collectively these studies emphasize that both sharp density60

fronts and large strain rates are ubiquitous at small scales in the ocean surface layer. Here we61

develop a simple model that predicts significant wave generation at such strained fronts.62

The classical quasi- and semi-geostrophic balance frontogenesis models (Williams and Plotkin63

1968; Hoskins and Bretherton 1972) assume that the strain rate is small, typically α ∼ 0.1 f . In64

this limit, the frontal system remains close to geostrophic balance and no wave generation occurs.65

Wave generation at more strongly strained fronts has recently been investigated analytically by66

Shakespeare and Taylor (2013, 2014) and Shakespeare (2015a), motivated in-part by earlier nu-67

merical results (e.g. Snyder et al. 1993). These studies investigated the idealized problem of a68

uniform potential vorticity fluid with rigid lids at the top and bottom of the domain, and fronts69

on both boundaries. Shakespeare and Taylor (2013) examined the generation of waves in this70

configuration due to the adjustment of unbalanced initial conditions for weakly strained fronts.71
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Shakespeare and Taylor (2014) examined the same configuration, but for larger strain rates, and72

showed that waves are spontaneously generated as the surface front sharpens. The waves did not73

propagate vertically, owing to the presence of the rigid lids, and were also trapped horizontally74

by the confluent strain flow. The amplitude of the generated waves was found to be exponentially75

small for small strain rate, but substantial for larger strain rates. Shakespeare and Taylor (2015)76

confirmed these results by direct comparison with numerical simulations.77

Here we introduce a model with two important differences to these previous models of strained78

internal fronts (Hoskins and Bretherton 1972; Shakespeare and Taylor 2013, 2014; Shakespeare79

2015a). Firstly, we consider a semi-infinite domain with a single boundary at the ocean surface.80

This is more readily applicable to the ocean than previous rigid lid models, and in particular,81

permits the downward propagation of waves generated at the surface front. Secondly, we allow82

non-uniform potential vorticity, which permits surface intensified fronts where the horizontal den-83

sity gradient is maximum near the surface and decays with depth, as is typically the case for84

ocean fronts. To make the model analytically tractable, we linearize the equations of motion.85

The linearized equations are only strictly valid in the limit of small geostrophic Rossby number,86

Rog = ∆bH/( f 2L2), where ∆b is the buoyancy difference across the front, H the frontal height87

and L the width. This assumption is unlikely to be valid for submesoscale fronts, where Rog is88

often order one (e.g. Shcherbina et al. 2013). However, comparison of the analytical model with a89

fully non-linear simulation of a submesoscale front (see §3) demonstrates that the analytic model90

is valid at depth, away from the surface front, and in particular, accurately describes the wave91

field. In other words, the dynamics of waves in the far field are largely unaffected by the locally92

large Rossby numbers and associated non-linear dynamics at the front itself (a result also noted by93

Shakespeare and Taylor 2015; Shakespeare 2015a).94
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One objective of this paper is to investigate the dynamical mechanism responsible for the gener-95

ation of waves at strained fronts. In §2b we demonstrate the mathematical similarity of the present96

frontal wave problem to the classical rotating lee wave problem of Queney (1947). In the Queney97

(1947) model waves are generated when a uniform background flow passes over a topographic98

ridge. The background flow is accelerated around the ridge, into the stratified ambient, and for99

sufficiently sharp ridges (small width L) and strong flow (large Ū) characterized by large Rossby100

number Ro = Ū/( f L), buoyancy forces give rise to a wave response (Queney 1947; Pierrehumbert101

1984; Muraki 2011). Here we show that a density front presents an obstacle to a background strain102

flow, in the same way a topographic ridge presents an obstacle to a uniform background flow. The103

background strain flow is accelerated around the density front into the stratified ambient, and for104

sufficiently sharp fronts and strong strain flows, buoyancy forces drive a wave response. Just like105

steady lee waves, these ‘frontal waves’ are trapped by the background flow in a distinctive pattern.106

The effect of a background strain flow on inertia-gravity waves has previously been considered by107

Plougonven and Snyder (2005) and Thomas (2012), among others; the difference here is that the108

strain field is responsible for both the generation and the trapping of the waves.109

The paper is set out as follows. In §2 we derive the general linearized equation for the buoyancy110

field in a strained, quasi-two-dimensional flow. In §2a1 we write down the analytic solution for the111

special case of constant strain rate and stratification. The frequencies and amplitudes of generated112

waves can be determined directly from this solution, independent of the details of the frontal113

structure. We then explore the dependence of the wave generation on the strain rate (§2a2) and114

width of the surface front (§2a3). The dynamics of wave generation at internal fronts is compared115

to that at topographic obstacles in §2b. In §3 we compare the analytical model predictions with116

fully non-linear simulations of a submesoscale front. Lastly, in §4 we discuss the implications of117

these results for the generation of inertia-gravity waves in the ocean.118
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2. Theory119

We begin our analysis with the incompressible, hydrostatic, Boussinesq equations for a rotating120

fluid in Cartesian coordinates. Here, we will use (U,V,W ) to denote the velocity components in121

the (x,y,z) directions, respectively, B the buoyancy, P the pressure, and f the (constant) Coriolis122

frequency. The variables are decomposed into background (denoted by an overbar) and pertur-123

bation (denoted by lower case) components. The background state is one of uniform horizontal124

strain rate, Ū = −αx and V̄ = αy where α may be a function of time, and background strati-125

fication, N2(z), such that B̄ =
∫

N2(z)dz. The perturbation to this background state, or frontal126

anomaly — which includes the front, cross-frontal circulation and any internal wave field — is127

assumed to be infinitely long and oriented along the y-axis such that the perturbation flow has no128

y dependence. With these assumptions the flow may be written as129

U = Ū +u(x,z, t), V = V̄ + v(x,z, t), W = w(x,z, t) (1a)

P = P̄+ p(x,z, t), b = B̄+b(x,z, t), (1b)

where the background pressure must be chosen as130

P̄ =−ρ0

(
α2

2
(x2 + y2)+

∂tα

2
(y2− x2)−α f xy−

∫
B̄dz

)
, (2)

such that the background state independently (i.e. when the perturbation variables are identically131

zero) satisfies the inviscid Boussinesq equations. Substituting the net fields (1) into the Boussinesq132

equations and simplifying yields the governing equations for the two-dimensional perturbation133
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fields,134

Du = f v+αu− 1
ρ0

∂ p
∂x

+νh
∂ 2u
∂x2 , (3a)

Dv =− f u−αv+νh
∂ 2v
∂x2 , (3b)

0 =− 1
ρ0

∂ p
∂ z

+b, (3c)

Db =−N2(z)w+κh
∂ 2v
∂x2 , (3d)

0 =
∂u
∂x

+
∂w
∂ z

, (3e)

where D≡ ∂t +(u+Ū)∂x +w∂z is the material derivative. The κh and νh are the artificial hori-135

zontal diffusivity and viscosity that will be used for the numerical solutions in §3. The equations136

(3) are identical to those examined by previous authors (for example, the numerical study of Snyder137

et al. 1993, their equation 2; the only difference being that here we have the additional assump-138

tions of incompressibility and hydrostatic balance). The five equations for the perturbation fields139

(3) involve five independent variables: u, v, w, p, b.140

For the analytic model, we consider the inviscid case (κh = νh = 0) and make a number of141

simplifying assumptions. The objective is to formulate the simplest possible model for wave142

generation at fronts. With that aim, here we consider the situation where the perturbation flow,143

u, is small compared with the background strain flow, u� Ū , such that equations (3) become144

linear (following Shakespeare 2015a), with the material derivative only involving advection by the145

background flow, D ≡ D̄ = ∂t + Ū ∂x. For an inviscid, weakly strained front, this assumption is146

equivalent to the usual quasi-geostrophic (QG) approximation that the Rossby number is small.147

