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Abstract. A stochastic forcing method is proposed to improve the fidelity of high Reynolds number
large-eddy simulations of the oceanic bottom boundary layer. The forcing term is added to the wall-
normal momentum equation with the amplitude set using a proportional controller. The sign of the
forcing is chosen to either increase or decrease the local correlation between the horizontal and wall-
normal velocity fluctuations to adjust the mean shear toward a specified logarithmic law. The amplitude
and envelope of the forcing function are both significantly smaller than those required by previously
suggested stochastic forcing methods. The NWM-LES is tested for smooth and rough channel flow, and
for a bottom Ekman layer with and without stratification. In all cases, it is found that the addition of
stochastic forcing improves the mean velocity and turbulent stresses compared to results from direct
numerical simulations and experimental data.

1. Introduction

When simulating geophysical boundary layers at a large Reynolds number, in
addition to the subgrid model for the outer layer, a near-wall model (NWM) is
inevitable for handling the inner layer of high-Re geophysical boundary layers.
This is due to the fact that the filter scale is typically much larger than the vis-
cous/roughness scales, the generation of turbulence at the wall is not resolved, and
consequently the near-wall Reynolds shear stress must be explicitly accounted for
through a model. In other words, it is not practical to refine the grid to achieve the
small grid spacing, typically on the order of 25 wall units in the wall-parallel direc-
tions and 1 wall unit in the wall-normal direction, required to capture the near-wall
structures responsible for maintaining turbulence.

Near-wall models for geophysical boundary layers are commonly formulated by
applying an approximate boundary condition at the wall with most implementa-
tions based on the method of Schumann ? in simulations of rough channel flow,
later adapted by Grotzabch ?. The instantaneous wall shear stress is related to the
instantaneous horizontal velocity at the first grid point,

τw,i(x, y, t)
ρ0u2

∗
=

ui(x, y, 1, t)
Ui(1, t)

, (1)

ui(x, y, 1) is the resolved instantaneous horizontal velocity at the first grid point
nearest the wall, Ui(1) is the Reynolds-averaged velocity at that point, and u∗ is
the friction velocity. The first computational point is placed in a location where the
logarithmic law may be applied. An explicit relationship between τw,i(x, y, t) and
the horizontal velocity ui(x, y, 1, t) at the first grid point results, and this serves
as the approximate wall boundary condition in the LES. Piomelli et al. ? found
that, by displacing the point of calculation of ui in the streamwise direction by a
prescribed distance ∆s, improved predictions of the velocity field were obtained in
channel flow.

Another near-wall model using an approximate boundary condition was pro-
posed by Marusic et al. ? which will be referred to here as the MKP model. The
model was intended to improve on the Schumann-Grotzbach-Piomelli models by in-
creasing the level of fluctuations in the local wall stress and to improve the velocity
spectra in the logarithmic region?. This model has another advantage that it also
performs well without modification for geophysical flows with rotation ? and does
not require the specification of the wall-stress angle, γ0. This model is formulated
as:

τw,i(x, y, t)
ρ0u2

∗
=

Ui(1)
U(1)2 + V (1)2)1/2

− α
[ui(x + ∆s, y, z(1))− Ui(1)]

u∗
, (2)
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Figure 1. r.m.s. of the stochastic forcing function with the amplitude evaluated dynamically for z/δ < ∆f . Note
that the channel flow cases have been scaled by a factor of 20.

where z(1) is the location of the gridpoint nearest the wall and U(1) and V(1) are
the plane averaged horizontal velocity components at the first gridpoint. Marusic
et al. ? hypothesized that the constant α should be universal, and was empirically
determined to be 0.10. As before, the instantaneous friction velocity and mean
wall stress are estimated by assuming that the plane-averaged velocity at the first
gridpoint follows the expected log law.

