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Abstract

A steady Ekman layer with a thermally stratified outer flow and an adiabatic boundary condition at the lower wall is studied using
direct numerical simulation (DNS) and large eddy simulation (LES). An initially linear temperature profile is mixed by turbulence near
the wall, and a stable thermocline forms above the mixed layer. The thickness of the mixed layer is reduced by the outer layer stratifi-
cation. Observations from the DNS are used to evaluate the performance of the LES model and to examine the resolution requirements.
A resolved LES and a near-wall model LES (NWM–LES) both compare reasonably well with the DNS when the thermal field is treated
as a passive scalar. When buoyancy effects are included, the LES mean velocity and temperature profiles also agree well with the DNS.
However, the NWM–LES does not sufficiently account for the overturning scales responsible for entrainment at the top of the mixed
layer. As a result, the turbulent heat flux and the rate of change of the mixed layer temperature are significantly underestimated in
the NWM–LES. In order to accurately simulate the boundary layer growth, the motions responsible for entrainment must either be
resolved or more accurately represented in improved subgrid-scale models.
! 2008 Elsevier Inc. All rights reserved.
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1. Introduction

An externally stratified boundary layer forms when a
fluid with a stable density stratification flows over an adia-
batic surface. This situation is nearly ubiquitous at the bot-
tom of the ocean where the seafloor can be approximated
by an adiabatic condition (with the exception of isolated
hydro-thermal hotspots). When the flow is unstratified,
the height of a fully-developed rotating boundary layer,
or Ekman layer, scales with d = u*/f where u* is the friction
velocity and f is the Coriolis parameter. Typically in the
ocean d = O(100 m), but the observed boundary layer
thickness is often O(10 m). This implies that the thickness
of the oceanic bottom boundary layer is limited by the
outer layer stratification.

In the atmosphere, a near-neutral (or conventionally-
stable) boundary layer occurs when the heat flux at the sur-
face is negligible and the boundary layer height is limited
by a stable density inversion. This commonly occurs over
the ocean where the surface heat flux tends to be smaller
than over land (Businger and Charnock, 1983). Based on
field observations and simulation results, Grant (1992)
found that in the lower portion of a near-neutral atmo-
spheric boundary layer, the dominant balance in the
turbulent kinetic energy budget is formed between the pro-
duction and dissipation, while away from the wall, the tur-
bulent transport terms are non-negligible. Zilitinkevich and
Esau (2003) used an LES to simulate the formation of a
turbulent Ekman layer with an external stratification and
vertical shear, both with and without a surface heat flux.
They used their results to formulate a semi-empirical the-
ory for the scaling of the boundary layer height.

Taylor et al. (2005) considered open channel flow with a
stabilizing heat flux applied at the free surface and an
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adiabatic lower wall. With these boundary conditions, a
well-mixed turbulent region formed near the lower wall
and a region of stable stratification formed near the free sur-
face. When the surface heat flux was large, the density differ-
ence between the lower mixed layer and the free surface was
sufficient to inhibit upwelling of fluid from the mixed layer
to the free surface. The primary effect of stratification was
to limit the turbulent transport away from the wall relative
to that observed in the unstratified case, and the vertical
Froude number was identified as a useful parameter.

When a stabilizing heat flux exists at the boundary, as is
often the case in nocturnal boundary layers (Mahrt, 1999),
the effect of stratification is fundamentally different from
an externally stratified boundary layer. Armenio and Sar-
kar (2002) used a LES to study stratified channel flow with
a fixed temperature difference across the channel. Owing to
the choice of boundary conditions, a heat flux was present
near the wall which acted to limit the near-wall turbulent
production. The authors found that simulations using a
dynamic mixed model were able to accurately capture the
effects of stratification on the bulk flow. In particular, the
turbulent Prandtl number increased with the local gradient
Richardson number as expected from previous laboratory
and numerical studies. A stratified Ekman layer with a sta-
bilizing heat flux applied at the lower boundary was studied
using DNS by Coleman et al. (1992) and Shingai and
Kawamura (2002). They found that the surface heat flux
decreases the boundary layer height and increases the angle
of the surface stress.

The goal of the present study is to use numerical simu-
lations to examine the properties of an externally stratified
Ekman layer with a particular emphasis on the thermal
properties of the boundary layer. Since the role of stratifi-
cation in the near-neutral case is significantly different from
that in a stable boundary layer with a heat flux at the
boundary, we have conducted a DNS in order to evaluate
the performance of a resolved LES at the same Reynolds
number. Once confidence in the LES model has been
achieved through comparison with the DNS dataset, the
resolution requirements can be examined by considering
a low resolution NWM–LES. An accurate NWM–LES will
allow simulations at a larger Reynolds number that is more
appropriate for geophysical applications.