Assuming that time scales with the inverse strain rate or advective timescale, 1/∂xŪ = 1/α , and148

that the strain rate is small relative to the Coriolis frequency, α << f , (3a) implies that the along-149

front velocity v scales geostrophically, v ∼ ∆bH/( f L), while (3b) implies that u ∼ α/ f v. For150
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the linear model to be strictly valid we require u� Ū , or substituting the derived scales, Rog =151

∆bH/( f 2L2)� 1. However, unlike previous linear QG models (e.g. Williams and Plotkin 1968),152

we make no assumption about the strain rate α in comparison to the inertial frequency f .153

It is easily shown from the linearized equations (3) that the perturbation potential vorticity (PV)154

is conserved, or155

D̄q = 0, where q = f N2(z)
∂

∂ z

(
b

N2(z)

)
+N2(z)

∂v
∂x

. (4)

Equation (4) implies that the PV evolves according to ∂tq−αx∂xq = 0, or that q = q0(xeβ (t), z),156

where q0(x,z) is the initial PV distribution and β is the non-dimensional strain, β (t) =
∫ t

0 α(t ′)dt ′.157

Thus, the action of the strain flow is to squeeze a PV anomaly with time. Usually such a PV158

anomaly will be associated with a density front. For consistency with previous work (Shakespeare159

and Taylor 2013, 2014, 2015; Shakespeare 2015a), here we define the frontal buoyancy anomaly160

associated with the PV as161

b0(x,z) =
N2(z)

f

∫ z

−∞

q0(x,z′)
N2(z′)

dz′, (5)

such that the net perturbation buoyancy field, b, is162

b(x,z, t) = b0(xeβ , z)+b′(x,z, t), (6)

where b′ is the buoyancy response to the imposed PV anomaly. The above definition of b0 (5) is an163

entirely arbitrary — but mathematically convenient — subdivision of the perturbation buoyancy164

b in an ‘imposed anomaly’ b0 and ‘response’ b′ and implies no additional assumptions about the165

flow. The objective now is to formulate an equation for the evolution of b′ forced by the strain-166

driven sharpening of the frontal anomaly b0.167

The buoyancy response b′ may be related to the along-front velocity, v, by substitution of (6)168

into the PV equation (4):169

∂v
∂x

=− f
∂

∂ z

(
b′

N2(z)

)
. (7)
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The solution proceeds by taking the material derivative of the y-momentum equation (3b), and170

substituting the x-momentum equation (3a), to obtain171

(
D̄2 + f 2−α

2 +∂tα
)

v =
f

ρ0

∂ p
∂x

. (8)

We now take an x and z derivative of (8), and substitute ∂xv from (7) and ∂z p from (3c), yielding172

an equation for b′:173

(
D̄2−2αD̄+ f 2) ∂ 2

∂ z2

(
b′

N2(z)

)
+

∂ 2b′

∂x2 =− ∂ 2

∂x2 b0

(
xeβ , z

)
. (9)

Equation (9) may be solved numerically for a given choice of initial conditions, buoyancy anomaly174

b0, strain rate α(t), and stratification N2(z). In the next section we derive an analytic solution for175

the special case of constant strain rate and stratification.176

a. Constant strain rate and stratification177

Here we will first consider an infinite domain in both x and z. As will be described below, the178

semi-infinite domain solution with a rigid lid at z = 0 may be obtained directly from the infinite179

domain solution. Taking the Fourier transform of (9) in x and z (with N2 and α constant) yields180

[(
̂̄D

2
−2α ̂̄D+ f 2

)−m2

N2 − k2
]

b̂′ = k2 e−αt b̂0
(
k e−αt , m

)
, (10)

where k and m are the horizontal and vertical wavenumbers, respectively, hats denote the Fourier181

transform, and ̂̄D = ∂t +α(1+ k∂k) is the transformed material derivative. The general solution182

(Shakespeare 2015b, §6.2.1) to the PDE (10) for {α, m, N} 6= 0 is183

b̂′(k,m, t) =−ε
2
(

G(ε)
[
e−αt b̂0

(
k e−αt , m

)]

︸ ︷︷ ︸
forced

+ H+(ε)
[
e−αt c1

(
k e−αt , m

)]
+H−(ε)

[
e−αt c2

(
k e−αt , m

)] )

︸ ︷︷ ︸
adjustment waves

, (11)

10



where ε = Nk/( f m), and the ci are unknown functions dependent on the choice of initial con-184

ditions.1 The solution (11) contains two parts. The ‘forced’ part is defined by the requirement185

that time dependence only arises through the strain-driven sharpening of the buoyancy (and PV)186

anomaly, b0(xeαt , z), as per the forcing to the right-hand side of (9) and (10). The remaining ‘ad-187

justment wave’ part of (11) describes propagating waves generated due to the adjustment of initial188

conditions that differ from those implied by the forced solution, analogous to the waves generated189

during geostrophic adjustment. The unusual form of the wave solutions in (11) is due to the fact190

that the strain field modifies the propagation of, and ultimately traps the waves — these dynamics191

were studied in a similar context in Shakespeare and Taylor (2013, see section 4.2 and figure 15192

therein). In the present work, our focus is on waves generated in response to strain forcing rather193

than via adjustment of initial conditions, and thus here we will only consider the forced part of the194

flow.195

The functions G and H± in (11) are obtained by substitution of (11) into the PDE (10), yielding196

the ODE:197

[
ε

2
δ

2 ∂ 2

∂ε2 +3δ
2
ε

∂

∂ε
+1+ ε

2
]

G(ε) =−1, (12)

where δ = α/ f is the non-dimensional strain rate (also called the ‘strain Rossby number’). The198

particular and homogeneous solutions to (12) are, respectively,199

G(ε) =−1+
ε2

1+8δ 2 1F2

(
1;
(

5
2
− ıσ

2
,
5
2
+

ıσ

2

)
;− ε2

4δ 2

)
, (13)

H±(ε) =
1
ε

J±σ ı

(
ε

δ

)
, (14)

where pFq is the generalized hypergeometric function, J is the Bessel function of complex order,200

and σ =
√
( f/α)2−1. The choice of the particular solution to (12), G(ε), is unique in that it is201

1This solution structure emerges due to the form of the material derivative in the linearized system; i.e. ̂̄D
[
e−αt F̂ (k e−αt , m)

]
= 0 for any F̂ ,

which is the Fourier equivalent of D̄ [F(xeαt , z)] = 0.
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the only solution to (12) that is finite at ε = 0, implying that the forced solution is also unique as202

explained below.203

1) GREEN’S FUNCTIONS204

The forced part of the solution (11) can be rewritten in terms of the along-front shear, by Fourier205

transforming (7) to yield206

∂̂zv = ık b̂′/( f ε
2) = f−1 G(ε)

[
−ık e−αt b̂0

(
k e−αt , m

)]
. (15)

The function ∂̂zvG = f−1 G(ε) in (15), with G defined by (13), is the Green’s function for the207

along-front shear. It contains all the dynamics and structure of the forced response, independent208

of the details of the buoyancy anomaly b0. The Green’s function depends only on the scaled209

wavenumber, ε = kN/( f m), which can be thought of as the Burger number, or scaled slope, of a210

given mode (k,m). In physical space, the solution (15) may be written as a double convolution of211

the Green’s function with the buoyancy gradient anomaly,212

∂zv(x,z, t) =
∫

∞

−∞

∫
∞

−∞

∂zvG(x− x0, z− z0)
∂

∂x0
b0
(
x0 eαt , z0

)
dx0 dz0. (16)

A valid solution for the along-front shear requires that its integral over all x has a finite value.213