Mason and Thomson (1992) performed simulations of the neutral ABL with a
Smagorinsky model. They found that the mean shear at points in the vicinity of
the boundary was overpredicted relative to the log-law value and the near-surface
value of rms streamwise velocity was also larger than measurements. The authors
considered stochastic forcing of the momentum and scalar equations with the curl
(divergence in the scalar case) of a random vector field with zero mean at every
time step. Stochastic forcing has also been used in DES by Piomelli et al. (2003) to
improve the accuracy of the transition layer between RANS and LES. Keating and
Piomelli ? extended the work of Piomelli et al. (2003) by using a simple proportional
controller to adjust the amplitude of the stochastic force.

In the present work, we explore the performance of the dynamic eddy viscosity
model (DEVM) in the following test problems: (1) a smooth-wall channel flow, (2)
a rough-wall channel flow, and (3) an Ekman boundary layer over a rough bottom,
both with and without overlying stratification. Since an overlap region with a log
law exists in all of the test problems, we employ a NWM that enforces the log law
on the mean velocity at the grid point next to the wall. However, as will be shown,
this procedure is unable to capture the expected the mean velocity profile at the
other grid points and the expected near-wall behavior of the turblent stresses. This
observation motivates the NWM model proposed here: stochastic forcing of the wall-
normal velocity with proportional control. Unlike the forcing methods employed by
previous authors, the forcing amplitude is small and has a thin envelope.

2. Formulation

We have found that the NWM-LES with the DEVM generally underestimates
vertical velocity fluctuations and the magnitude of the Reynolds stress near the
wall. We therefore propose adding a stochastic forcing term to the wall normal
momentum equation that is designed to enhance the vertical velocity fluctuations
while modifying the local Reynolds stress according to the expected value from the
log law. Since the objective of the stochastic forcing is to improve the representation
of the unresolved small-scale motions, the characteristic length and time scales of
the forcing are set by the grid-size and time-step, respectively. As it appears on
the right hand side of the wall-normal momentum equation, the proposed forcing
function can be written

fz(x, y, z) = ±RA(z), (3)
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where R is a random number between 0 and 1, A(z) is an amplitude function,
and the sign is chosen to adjust the turbulent stress in the appropriate direction.
The forcing amplitude is evaluated dynamically in order to ensure that the mean
velocity follows the logarithmic law near the wall. This choice also has the advantage
of eliminating the need to empirically specify the forcing amplitude. The difference
between the resolved shear and the expected logarithmic law value is

ε(z) =
κz

u∗

(
d 〈u〉
dz

2

+
d 〈v〉
dz

2
)1/2

− 1. (4)

The forcing amplitude can then be locally adjusted using a proportional controller
with

A(z)n+1 = A(z)n +
u∗ε(z)

τ
, (5)

where τ sets the relaxation time and should be large enough to allow the flow to
adjust to the forcing, and typically we have used τ ≈ δ/u∗. The sign of the stochastic
forcing function is chosen to increase or decrease the u′, w′ correlation according to
the sign of ε(z). Taking us to be the velocity in the direction the mean wall stress:

Sgn (fz(x, y, z)) = −Sgn(
d 〈us〉

dz
) ∗ Sgn(ε(z)) ∗ Sgn(u′s(x, y, z)). (6)

If, for example, we consider flow near a lower wall where d 〈us〉 /dz > 0 and we
find that the mean shear is overestimated so that ε(z) > 0, then the sign of the
forcing term will be the opposite of the local value of u′s. In this case, the forcing
will effectively act to pull high speed fluid down toward the wall and push low speed
fluid away from the wall. This will modify the local Reynolds stress and will act to
reduce the mean shear as desired.

We have found that the stochastic forcing method described above is able to
effectively adjust the mean velocity toward the expected logarithmic law when active
over a small number of gridpoints near the wall. Specifically, the forcing amplitude
A(z) is taken to be nonzero only for z/δ < ∆f where ∆f is the volume-averaged
filter size. Before the forcing term is added to the wall-normal momentum equation,
the plane-average is removed. After the simulations have been allowed to reach a
statistically steady state, the r.m.s. forcing amplitudes for each case are shown in
Figure ??.

3. Results

In the following section, we will demonstrate the performance of a NWM-LES
using the MKP model with and without stochastic forcing for three flows: smooth
channel flow, rough channel flow, and a geophysical boundary layer.