2. Formulation

A schematic of a bottom Ekman layer is shown in Fig. 1.
Flow in the outer layer is assumed to be in geostrophic bal-
ance with a pressure gradient in the y-direction. The outer
layer flow will therefore be aligned with the x-axis. The
flow is bounded from below by a flat, no-slip, adiabatic
surface, and periodic boundary conditions are applied in
the horizontal directions. Near the wall, as molecular and
turbulent viscosity affects the momentum balance, the flow
turns in the direction of the pressure gradient, forming an
Ekman spiral. Unlike a non-rotating boundary layer, the
thickness of an Ekman layer is bounded and scales with

d = u*/f when the flow is not stratified. This is an advantage
computationally since it is possible to set the domain size to
be larger than the boundary layer height, and the boundary
layer achieves a statistically steady state. When the outer
layer flow is stratified, the boundary layer height will be
further limited by the influence of stratification. An open
boundary condition is applied at the top of the computa-
tional domain using a combination of a radiation condition
and a Rayleigh damping region (Klemp and Durran, 1983).
The boundary condition on the velocity field at the top of
the computational domain is oui/oz = 0. This open bound-
ary treatment has been shown to be effective in allowing
turbulence-generated internal waves to freely leave the
computational domain (Taylor and Sarkar, 2007a).

2.1. Governing equations

Using the friction velocity, u*, the turbulent Ekman
layer depth, d = u*/f, and the outer layer temperature gra-
dient, dh/dz|1, the non-dimensional, spatially filtered gov-
erning equations can be written:

o!u
ot

þ !u "r!u ¼ $ 1

q0

rp0 þ f bk % ðU1bi $ uÞ

$ Ri(h
0bk þ 1

Re(
r2u$r " s; ð1Þ

oh0

ot
þ u "rh0 ¼ 1

Re(Pr
r2h0 $r " k; ð2Þ

r " u ¼ 0; ð3Þ

where

Re( ¼
u(d
m

; Ri( ¼ ag
dh
dz

j1
d2

u2(
¼ N 2

1
f 2

; Pr ¼ m
j
; ð4Þ

u* is the friction velocity, m is the molecular kinematic vis-
cosity, j is the molecular diffusivity, N1 is the outer layer
buoyancy frequency, and s and k are the subgrid-scale
stress and density flux, respectively. The parameters con-
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Fig. 1. Schematic: Benthic Ekman layer.
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sidered in this study are listed in Table 1. Density changes
are assumed to be caused by temperature variation in
water, motivating the choice of Prandtl number, Pr = 5.

3. Numerical method

Simulations have been performed using an algorithm
described in detail in Bewely et al. (2007). Since periodic
boundary conditions are applied in the horizontal direc-
tions, derivatives in these directions are treated with a
pseudo-spectral method, while derivatives in the vertical
direction are computed with second-order finite differences.
The low storage third-order Runge–Kutta–Wray method is
Smagorinsky model was used by for time-stepping and vis-
cous terms are treated implicitly with the Crank–Nicolson
method. It can be shown that the numerical scheme ensures
the discrete conservation of mass, momentum and energy
(Bewely et al., 1999). In order to prevent spurious aliasing
due to non-linear interactions between wavenumbers, the
largest 1/3 of the horizontal wavenumbers are truncated
using the 2/3 de-aliasing rule (Orszag, 1971). The vertical
resolution of the direct numerical simulation is shown in
Fig. 2 and compared to the Kolmogorov scale. The grid
spacing is less than three times the Kolmogorov scale
which should be sufficient for an accurate DNS (Moin
and Mahesh, 1998).

The subgrid-scale stress tensor, s in Eq. (1) is evaluated
using the dynamic mixed model (Zang et al., 1993; Vreman
et al., 1997), and a dynamic eddy diffusivity model is used
for the subgrid-scale heat flux, k:

sij ¼ $2CD2jSjSij þ duiuj $ buibuj ð5Þ

and

kj ¼ $2ChD2jSj oh
oxj

: ð6Þ

The Smagorinsky coefficients, C and Ch are evaluated using
the dynamic procedure. This is useful since it avoids an
empirical specification of the Smagorinsky coefficient and
has been shown to perform well for wall-bounded and den-
sity stratified flows (Armenio and Sarkar, 2002). The coef-
ficients are evaluated by applying a test filter to the
resolved velocity field and using the resolved fields and
the test-filtered fields together to estimate the subgrid-scale
stress and buoyancy flux. Specifically