The integral over all x is equal to the k = ε = 0 value of its spectrum, ∂̂zv(0) in (15). The square214

bracketed factor in (15) corresponds to the buoyancy anomaly gradient. Again, the k = ε = 0 value215

of this factor is the integral over all x of the buoyancy gradient:
∫

∞

−∞
∂xb0(xeαt ,z)dx = ∆b(z), the216

buoyancy difference across the front, which is finite and invariant time. For ∂̂zv(0) to be finite we217

thus require that G(0) is finite. The only possible solution for G(ε) is therefore that defined by218

(13), since the H±(ε) homogeneous solutions (14) are infinite at ε = 0. The forced solution (15)219

is therefore unique and its properties controlled by the Green’s function G(ε) (13).220
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Green’s functions for other fields may also be written as derivatives of G(ε). For instance, since221

u =− f−1 (D̄+α)v from (3b), it may be shown that the Green’s function for the cross-front shear222

is defined by223

∂̂zuG =− f−1
δ

(
ε

∂

∂ε
+2
)

G(ε). (17)

Similarly, the Green’s function for the divergence may be derived from continuity (3e) and satis-224

fies,225

∂̂xuG =−∂̂zwG =−N−1
δ ε

(
ε

∂

∂ε
+2
)

G(ε). (18)

Note that the motivation for using the shears and divergences of the velocity fields in the above226

expressions, rather than the velocities themselves, is that the former depend only on the scaled227

mode slope, ε = Nk/( f m), whereas the latter depend on the individual horizontal and vertical228

wavenumbers.229

The non-dimensional Green’s function for the cross-front shear, f ∂̂zuG, is shown in figure 1. The230

behavior of the Green’s function depends strongly on the magnitude of the strain rate. For small231

strain rates, δ ∼ 0.1, the function decays smoothly to zero with increasing scaled mode slope ε . For232

larger strain rate, δ ≥ 0.2, the Green’s function is smoothly decreasing for small slopes ε < 1 but233

exhibits high-amplitude oscillations in the region ε > 1, implying the accumulation of energy at234

certain preferential wavenumber combinations, ε = Nk/( f m), or resonant modes. As will be seen235

below, these oscillations correspond to a set of stationary waves with phase slopes of k/m = f ε/N236

and Lagrangian frequencies ω = f
√

1+ ε2 2. The logarithmic color scale in figure 1 indicates that237

the amplitude of the oscillations (and therefore waves) is exponentially small at small strain rate238

(consistent with the result derived in the rigid-lid case studied in Shakespeare and Taylor 2014).239

2Here, the Lagrangian frequency denotes the frequency a wave would have if it were observed in a reference frame moving with the background

flow, as opposed to the Eulerian frequency which is the frequency that is observed at a fixed point in space. This distinction will become important

in subsection 4 below.
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The differing behavior at small and large strain rate is captured by the two asymptotic limits. In240

the limit of vanishingly small strain rate, δ → 0, the Green’s function asymptotes to a smoothly241

decaying profile,242

G(ε) =− 1
1+ ε2 , (19)

and corresponds to an along-front velocity in geostrophic balance with the buoyancy anomaly (i.e.243

the Williams and Plotkin (1968) solution). In contrast, the Green’s function for large strain rate,244

δ → ∞, asymptotes to an oscillation-dominated profile,245

G(ε) =−2δ

ε
J1

(
ε

δ

)
, (20)

where J1 is the 1st order Bessel function.246

2) STRAIN RATE DEPENDENCE247

To construct the full solution from the Green’s functions we require knowledge of the structure248

of the buoyancy gradient anomaly, ∂xb0, at some instant in time. The solution at that time is249

given by the convolution of the anomaly with the Green’s function, as per (15) and (16). We are250

primarily interested in solutions in the semi-infinite domain z≤ 0, with a rigid-lid representing the251

ocean surface at z = 0. Here we will consider a simple surface-intensified buoyancy anomaly, or252

front, of the form253

b0(x,z) =
∆b0

2
exp
(
−
( z

H

)2
)

erf
(

εF
x

LR

)
, (21)

where H is the height scale of the front, ∆b0 is the change in buoyancy across the front and254

LR =NH/ f is the Rossby radius. The parameter εF = LR/L is the Burger number, or characteristic255

slope, of the frontal anomaly. Solutions for the semi-infinite domain can be generated using the256

solutions in the previous section by mirroring the buoyancy anomaly defined for z ≤ 0 into the257

region z > 0; that is, multiplying b0 by −sign(z).3 This process ensures that the solution contains258

3This is equivalent to changing the vertical Fourier transform to a sine transform.
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only odd (sine) vertical modes, and thus enforces the rigid-lid boundary condition of w = 0 at259

z = 0.260

The vertical velocity fields for a frontal Burger number (εF ) of 1 and strain rates of (a) 0.1 f , (b)261

0.3 f and (c) 1.0 f are shown in figure 2. For the small strain rate case (α = 0.1 f , figure 2a) the262

velocity is dominated by an ascending vertical jet on the warmer (right-hand) side of the front, and263

a descending jet on the cooler side, consistent with the classical paradigm of the thermally-direct264

secondary circulation about a strained front. The larger strain rates show a similar circulation about265

the surface front, but the steepness and strength of the jets is increased. In addition the larger strain266

rate solutions exhibit banded structures at depth, which correspond to horizontally trapped inertia-267

gravity waves. The amplitude of these waves is substantially less than the secondary circulation268

for moderate strain rate (α = 0.3 f , figure 2b), but of similar order for large strain rate (α = 1.0 f ,269

figure 2c). Note that the amplitude of the secondary circulation (vertical velocity magnitude) in270

each case can be significantly larger if non-linear effects are considered, owing to the non-linear271

sharpening of the surface front (see §3).272

The variation with strain rate of the strength and steepness of the surface frontal jets — which are273

associated with a large divergence ∂zw — can be predicted directly from the divergence Green’s274

function (18). For small strain rates, the divergence Green’s function has a single extremum in ε —275

since there are no waves in the flow this extremum must correspond to the frontal jets (secondary276

circulation). As the strain rate is increased, this extremum is retained, but additional extrema begin277

to appear at larger ε . We interpret these additional extrema as corresponding to the resonant wave278

modes of the system, as will be examined in more detail below.4 Nonetheless, for now we extract279

the ε for which the first extremum (in ε) in the divergence Green’s function occurs at each value of280

4However, note that uniquely defining the ‘wave’ flow in the present system is problematic, as has been discussed previously by Shakespeare

and Taylor (2014).
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strain rate. The slope of the jets, k/m = f ε/N, predicted by this method is indicated by grey lines281

in figure 2. More generally, the jet slope as a function of strain rate is shown in figure 3a. The slope282

is constant for small strain rate, but increases linearly at large strain rate. The asymptotic limits283