3.1. Smooth Channel Flow

Pressure-driven channel flow is a common test case for near wall models and
allows comparison with previous simulations and experimental data. We have chosen
the friction Reynolds number, Re∗ = 2000, in order to compare our results to
the direct numerical simulation (DNS) of Hoyas and Jimenez ?. The number of
gridpoints used for the NWM-LES after de-aliasing in the x,y, and z directions
is 64, 64, and 50, respectively with a uniform grid in all three directions. The
first horizontal velocity gridpoint lies within the expected log region, in this case
z+(1) = 41.7. For comparison, the DNS of Hoyas and Jimenez uses a 6144 x 4608 x
633 grid, i.e. 87,500 times more gridpoints than the NWM-LES.

Figure ??(a) shows the mean velocity profiles as a function of z+ = zu∗/ν for
the smooth wall channel flow simulations. The mean velocity from the DNS follows
the expected log law between about z+ > 30 and z/δ < 0.2. It is apparent from
Figure ??(a) that the NWM-LES without stochastic forcing overpredicts the mean
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Figure 2. (a) Mean velocity profiles and (b) streamwise and wall-normal rms velocity for smooth wall channel flow
with Re∗ = 2000

shear where a log law is expected. Much better agreement with the DNS in the
logarithmic region is achieved when the stochastic forcing term is included. Note
that as shown in Figure ??, the forcing term is nonzero only for the first four grid
points, z+ < 325. The NWM-LES appears to be unable to properly capture the
deviation from the log law in the so-called ‘wake region’ seen in the DNS.

The streamwise and wall-normal turbulent velocities are shown for smooth wall
channel flow in Figure ??(b). When the NWM-LES is used, the magnitude of the
wall-normal rms velocity is significantly less than the DNS. Adding stochastic forc-
ing increases the wall-normal velocity fluctuations as expected, and results in a
better agreement with the DNS. The same conclusion is true for the spanwise ve-
locity fluctuations (not shown for clarity). Without forcing, the streamwise velocity
fluctuations compare reasonably well in magnitude to the DNS, but an improve-
ment is still seen when forcing is added, resulting in a shift in the location of the
maximum near the wall and an increase in the outer layer fluctuations. We have
found that using the dynamic mixed model (DMM) without forcing results in all
three components of the rms velocity larger than the DNS (not shown).

3.2. Rough Wall Channel Flow

Most boundary layers of geophysical relevance are in the fully rough regime
where the roughness elements are large enough to eliminate the buffer layer ?. In
order to evaluate the performance of the near-wall model in response to the presence
of roughness, we have compared our simulations to an experimental study at a
relatively large Reynolds number. The simulation parameters have been matched
to the experiments of Bakken et al. ? where wire mesh was used to roughen the
ceiling and floor of a wind tunnel. The friction Reynolds number is 5600, and the
roughness length scale is k+ = 187 indicating that the flow is fully rough. By fitting
the observed velocity profile to the rough wall log-law:

U+ =
1
κ

log(z+) + B + ∆U+ =
1
κ

log

(
z

z0

)
, (7)

it is estimated from the experimental data that ∆U+ = 11.93 and z0/δ = 2.81 ∗
10−3. Our simulations with the NWM-LES use 48x48 gridpoints in the horizontal
directions and 64 points in the wall-normal direction with a uniform grid. The first
horizontal velocity point away from the wall is located at z+(1) = 90 or z(1)/z0 =
5.7.

Figure ??(a) shows the mean velocity profiles for the NWM-LES using the
parameters given above with and without stochastic forcing. For comparison, the
data of Bakken et al. ? are also shown. As in the smooth channel flow, the mean
shear in the log region for the NWM-LES is too large. With the addition of stochastic
forcing, the mean velocity profile follows the log law very closely. Note that the log
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Figure 3. (a) Mean velocity profiles for rough wall channel flow with z0/δ = 2.81x10−3 and Re∗ = 5600, (b) Mean

velocity profiles for a bottom Ekman layer with z0/δ = 5.7 ∗ 10−5 and Re∗ = 60, 00.

law used in the near-wall model assumes that κ = 0.41, while the experimental data
matched with a least squares fit gives κ = 0.37. Using the observed value of κ would
have likely yielded an even better agreement between the experimental data and
NWM-LES results.