C ¼ MijLij $MijHij

MklMkl
; ð7Þ

where

Lij ¼ duiuj $ buibuj; Mij ¼ 2D2 djSjSij $ 2bD2cjSjcSij ; ð8Þ

Hij ¼
dbuibuj $

bbu i
bbuj $ duiuj $duiuj

! "
; ð9Þ

and
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Mh

i L
h
i

Mh
jM

h
j

; ð10Þ

Table 1
Simulation parameters

Type Re* Ri* (Lx,Ly,Lz) (Nx,Ny,Nz) minðDþ
z Þ Dþ

x ¼ Dþ
y

DNS 960 0, 1000 (2d, 2d, 2.7d) (192,192,192) 1.4 10
Resolved LES 960 0, 1000 (2d, 2d, 3d) (96,96,96) 1.8 20
NWM–LES 960 0, 1000 (2d, 2d, 3d) (48,48,48) 19.2 40
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Fig. 2. Vertical grid spacing from the direct numerical simulations compared to 3g where g is the Kolmogorov scale.
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where

Lh
i ¼

chui $ bh bui ; Mh
i ¼ 2D2

d
jSj oh

oxi
$ 2bD2cjSj

coh
oxi

; ð11Þ

The test filter, denoted by b", is applied over the horizontal
directions only using the trapezoidal rule with a five-point
stencil.

A resolved LES is usually defined as a simulation that
resolves at least 80% of the energy everywhere in the flow
(Pope, 2000). Near solid boundaries, turbulent motions
scale with the viscous scale, dm = m/u*. Away from bound-
aries, the largest turbulent eddies are constrained by the
domain size, h. Therefore, the ratio of the filter size near
the wall to that necessary in the outer layer scales with
dm/h = m/(u*h) = 1/Re*. Even when considering a stretched
grid in the wall-normal direction, this places a strong con-
straint on the grid spacing for resolved LES of wall-
bounded flows at large Reynolds numbers.

In order to ease the grid resolution requirement and
allow simulations at a large Reynolds number, it is possible
to use a near-wall model in conjunction with the LES. The
model that we have used is a modification of that proposed
by Schumann (1975), Grotzbach (1987), and Piomelli et al.
(1989), and modified slightly for a rotating boundary layer.
This model uses an approximate boundary condition for
the horizontal velocity near the wall by predicting the wall
stress. Since a staggered grid is used in the vertical direc-
tion, the wall location is made coincident with the stream-
wise stress and the vertical velocity. The first horizontal
velocity point away from the wall is located at
z+(1) = 9.8 in wall units, and the near-wall grid spacing is
Dz+(1) = 19.2. The first gridpoint is nearer to the wall than
is common practice for near-wall models, and represents a
tradeoff between near-wall grid spacing and resolution in
the stratified boundary layer. If a grid spacing of 40+ wall
units were used, there would only be five gridpoints
between the wall and the top of the stratified boundary
layer at z = 0.2d. We have found that the location of the
first gridpoint does not affect the ability of the NWM–
LES to capture the expected log-law. Once the grid is deter-
mined, the plane average of the streamwise velocity at the
first point away from the wall is used to estimate the fric-
tion velocity by iteratively solving the expected mean loga-
rithmic law:

hjujið1Þ
u(

¼ 1

j
ln

zð1Þu(
m

# $
þ B; ð12Þ

where h|u|i(1) is the plane averaged horizontal velocity
magnitude evaluated at z(1), the first gridpoint away from
the wall, and we have used j = 0.41 and B = 5.2. Once the
friction velocity is obtained, the components of the plane-
averaged wall stress are estimated by specifying the angle
a0 between the wall-stress and the x-direction:

hsi13 ¼ q0u
2
( cosða0Þ; ð13Þ

hsi23 ¼ q0u
2
( sinða0Þ: ð14Þ

The surface stress angle a0 is estimated using the finite Rey-
nolds number theory of Spalart (1989) which gives
a0 = 20.6". The local wall stress is then estimated using
fluctuations in the resolved horizontal velocity at the first
gridpoint

s13ðx; yÞ ¼
uðx; y; 1Þ
huið1Þ

hsi13; ð15Þ

s23ðx; yÞ ¼ max
vðx; y; 1Þ
huið1Þ

hsi13;
vðx; y; 1Þ
hvið1Þ

hsi23
# $

: ð16Þ

The latter relation allows a smooth transition between the
non-rotating case when the wall stress is dominated by the
s13 component and an Ekman layer where the mean veloc-
ity and wall stress in the spanwise direction are non-zero.