(indicated by dashed lines on the figure) may be derived directly from the asymptotic Green’s284

functions. In the limit δ → 0 (19) the local maxima of the divergence Green’s function is located285

at ε = 1/
√

3, implying that the jets have a slope of k/m = f/(N
√

3)' 0.58 f/N. In this limit, the286

scale of the frontal circulation is largely unaffected by the presence of the (weak) strain flow. For287

large strain rate, δ → ∞, (20) the jets are steeper, with slope k/m ' 1.26α/N. In this limit, the288

convergent strain flow strongly confines the frontal circulation in the horizontal, leading to steeper,289

intensified jets.290

The vertical velocity magnitude (jet strength) may also be estimated from the Green’s function291

as the local maximum value of the divergence, and is plotted in figure 3b. The vertical velocity292

increases linearly at small strain rate and quadratically at large strain rate. The linear increase at293

small strain rate is predicted from quasi- and semigeostrophic models of frontogenesis (Williams294

and Plotkin 1968; Hoskins and Bretherton 1972) and is merely a requirement of continuity: a295

larger background strain flow implies a correspondingly larger secondary circulation to conserve296

volume at the front, since a greater volume of fluid must be deflected down and around the frontal297

anomaly. The additional (quadratic) increase in vertical velocity at large strain rate is associated298

with the linear increase in the slope of the jets, which is due to the strong strain flow confining the299

secondary circulation around the strain axis, as noted above. While non-linear effects will modify300

the magnitude of the secondary circulation (see §3), the confinement effect of the strain flow will301

still operate (as shown in the numerical simulations of Shakespeare and Taylor 2015), and thus the302

qualitative dependence of the secondary circulation on the strain rate described here is expected to303

be robust. Indeed, figure 3b is qualitatively similar to the results of Rosso et al. (2015), in particular304
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their figure 5b, which displays the dependence of the vertical velocity on the large-scale strain rate305

in their submesoscale-resolving numerical model of a sector of the Southern Ocean. The strain306

rate dependence of the vertical velocity predicted here may thus have application in parameterizing307

vertical velocities associated with fronts in ocean models of sufficiently high resolution to allow308

fronts to form, but with insufficient resolution to accurately model the frontal circulation.309

The slopes and Lagrangian frequencies of the waves (resonant modes) as a function of strain310

rate can also be determined by computing the local extrema of the Green’s function for the cross-311

frontal shear (17) shown in figure 1. This technique works since the waves visible in the solutions312

(e.g. figure 2) are associated with a local maximum in the cross-frontal shear, as well as the verti-313

cal velocity and divergence.5 In figure 4 we plot the frequencies and amplitudes of the six lowest314

frequency resonant modes of significant amplitude — we cannot rule out the presence of low am-315

plitude, lower frequency modes that are obscured by the secondary circulation and which therefore316

do not generate extrema in the Green’s function spectrum. The Lagrangian wave frequency is re-317

lated to the wave slope via ω = f
√

1+ ε2. The lowest Lagrangian frequency associated with a318

distinct wave mode is 1.93 f and occurs for a strain rate of approximately 0.3 f (the strain rate used319

in figure 2b). For strain rates in the range 0.2 f < α < f , the lowest frequency distinct mode has a320

Lagrangian frequency less than 4 f . The wave slopes predicted from figure 4 are indicated as grey321

lines on the vertical velocity plots in figure 2b,c.322

3) FRONTAL SCALE DEPENDENCE323

In this section we address the question of how the frontal Burger number, or characteristic frontal324

slope, εF = LR/L = NH/( f L), affects the solution for a given value of strain rate. The confluent325

strain acts to compress the horizontal scale L of the frontal buoyancy gradient anomaly ∂xb0 with326

5Using the Green’s function for the divergence instead of the cross-frontal shear does not produce substantially different results.
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time as per (16). The Burger number of the front will thus increase with time according to εF =327

εF,0 eαt . In other words, there is a one-to-one relationship between the frontal scale and time.328

Thus, examining the Burger number dependence of the solution will also tell us about the time329

evolution of the front.330

Figure 5 displays the vertical velocity fields for a front subject to a strain rate of α = 0.4 f , for331

five frontal scales (or time snapshots). The buoyancy anomaly is the same as used previously (21).332

When the frontal width is large compared to the Rossby radius (a, L = 10LR; b, L = 5LR), the333

secondary circulation is broad and relatively weak. In particular, for wide fronts (L� LR), there334

are no waves present. As the frontal width approaches the Rossby radius (c, L = 2LR), the lowest335

frequency (primary) wave mode appears. As the frontal width is reduced further (d, L = LR; e,336

L = 0.5LR), the primary wave mode amplifies and higher frequency packets appear. We observe337

that the slopes (indicated on the figure by dashed grey lines) of both the frontal jets and the waves338

are independent of the frontal width, implying that the vertical scale of the flow decreases at the339

same rate as the horizontal to keep the slope constant.340

This behavior may be understood by considering the form of the solution (15). The solution at341

a given time is defined by the product of the Green’s function and the buoyancy gradient anomaly342

spectra evaluated at that instant in time. The possible slopes of the jets and waves are controlled343

by the structure of the Green’s function at a given value of the strain rate, whereas the amplitude of344

those features is controlled by the spectral amplitude of the buoyancy gradient anomaly at the cor-345

responding wavenumber combinations. For instance, the amplitude of a wave mode with a given346

slope, ε =Nk/( f m), is determined by the integrated amplitude in the buoyancy gradient spectrum,347

∂̂xb0(k,m), along the line m = Nk/( f ε). As the frontal scale is reduced, the gradient spectrum has348

more amplitude at higher horizontal wavenumbers k, and therefore more amplitude at steeper349

slopes. Since, as shown in figure 1, wave modes are only present in the region ε = Nk/( f m)> 1,350
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the spontaneous generation of waves can only occur for fronts with significant spectral amplitude351

at the corresponding wavenumbers. Fronts that satisfy this requirement are characterized by order352

one Burger numbers, εF ∼ 1. Thus, as seen in figure 5, significant spontaneous wave genera-353

tion via the present mechanism is only observed for fronts with widths comparable to the Rossby354

radius, or smaller.355

4) RAY TRACING AND WAVE TRAPPING356

Here we apply ray tracing theory to demonstrate that the resonant wave modes seen in the above357

solutions correspond to wave packets that are generated at (or near) the front, and are confined358

horizontally by the strain flow. Our analysis follows that of Reeder and Griffiths (1996) who359

studied a very similar strained front system but via a numerical approach. The equations governing360

the propagation of a wave packet in the xz plane are361

(
D
Dt

)

g
k =−∂Ω

∂x
, (22a)

(
D
Dt

)

g
m =−∂Ω

∂ z
, (22b)

(
D
Dt

)

g
x =

∂Ω

∂k
, (22c)

(
D
Dt

)

g
z =

∂Ω

∂m
, (22d)

where (D/Dt)g is the material derivative following a packet, which propagates with speed ~cg =362

(∂kΩ, ∂mΩ) as per (22)c,d, and Ω is the appropriately Doppler shifted (or Eulerian) frequency. For363

the strain flow used here the Doppler shifted frequency is364

Ω = ω(k,m)−αkx, where ω(k,m) =± f

√
1+
(

Nk
f m

)2

, (22e)

is the regular hydrostatic dispersion relation for inertia-gravity waves. We note that here, consis-365

tent with our basic model, we assume hydrostatic dynamics in our ray-tracing equations, and thus366
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our ray-tracing analysis is only valid for sufficiently large horizontal scales (or small times). A367

discussion of non-hydrostatic effects is beyond the scope of this paper and the interested reader is368

referred to Shakespeare (2015a). Further, (22) are only valid for fronts that of sufficiently small369

Rossby number (consistent with the assumptions in our theoretical treatment) such that they do370

not effect the wave dispersion relation; waves generated at stronger fronts may be trapped within371

the front (Kunze 1985; Whitt and Thomas 2013) rather than propagating away. For a detailed372

derivation of the above equations (22), which are identical to equations 20, and 25 through 28, of373

Reeder and Griffiths (1996), the reader is referred to that paper. The ray tracing equations (22)374

may be solved explicitly to determine the behavior of a wave packet in the flow. Supposing the375

packet has initial wavenumbers (k0,m0), (22)a,b imply that the wave numbers at some later time376

are377

k = k0 eαt , and m = m0. (23)

Thus, the action of the barotropic strain flow is to exponentially increase the horizontal wavenum-378

ber with time, without altering the vertical wavenumber (as described by Reeder and Griffiths379

1996; Plougonven and Snyder 2005; Thomas 2012, among others). We can now substitute the380

above results (23) into (22)c to obtain a differential equation for the x-position of the wave packet,381