3.3. Bottom Ekman Layer

Finally, we have tested the near-wall model in simulations of an oceanic bottom
boundary layer. The outer layer flow is assumed to be steady and in geostrophic
balance. Unlike a non-rotating boundary layer, the thickness of an unstratified Ek-
man layer is bounded, and when the flow is turbulent the boundary layer height
scales with δ = u∗/f where f is the Coriolis parameter. While the free stream
velocity and the wall stress are not aligned for an Ekman layer, the horizontal ve-
locity magnitude is still expected to follow a log law when the flow is unstratified
? and when the outer layer is stratified ?. The friction Reynolds number and the
roughness lenthscale have been chosen to match the observations of Perlin et al. ?,
Re∗ = 60, 000 and z0/δ = 4.80 ∗ 10−3, respectively. The NWM-LES uses 85 grid-
points in each horizontal direction (after 2/3 dealiasing) and 201 gridpoints in the
wall-normal direction. The domain size is about 3δ in the horizontal directions and
1.5δ in the vertical direction.

Profiles of the mean horizontal velocity magnitude for the NWM-LES are shown
in Figure ??(b). As in the previous test cases without forcing, the NWM-LES does
not accurately predict the mean shear in the log region. However, the addition
of stochastic forcing corrects the mean velocity in this region. In the ocean, the
thickness of the bottom boundary layer is nearly always limited by the presence of
a stable stratification in the ocean interior. We have performed simulations with
a stratified ambient with a buoyancy frequency N/f = 75 chosen to match the
observations of Perlin et al. ?. In the stratified simulation, a well-mixed region
forms near the wall with a thickness of about 0.12δ where the mean velocity follows
the unstratified log law. Above the well-mixed layer, a highly stratified pycnocline
forms where the mean shear increases as shown in Figure ??(b). A similar increase
in the mean shear was also observed by Perlin et al. ?. A visualization of the wall-
normal velocity near the wall is shown in Figure ??. It is clear from this figure that
the amplitude of the wall-normal velocity fluctuations is increased at this height
by the addition of forcing while the characteristic lengthscale of the fluctuations is
reduced.

4. Conclusions

We have proposed a stochastic forcing method in an attempt to improve the
performance of near-wall model large-eddy simulations for large Reynolds number
boundary layers. The amplitude of the forcing term that is added to the wall-normal
momentum equation is set using dynamic control. Since the sign of the forcing
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Figure 4. Wall-normal velocity in a bottom Ekman layer at z/δ = 2 ∗ 10−3 (a) without stochastic forcing, and (b)
with stochastic forcing.

Simulation type Re∗ z0/δ z+
0 Lx/δ Ly/δ Lz/δ Nx Ny Nz ∆+

x ∆+
y ∆+

z (1)

Smooth Channel 2000 2π π 2 64 64 50 196 98 41.7

Rough Channel 5600 2.8 ∗ 10−3 15.7 2π π 2 48 48 64 733 367 90

Ekman Layer 1.08 ∗ 105 4.78 ∗ 10−5 5.2 2.2 2.2 1.1 85 85 201 2830 2830 122

term is set to either increase or decrease the correlation between the local wall-
normal and horizontal velocity, the forcing amplitude needed to achieve a desired
correction in near-wall Reynolds stress is much smaller than previously proposed
forcing methods. When used with the dynamic eddy viscosity model, the stochastic
forcing is able to improve the estimates of the turbulent stresses and the mean
velocity profile compared to direct numerical simulations and experiments. When
applied to a turbulent benthic Ekman layer, the NWM-LES with stochastic forcing
is able to capture the expected logarithmic scaling of the velocity magnitude as well
as the increase in outer layer shear in the presence of stratification.
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