When applying the NWM–LES with low vertical resolu-
tion, spurious grid oscillations can arise in the wall-normal
direction. In order to prevent this, a low-pass filter is
applied to the velocity field in the vertical direction after
each simulation time-step. A fourth-order compact filter
is used for this purpose with the filter width parameter
a = 0.48 (Lele, 1992) which gives a very sharp transfer
function so that only the highest wavenumbers are
removed.

We have initialized each simulation with a steady-state
temperature and velocity field from the large eddy simula-
tions of Taylor and Sarkar (2007a). The temperature and
velocity were interpolated onto the appropriate grid for
the DNS, resolved LES, and NWM–LES. Steady state
fields have been used in order to focus on the characteris-
tics of a fully-developed boundary layer as opposed to
the boundary layer formation. Each simulation was contin-
ued for about t = 3/f non-dimensional time units which
corresponds to about 8 h at a latitude of 45". Unless other-
wise noted, a Reynolds average, denoted by h"i will be
taken over horizontal planes and from tf = 1.5–3. Since
the lower wall is adiabatic but a uniform heat flux is pres-
ent in the outer layer, the thermal field does not reach a
fully steady state, and the mixed layer depth increases grad-
ually in time. In order to prevent smearing of the thin ther-
mocline that forms above the mixed layer, the thermal
profiles will not be averaged in time.

4. Results

4.1. Velocity structure

Before examining the performance of the LES in simu-
lating the thermal structure of the boundary layer, it is use-
ful to examine the mean velocity profiles. In constructing
the wall model for the NWM–LES, we have made the
assumption that the stratified and unstratified simulations
obey the same logarithmic law. Since gridpoints near the
wall are within the well-mixed layer, this seems reasonable,
but it should be confirmed using the DNS. Fig. 3 shows the
vertical shear normalized by the expected shear in the log-
region:
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/ ¼ jz
u(

dhui
dz

2

þ dhvi
dz

2
 !1=2

: ð17Þ

Based on this definition, when / = 1 the mean shear is in
agreement with the expected value from the logarithmic
law. As seen in Fig. 3a, the mean shear in the unstratified
DNS follows the logarithmic law scaling for approximately
0.05 6 z/d 6 0.4 and the resolved LES and to a lesser ex-
tent the NWM–LES are able to reproduce this profile. It
may be possible to improve the representation of the mean
velocity profile in NWM–LES using the adaptive stochastic
forcing technique described by Taylor and Sarkar (2007b).

Fig. 3b shows that there is a small region, 0.05 <
z/d < 0.1, where the stratified Ekman layer also has / ) 1.
Therefore, the assumed form of the near-wall model is rea-
sonable. It is also evident that the mean shear increases
dramatically in the thermocline when Ri* = 1000. The
resolved LES is able to capture this increase, but the
NWM–LES does not fully capture the maximum shear.
This is not surprising since, as we will see, the NWM–
LES also underestimates the temperature gradient in the
thermocline.

The individual components of the mean horizontal
velocity are shown in a hodograph in Fig. 4. As has been
observed for an Ekman layer with a stabilizing surface heat
flux, the presence of an outer layer stratification acts to
increase the cross-stream velocity. This can be seen by com-
paring Fig. 4a and b. It is interesting to note that the angle
of the Ekman spiral increases near the wall where the mean
temperature gradient is zero. Therefore, the effect of strat-
ification in this region appears to be non-local. The agree-
ment between the resolved LES and DNS is excellent, while
the NWM–LES over-estimates the cross-stream velocity in
the unstratified simulation.

A useful definition for the height of a turbulent Ekman
layer is the location where the streamwise Reynolds stress
reaches 10% of its maximum value (Taylor and Sarkar,
2008). The boundary layer height, defined using this criteria,
is shown in Fig. 5. One of the primary effects of the outer
layer stratification is to decrease the Ekman layer height,
as seen in this Figure. Both the resolved and NWM–LES
capture the decrease in the boundary layer height reason-
ably well, although this is slightly overestimated in the
resolved LES. The NWM–LES underestimates the
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boundary layer height, both with and without an external
stratification.

4.2. Thermal field

Since the lower wall is adiabatic and the molecular dif-
fusion of heat is small compared to the turbulent flux,

the heat content in the boundary layer is approximately
conserved. In addition, at some location far enough from
the boundary layer, the mean temperature profile is
unchanged from its initial state. As a result, when the tem-
perature profile mixes near the wall, the temperature gradi-
ent must increase above the mixed layer in order to return
the temperature to the initial state. When the flow is
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strongly stratified, the region with a non-zero turbulent
heat flux is limited by stratification. In this case, the tem-
perature gradient is large in a thermocline above the mixed
layer. The mean temperature field in the stratified bound-
ary layer can then be characterized by a three-layer struc-
ture with a well-mixed region near the wall, a strongly
stratified thermocline, and an outer layer were the temper-
ature gradient is equal to the initial value. This structure
can be seen in the plane-averaged temperature gradient at
t = 3/f, shown in Fig. 6b.