(
D
Dt

)

g
x =±e−αt ∂ω(k0eαt ,m0)

∂k0
−αx =⇒

(
D
Dt

)

g

(
xeαt)=±∂ω(k0eαt ,m0)

∂k0
. (24)

Equation (24) may be directly integrated in time6 to obtain382

x = x0e−αt± e−αt

αk0

(
ω(k0eαt ,m0)−ω(k0,m0)

)
, (25a)

where x0 is the initial horizontal location of the wave packet (this result was also obtained by383

Shakespeare 2015a, equation 15 therein). Following the same procedure for (22)d yields the z-384

6Note that the initial wavenumbers k0 and m0 are constants with respect to the material derivative (D/Dt)g.
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position of the wave packet as a function of time385

z = z0−
1

m0α

(
ω(k0eαt ,m0)−ω(k0,m0)

)
, (25b)

where z0 is the initial vertical location of the wave packet. We anticipate that wave packets will386

be generated at the origin (where the front is located) such that x0 = z0 = 0, although the exact387

time of generation is unclear. Using the nomenclature of previous sections the Burger number388

of a given wave packet is εwp = Nk0eαt/( f m0). Regardless of exactly when the wave packet is389

generated (25) implies that the packet will only propagate away from the origin when εwp is or-390

der one or larger, since when εwp� 1 the Lagrangian frequency ω(k0eαt ,m0) is close to inertial391

(and is equal to the initial frequency ω(k0,m0), and thus the location of the packet defined by (25)392

is close to zero). This result is consistent with our observation in previous sections that waves393

are only observed in the solution when the front is sufficiently sharp, defined by ε ∼ 1. Further-394

more, (25) shows how the packet is confined horizontally by the confluent strain flow; taking the395

large time limit of (25a) yields x→ N/(αm0). Thus a wave packet of vertical wavenumber m0396

ultimately stagnates (horizontally) at a point in the flow where its maximum hydrostatic horizon-397

tal group speed, N/m0, equals the strain flow speed, αx (this is only true for hydrostatic fluids;398

see Shakespeare 2015a). The packet is not confined vertically, and indeed the vertical position399

of the packet increases exponentially, z→−Nk0eαt/(αm2
0) at large time (25b) as a result of the400

barotropic straining field.401

In figure 5 we plot the path of a single wave packet, which we assume to be generated at the402

origin at time zero (figure 5a). We choose initial wavenumbers of k0 = 0.2/LR and m0 = 0.5/H403

corresponding to an initial scale consistent with the scale of the secondary circulation in figure404

5a. The path of the wave packet predicted by (25) is displayed as a solid black line on 5b to405

e, with the terminus of the line denoting the position of the wave packet at the time each flow406
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snapshot is taken. The terminus of the ray path on each plot roughly approximates the position of407

the deepest, gravest phase lines that appear as time increases. In other words, the chosen vertical408

wavenumber m0 corresponds to the largest, and therefore fastest propagating, in the system. The409

ray path also approximately captures the horizontal spread of the wave energy at late time (figure410

5e). As predicted by the above theory the ray asymptotes to N/(αm0) = 5LR at late time. Of411

course, the solution will contain waves with a range of vertical wavenumbers m0, the spectrum of412

which will be set by the vertical structure of the front. Wave packets with higher m will propagate413

more slowly in the vertical, and be confined horizontally closer to the origin. Thus, as seen in414

figure 5c,d,e, these additional packets will modify the wave phase lines in that region after the415

fastest packet has already propagated past.416

b. Comparison with rotating lee waves417

It is useful to compare the present mechanism of spontaneous generation to other well known418

mechanisms, specifically ‘lee wave’ generation associated with flow across topography in a ro-419

tating system. The classical rotating lee wave model of Queney (1947) describes the steady state420

associated with a uniform background flow, Ū = U0, passing over a topographic ridge, z = h(x),421

on an f -plane. The equation for the perturbation buoyancy, b = B−N2z, is422



(
D̄2

︸︷︷︸
accel.

+ f 2) 1
N2

∂ 2

∂ z2 +
∂ 2

∂x2︸ ︷︷ ︸
geostrophic


b = 0, (26)

where D̄ = U0∂x at steady state. The equation is composed of two parts: the usual geostrophic423

scaled Laplace operator familiar from classical QG models, which will yield a smooth large-424

scale flow, and an acceleration term associated with advection by the background flow which is425

responsible for the generation of small-scale stationary waves. The boundary condition on (26) is426

no normal flow at the ridge. Since the flow is inviscid, an equivalent condition is that the ridge427
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is an isopycnal surface; that is, the net buoyancy B = b+N2z = 0 at z = h(x) or the perturbation428

buoyancy is b(z = h(x)) = −N2h(x). In the linearized model (valid for small ridge heights) the429

boundary condition is applied at z = 0, and the solution (e.g. Queney 1947; Pierrehumbert 1984)430

is defined by the convolution431

b(x,z) =−N2
∫

∞

−∞

GL(x− x0,z)h(x0)dx0, (27)

where the Fourier transform of the Green’s function GL is432

ĜL(k,z) =





exp ıNkz√
k2U2

0− f 2
k > f

U0

exp −Nk|z|√
f 2−k2U2

0
0≤ k ≤ f

U0

. (28)

As with the equation (26), the steady solution is thus composed of two parts: a large-scale com-433

ponent that decays with height, and a short-scale wave component that does not. These waves434

are generated when the background flow is deflected (or accelerated) sufficiently rapidly over the435

ridge into the stratified ambient, which provides a restoring force. Waves can only propagate for436

Lagrangian frequencies exceeding f and strong wave generation only occurs when the acceleration437

(or advective) timescale of 1/(kU0) is of this order, 1/(kU0) ∼ 1/ f , or equivalently the Rossby438

number is order one, RoL =U0/( f L)∼ 1. If the ridge is wide or the flow weak such that RoL� 1,439

then there is no significant wave field and flow remains in linearized, uniform PV geostrophic440

balance, defined by ĜL(k,z) = exp(−Nk|z|/ f ).441

Compare the ‘lee wave dynamics’ described in the previous paragraph, to the dynamics of the442

strained front considered in earlier sections. To make the analogy clearer, here we write the gov-443

erning equation for a strained front with uniform interior PV (q0 = 0). This equation is (9) with444

N2 constant and frontal anomaly b0 independent of z, or445



(
D̄2−2αD̄︸ ︷︷ ︸

accel.

+ f 2) 1
N2

∂ 2

∂ z2 +
∂ 2

∂x2︸ ︷︷ ︸
geostrophic


b = 0, (29)
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subject to boundary condition b = b0 (xeαt). Equation (29) describing a strained front is identical446

in structure to (26) describing flow over a ridge — only the form of the acceleration terms differ.447

The forced solution to (29) is defined by the convolution448

b(x,z, t) =
∫

∞

−∞

GF(x− x0,z)b0
(
xeαt) dx0, (30)

where the Green’s function GF may be determined via Fourier inversion of the Green’s function449

G defined in (13). Unlike lee waves, where the ridge is rigid, the front deforms (sharpens) with450

time as defined by the b0(xeαt) in (30). However, the solution for a particular frontal width at451

some instant in time may be directly compared to the steady lee-wave solution for a ridge of the452

same width. As for lee waves, this solution can be considered to be composed of two parts: a453

large-scale secondary circulation or ‘deflection’ about the front, and a smaller-scale wave field.454

Unfortunately, unlike the lee waves, the two parts are not readily separable. As was shown in455

§2a2, if the strain rate δ = α/ f � 1 — analogous to RoL � 1 for the lee waves — then there456

is negligible generation of waves, and the flow reduces to geostrophic balance with G defined457

by (19). Notably, in this small Rossby number limit, the topographic Green’s function is the458

identical to the frontal Green’s function, ĜF = ĜL = exp(−Nk|z|/ f ). Comparing (27) and (30)459

thus implies that the geostrophic buoyancy field associated with a topographic ridge of profile460

h(x) is identical to the geostrophic buoyancy field associated with a front with surface buoyancy461

profile b0(x) =−N2h(x) at some instant in time. The secondary circulation around the front/ridge462

is determined by material conservation of the buoyancy, w =−D̄b/N2, and so will be different for463

the front and ridge owing to the different material derivative operator D̄. However, in both cases464

the secondary flow is generated owing to the need for the far-field horizontal flow to be deflected465

along isopycnals and around the surface obstacle. If this deflection is sufficiently sharp/fast (i.e.466

RoL, δ non-small) then buoyant forces give rise to a wave response.467
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3. Numerical model comparison468

Here we describe a solution to the fully non-linear equations (3) for parameter values represen-469

tative of a submesoscale front. We consider a front with an initial structure of470

b(x,z,0) =
∆b
2

(
1+ erf

( x
L

))
exp
(
−
( z

H

)2
)
+N2 z, (31)

and choose a buoyancy difference of ∆b = 5× 10−3 m2s−1, initial frontal width of L = 10km,471

depth scale of H = 100m, stratification N2 = 1× 10−5 s−1 and assume f = 1× 10−4s−1. These472

parameters correspond to an initial geostrophic Rossby number — the parameter assumed to be473

small in the linear model — of Rog = ∆bH/( f 2L2) = 0.5, although Rog increases to O(10) as the474

front collapses. To prevent the generation of waves associated with the adjustment of unbalanced475

initial conditions, we initialise the numerical model with zero strain flow in a state of geostrophic476

balance and gradually ramp-up the strain rate with time according to α(t) = α0
(
1− exp−(t/τ)2).477

Here we select a maximum strain rate of α0 = 0.4 f and ramp-up timescale of τ = 2π/ f .478

The numerical model employed is MITgcm (Marshall et al. 1997) configured in hydrostatic,479

two-dimensional, ocean-only mode with a rigid-lid ocean surface. The MITgcm code is modified480

to include the background strain advection terms in (3) as an external forcing in the buoyancy and481

horizontal momentum equations. The domain width is chosen as 200km with the front in the centre482

of the domain and a horizontal resolution of 100m at the front. Open boundaries with Orlanski483

radiation conditions are used at the horizontal edges of the domain. The domain depth is set to 8km484

with resolution varying from 5m at the surface to 25m at depth. A uniform background horizontal485

diffusivity and viscosity of 10m2s−1 is introduced to prevent the collapse of the front below the486

grid-scale. We also add a diffusive sponge in the deep which absorbs downward propagating waves487

and prevents reflections off the base of the domain. The sponge takes the form of an elevated488
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horizontal diffusivity and viscosity in the bottom half of the domain, κh(z) = κ∞(1+ erf(−(z+489

6)/1.5))/2 where κ∞ = 400m2s−1 and z is in units of kilometers.490

The numerical model ultimately reaches a steady state where strain-driven sharpening of the491

front is balanced by the explicit horizontal diffusion. The time evolution of the model’s surface492

buoyancy field towards this steady state is shown in figure 6. The magnitude of the strain rate as493

a function of time is also shown. As the front sharpens it moves to the left, with warmer fluid494

slumping over cooler. The front reaches a steady state after about two days with a steady cross-495

frontal width of about 700m. The vertical velocity field in the steady state is shown in figure 7a.496

The grey lines on the figure are the wave and jet slopes predicted from the Green’s function derived497

in the previous section. These predicted slopes show good agreement with the numerical solution.498

For comparison, the vertical velocity field predicted from the analytical model is shown in figure499

7b. This prediction is derived in the following way. First, the frontal anomaly b0 is determined500

from the initial buoyancy field b(x,z,0) used in the numerical model (31). This is done by replac-501

ing the velocity v in the PV relation (7) with the geostrophic velocity from (15) (since the model502

is initialised in geostrophic balance) and rearranging to obtain,503

b0 = b−b′ = b+
(

N
f

)2 ∫ ∫
∂ 2b
∂x2 dzdz. (32)

In the absence of diffusion the frontal anomaly would sharpen continuously in time according to504

b0(xeβ (t), z) as discussed previously (where β (t) =
∫ t

0 α(t ′)dt ′). The inclusion of diffusion will505

limit the sharpening of the front to a finite width. To determine this width, consider that at steady506

state the dominant balance is between the strain and diffusion, or −αx∂xb ' κh∂xxb, which may507

be solved to obtain b(x) = ∆b(1+ erf(x/Ls))/2 where the width of the front is Ls =
√

2κh/α508

(Shakespeare and Taylor 2015). For the present values the steady frontal width is Ls = 707m509

in agreement with figure 6. Thus, the frontal anomaly b0 will approach b0(xL0/Ls, z) at large510
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time, where L0 is the initial frontal width. This frontal anomaly is convolved with the Green’s511

function to determine the analytical vertical velocity field shown in figure 7b. The waves seen512

in this solution compare well in both structure and amplitude with those in the numerical model513

solution, particularly at depth.514

The region where the linear model is expected to break down may be computed by considering515

the linearization assumption, |u| � |Ū |, made in the model derivation. The edge of this region516

approximately corresponds to the line along which |u|= 0.1|Ū | (solid black curve on figure 7) as517

derived from the analytic solution. Indeed, the major differences between the numerical and ana-518

lytical solutions occur near the surface front within this contour, where the secondary circulation519

(i.e. u) and local Rossby number are large. Figure 8 shows a magnified view of the steady solu-520

tions near the surface front. The local vorticity Rossby number, Ro = f−1∂xv, from the numerical521

model (figure 8a) peaks at a value of 7.9 at the surface front. Associated with this large Rossby522

number, the surface front in the numerical solution (figure 8b) has slumped to the left under the523

influence of gravity. This slumping has the effect of stabilizing the isopycnals compared to the an-524

alytic solution (figure 8c), which is gravitationally unstable near the surface. Associated with the525

non-linear leftward slumping of the front, the numerical vertical velocity (figure 8b) is weakened526

on the warm (cyclonic; right) side of the front, and strengthened on the cool (anticyclonic; left)527

side, relative to the analytic solution. The numerical solution also exhibits an intense downward528

jet on the cool side of the front, not present in the analytic solution. Similarly, the first few lowest529

Lagrangian frequency waves on the cool side of the front are intensified and steepened directly530

below the surface front. Furthermore, in the numerical solution the first (lowest frequency) wave531

mode appears on the cool side of the front around t = 20 hours, whereas the corresponding wave532

mode on the warm side of the front only appears later, around t = 25 hours. This behavior contrasts533

with the perfect antisymmetry maintained by the linearized analytic solution.534
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Some of the non-linear dynamics associated with the surface front in the numerical solution can535

be described by non-linear frontal models (e.g. Hoskins and Bretherton 1972; Shakespeare and536

Taylor 2014) which use the momentum coordinate, X = x+ v/ f , to include the effect of non-537

linear cross-frontal advection (i.e. u∂x). The buoyancy b in the non-linear models is described538

by the same equation as in the linear models, but in the transformed coordinate — that is, with x539

in (9) replaced by X (Shakespeare 2015a). In other words, non-linear models of two-dimensional540

fronts differ from linear models by the translation x = X − v(X ,z, t)/ f of the solution, where X is541

the coordinate appearing in the linear solution. The magnitude of the along-front flow v does not542

change. However, the coordinate contraction associated with the translation x = X − v(X ,z, t)/ f543

does imply an amplification of the cross-frontal flow (i.e. u, w) to conserve volume. In particular,544

the vertical velocity in the non-linear solution is scaled by the absolute vorticity, ζ/ f = (1 +545

f−1∂xv) = (1− f−1∂X v)−1, relative to the linear solution. We note that this relationship between546

linear and non-linear models has only been shown to be valid for the case of uniform interior547

PV, whereas here we have a variable PV. Nonetheless, here we apply these transformations to the548

linear model solution shown in figure 8c to obtain the ad-hoc non-linear solution shown in 8d.549

The ad-hoc solution captures some features of the fully non-linear numerical solution such as the550

location of the surface front and asymmetry of the vertical velocity field. However, as a result of551

the very large Rossby number at the front, the ad-hoc solution also exhibits a discontinuity in the552

buoyancy field at the surface front (down to a depth of about 40m) and an associated infinity in553

the vertical velocity, implying that diffusion and other non-linear effects are important in arresting554

the collapse of the surface front. These large Rossby number dynamics are discussed in detail in555

Shakespeare and Taylor (2015).556
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a. Wave propagation and frequency spectra557

As seen in previous sections, the spontaneously generated waves are horizontally trapped by the558

strain flow and rapidly become steady in the numerical solution (e.g. figure 7). This behavior is559

due to spatially uniform strain flow, and thus differs from what would be expected in the ocean560

where strain flows vary greatly in space (both horizontally and vertically). While we cannot di-561

rectly represent such spatial variability in our simple quasi-2D model, we can capture some of the562

dynamics by considering a temporal variation in the spatially-uniform strain rate. In particular,563

here we consider switching off the strain flow in the steady numerical solutions described in the564

previous section (§3). As the strain rate is reduced, the trapped stationary waves are able to prop-565

agate, consistent with observations of waves at ocean fronts (e.g. Alford et al. 2013), and we can566

analyze the frequency spectrum of the flow and compare to our analytic predictions.567

The methodology is as follows. We take the steady numerical solution (figure 7a) from the568

previous section and at time t = 60 hours switch off the strain flow in two ways: (a) instantaneously569

such that570

α(t) =





α0

(
1− e−(

t
τ )

2
)

t ≤ 60

0 t > 60
, (33)

and (b) gradually over 60 hours such that571

α(t) =





α0

(
1− e−(

t
τ )

2
)

t ≤ 60

α0

(
1− e−(

120−t
τ )

2
)

60 < t ≤ 120

0 t > 120

, (34)

where time is in hours and the parameter values are the same as previously (i.e. τ = 2π/ f , α0 =572

0.4 f ). The frequency spectrum of the vertical velocity field, |ŵ|(x,z,ω), in each case is then573

analyzed for a period of 120 hours from when the strain rate reaches zero (this approach avoids574
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any Doppler shifting of the frequency due to non-zero background flow, e.g. (22e)). Here we will575

consider the spatially averaged vertical velocity spectrum (units: m) defined by576

〈|ŵ|〉=
∫ ∫ |ŵ|dxdz∫ ∫

dxdz
. (35)

The spectrum 〈|ŵ|〉 is plotted in figure 9 for the (a) instantaneous and (b) gradual strain switch-577

off. Three spectra are shown in each plot: the average over the whole numerical domain (solid), the578

average above 50m (dashed), and the average below 4km (dotted). The global average in figure 9a579

shows three distinct spectral peaks coincident with the frequencies corresponding to the secondary580

circulation (vertical line labelled B), and the first two wave modes (vertical lines labelled C and D)581

for a strain rate of 0.4 f as derived from figures 3 and 4. Thus, unsurprisingly, once the strain flow582

is switched off, the previously stationary wave modes begin to propagate at the frequency set by583

their slopes. The first wave mode (C) is particularly evident. Perhaps less expected is the strong584

wave generation corresponding to what we previously identified as the secondary circulation or585

frontal jets (line B; global spectra). This wave generation is associated with the ‘adjustment’ of the586

secondary circulation — that is, once the strain rate becomes zero, a steady secondary circulation587

cannot be supported at the front, and the excess momentum (sometimes called a ‘momentum588

imbalance’) is removed via the generation of inertia gravity waves. This adjustment generation589

has previously been examined in various contexts by many authors (e.g. Rossby 1938; Blumen590

2000; Shakespeare and Taylor 2013, 2015). These adjustment waves would be generated even in591

the limit of very weak strain rate, if the strain field is turned off instantaneously, in contrast to the592

identified wave modes (C, D), which would vanish in this limit.593

Now instead consider frequency spectrum associated with the gradual switch-off plotted in figure594

9b. The gradual variation of the strain rate ensures that there is no instantaneous adjustment595

process, and the spectral peak associated with the secondary circulation is no longer present. In596
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addition, instead of distinct spectral peaks corresponding to individual wave modes (lines C, D),597

there is a broad band of high frequency wave energy which peaks around 2 f . The reason for598

this is that as the strain rate varies the resonant wave mode frequencies (e.g. figure 4) change,599

such that waves of different frequencies are continually being generated via the acceleration of the600

strain flow around the front. Notably, the peak spectral amplitude still occurs around 2 f which601

agrees with the lowest frequency (highest amplitude) wave mode for strain rates in the range602

0.25 < α/ f < 0.4 (see figure 4). The globally averaged spectrum in figure 9b also exhibits a peak603

at the inertial frequency (line A) associated with direct forcing from the time-varying strain rate604

which itself varies near-inertially (e.g. (34)).605

4. Discussion606

Here we have investigated the spontaneous generation of inertia-gravity waves at strongly607

strained density fronts. In §2a we developed a linearized model to derive solutions for the cir-608

culation and density fields associated with a background strain flow, Ū = −αx, acting across a609

frontal buoyancy anomaly in a semi-infinite domain. The solutions depend only on the magnitude610

of the strain rate and the structure of the frontal anomaly, b0(x,z), at some instant in time. All611

information about the amplitude and structure of the frontal circulation, and wave Lagrangian fre-612

quencies, is contained with the Green’s function for the problem (see figure 1). Whether waves613

are generated at a given front is determined by the Burger number of the front and the strain rate.614

Here we define the Burger number as εF = NH/( f L), where H is the depth of the frontal structure,615

L the width, and N/ f the ratio of buoyancy to inertial frequencies. Wave generation is predicted616

for Burger numbers exceeding about 0.5 and strain rates, α , exceeding about 0.2 f . The lowest617

frequency distinct wave predicted to be generated by the present mechanism has Lagrangian fre-618

quency ω = 1.93 f and is generated for a strain rate of α = 0.29 f (see figure 4). Based on these619
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results, it seems unlikely that the mechanism of wave generation examined here was responsible620

for the front-sourced waves observed by Alford et al. (2013) which were of very low frequency621

(∼ 1.01 f ). Wave amplitudes increase with increasing frontal Burger number and background622

strain rate.623

We also investigated the mechanism responsible for the generation of the frontal waves. In §2b624

we showed that wave generation at a strained front is mathematically analogous to the classical625

scenario of ‘lee wave’ generation associated with a uniform flow over a topographic ridge in a626

rotating system (e.g. Queney 1947). Waves are generated in each case whenever the acceleration627

of the background flow around the front/ridge into the stratified ambient is fast enough that it forces628

the system away from geostrophic balance. More generally, any structure that presents an obstacle629

to the background strain flow will tend to generate waves, not only surface density fronts. Indeed,630

the analytic solution implies that any surface or interior PV anomaly q0 (i.e. equation (5)) with631

some horizontal structure, whether in a bounded or unbounded domain, will generate waves in a632

strain flow. This result appears to be closely related to that of recent analytical studies describing633

the generation of gravity waves by a PV anomaly in a shear flow (Lott et al. 2010, 2012). These634

studies also employed a similar analytic approach using linearized equations of motion.635

The present model is intended as a first-order description of wave generation in regions of the636

ocean with both sharp horizontal buoyancy gradients (order one frontal Burger numbers) and637

strong strain flows, such as the ocean submesoscale. Based on the analytic model results, we638

anticipate strong wave generation at submesoscale fronts. However, submesoscale fronts also typ-639

ically exhibit large vorticity and Rossby number — a parameter that is assumed to be small in640

the linearized analytical model. Despite this assumption, in §3 we showed that the wave field641

in the analytic solution compares well with a fully non-linear numerical solution to the problem642

(i.e. equations (3)) for parameter values representative of a submesoscale front. The solutions643
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only differ significantly near the surface front, with the numerical solution developing an intense644

downward jet on the cooler side of the front. The shallowest slope waves on the cooler side of645

the front are also intensified relative to the analytic prediction, and tend to appear earlier than646

their counterparts on the warm side. Given these relatively minor differences, we can be confident647

that the analytic model provides a robust, first-order dynamical description of one mechanism of648

inertia-gravity wave generation at strained density fronts.649

However, more investigation is needed in more realistic models to quantify the relative impor-650

tance of spontaneous generation at strained density fronts to the global wave field. The model651

used herein is highly idealized, describing a two-dimensional front subject to a spatially uniform652

background strain flow. These assumptions will almost certainly break down on the submesoscale653

where both the background strain flows and the density fronts are highly three-dimensional in654

character, and evolve on super-inertial timescales. For example, Nagai et al. (2015) use a high655

resolution numerical model to show that spontaneous generated waves at fronts can be reabsorbed656

by the mean flow, rather than propagating away as described by our model. More realistic spatial657

and temporal variability will also likely modify the amplitude and frequencies of generated waves658

compared to our analytic predictions. These effects will be studied in a future work.659
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FIG. 1. Non-dimensional Green’s function for the cross-front shear, f ∂̂zuG (17), as a function of slope ε =

Nk/( f m) and strain rate δ = α/ f . Local extrema in the Green’s function correspond to waves (resonant modes)

with Lagrangian frequency ω = f
√

1+ ε2.

802

803

804

41



z
/
H

(a)

α = 0.1f

−50

−40

−30

−20

−10

0

−4

−2

0

2

4

x 10
−3

z
/
H

(b)

α = 0.3f

−50

−40

−30

−20

−10

0

−5

0

5

x 10
−3

x/LR

z
/
H

(c)

α = 1.0f

−20 −15 −10 −5 0 5 10 15 20
−50

−40

−30

−20

−10

0

−0.1

−0.05

0

0.05

0.1

FIG. 2. Comparison of vertical velocity field (in units of ∆b0 f/N2) for strain rates (a) α = 0.1 f , (b) α = 0.3 f ,

and (c) α = f , and a frontal anomaly defined by (21). Straight grey lines indicate the slopes of secondary

circulation and first three wave modes (if they exist), as predicted from the Green’s function (see figures 3 and

4).

805

806

807

808

42



10
−2

10
−1

10
0

10
1

0.58

0.8

1

1.5

2

δ

sl
o
p
e
[f
/N

]

(a)

10
−2

10
−1

10
0

10
1

0.01

0.05

0.1

0.5

1

2

δ

|w
|[∆

b 0
H
/
(N

L
)]

(b)

FIG. 3. (a) Slope of the frontal jets as a function of strain rate, in units of f/N. (b) Vertical velocity magnitude

as a function of strain rate, in units of ∆b0H/(NL). The results from the small (19) and large (20) strain rate

limits are shown as dashed lines. The slope is nearly constant at small strain rate and increases linearly at large

strain rate. The vertical velocity increases linearly at small strain rate and quadratically at large strain rate.

809

810

811

812

43



0.1 0.2 0.3 0.4 0.5 0.8 1 1.5 2

2

3

4

5

10

20

30

ω
/
f

δ

FIG. 4. Frequencies of the six lowest frequency distinct wavepackets as a function of strain rate δ = α/ f ,

derived from computing the local extrema of the non-dimensional cross-front shear Green’s function, f ∂̂zuG,

shown in figure 1. The lowest Lagrangian frequency associated with a distinct wave mode is ω = 1.93 f , for a

strain rate of α = 0.29 f .

813

814

815

816

44



z
/
H

(a)

ǫF = 0.1−30

−20

−10

0

z
/
H

(b)

ǫF = 0.2−30

−20

−10

0

z
/
H

(c)

ǫF = 0.5−30

−20

−10

0

z
/
H

(d)

ǫF = 1−30

−20

−10

0

x/LR

z
/
H

(e)

ǫF = 2

−25 −20 −15 −10 −5 0 5 10 15 20 25

−30

−20

−10

0

FIG. 5. Vertical velocity fields for a strain rate of α = 0.4 f and buoyancy anomaly defined by (21), for various

frontal Burger numbers εF = LR/L. The velocities are in units of εF ∆b0 f/N2. Contours are logarithmically

spaced from 3 to 100% of the maximum value (0.03). Grey-dashed lines indicate the predicted slope of the

frontal jets and waves. The figure can also be viewed as a sequence of snapshots in time, αt = ln(εF/0.1): (a)

αt = 0, (b) αt = 0.69, (c) αt = 1.61, (d) αt = 2.30, and (e) αt = 3. The path of a wave packet initially located

at the origin at t = 0, with initial wavenumbers k0 = 0.2/LR and m0 = 0.5/H, is shown by a solid black line on

each plot. The terminus of the line is the position of the wave packet at the time the snapshot is taken. Note that

the velocities have been non-dimensionalised by εF ∆b0 f/N2, such that the maximum velocity in (e) is 20 times

that in (a) owing to the change in εF .

817

818

819

820

821

822

823

824

825

45



x (km)
−10 −5 0 5 10

0

0.5

1

1.5

2

2.5

x 10
−3

0 0.5
0

10

20

30

40

50

α/f

t
(h
ou

rs
)

FIG. 6. The time evolution of the strain rate, α(t)/ f , and the surface buoyancy field, b(x,0, t), in the numerical

model. A steady state is reached after about 45 hours.

826

827

46



x (km)

z
(m

)

(a)

−30 −20 −10 0 10 20 30
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

x (km)

(b)

−30 −20 −10 0 10 20 30

−6

−4

−2

0

2

4

6

FIG. 7. Comparison of the numerical and analytical solutions. (a) The steady state numerical vertical velocity

(m day−1) field. (b) The analytical vertical velocity field (m day−1) for the same frontal structure (see text for

details). The grey lines on each plot are the wave and jet slopes predicted from the Green’s function. The region
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FIG. 8. Comparison of the numerical and analytical solutions near the surface front. (a) The vorticity Rossby

number Ro= f−1∂xv in the numerical model steady state. (b) The vertical velocity field (m day−1) and buoyancy

contours in the numerical model steady state. (c) The vertical velocity field (m day−1) and buoyancy contours

predicted by the analytical model. (d) The vertical velocity field (m day−1) and buoyancy contours of the ad-hoc

non-linear analytical model (see text for detailed description).
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FIG. 9. Spatially averaged vertical velocity frequency spectra 〈|ŵ|〉 (m) from the numerical solution when

the strain is turned off (a) instantaneously (33) and (b) gradually (34). Three lines are displayed on each plot

for the global average spectrum (solid), near-surface spectrum (above 50m, dash) and deep spectrum (below

4km, dotted). The vertical grey lines labelled A to D indicate the specific frequencies of interest: A = inertial

frequency, B = secondary circulation ‘frequency’, C = first wave mode frequency, and D = second wave mode

frequency, as predicted from the constant strain analytic model for a strain rate of α = 0.4 f .

838

839

840

841

842

843

49