When Ri* = 0, we still consider a uniform temperature
gradient in the outer layer, but since the thermal and
momentum equations become decoupled, the temperature
is advected as a passive scalar. This allows us to evaluate
the ability of the LES model to simulate both passive
and active scalar mixing. The temperature profiles in both
the resolved and NWM–LES compare well with the DNS
when Ri* = 0. Comparing Fig. 6a and b, it is evident that
the mixed layer thickness is much smaller when
Ri* = 1000. In this case the mixed layer growth and the
temperature gradient in the thermocline are under-pre-
dicted by the NWM–LES, and to a lesser extent by the
resolved LES. When Ri* = 0 the large eddies on the scale

of the Ekman layer height are able to stir the temperature
field since they are unaffected by the fluid density. Since
there are relatively few of these large eddies in the domain,
the instantaneous plane averaged temperature gradient
shows more statistical noise when Ri* = 0.

An important difference between the DNS and LES
results is that both the resolved LES and the NWM–LES
underestimate the rate of entrainment of outer layer fluid
into the mixed layer. This can be quantified by comparing
the rate of increase of the temperature of the mixed layer
fluid. When the flow is strongly stratified and Ri* = 1000,
the rate of change of the mixed layer temperature is signif-
icantly underestimated in the LES. Specifically, d < h > /dt
in the mixed layer is 4.3 % 10$3, 3.3 % 10$3, and
2.1 % 10$3, in the DNS, resolved LES, and NWM–LES,
respectively, in units of dhhi/dz|1df. When Ri* = 0 and
temperature acts as a passive scalar, the LES entrainment
rate is in better agreement with the DNS.

The evolution of the mean temperature field can be writ-
ten in terms of the molecular and turbulent heat flux:

ohhi
ot

¼ o
oz

j
ohhi
oz

$ hh0w0i
# $

: ð18Þ
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J.R. Taylor, S. Sarkar / Int. J. Heat and Fluid Flow 29 (2008) 721–732 727



The right-hand side of Eq. (18) is dominated by the turbu-
lent heat flux in the mixed layer and by the molecular heat
flux above the thermocline. Since the heating of the mixed
layer fluid is under-predicted by each LES when
Ri* = 1000, it follows that the estimate of the turbulent

heat flux is also low. This is verified in Fig. 7. In both cases,
the subgrid-scale contribution is shown by a dashed line.
When Ri* = 0 nearly all of the heat flux is accounted for
by the resolved scales, while the subgrid-scale heat flux is
more significant when Ri* = 1000, particularly in the lower
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Fig. 8. Instantaneous visualization of the temperature field from DNS with Ri* = 1000. Perturbations from the plane mean are shown in shades of gray,
and white lines indicate isotherms.
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half of the mixed layer. The curve in Fig. 7b from Taylor
and Sarkar (2008) will be discussed in the conclusions
section.

A visualization of the temperature field from the DNS
with Ri* = 1000 is shown in Fig. 8. In the mixed layer,
small-scale overturns and filaments are visible. For com-

parison, at z = 0.2d the vertical grid spacing in the DNS,
resolved LES, and NWM–LES is 0.0058d, 0.012d, and
0.034d, respectively. Since the vertical grid spacing in the
NWM–LES at the top of the mixed layer is quite large,
many of the small-scale features that are visible will not
be resolved. Outside of the mixed layer, however, the

Fig. 9. Instantaneous visualization of the turbulent heat flux at z/d = 0.2, Ri* = 1000.
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characteristic scale of the temperature fluctuations increases
dramatically. In the outer layer, stratification is strong
enough to suppress turbulence, and temperature fluctua-
tions are associated with internal wave field that is induced
by eddies in the boundary layer. The properties of the inter-
nal wave field generated by a turbulent Ekman layer have
been examined in detail by Taylor and Sarkar (2007a).

The horizontal scales in the hh0w0i field are visualized in
Fig. 9 using a horizontal slice through z = 0.2d (the loca-
tion of maximum turbulent heat flux). At this location,
hh02i and hw02i from the resolved and NWM–LES compare
well with the DNS. As we have seen, however, the magni-
tude of hh0w0i is under-predicted by the LES. In Fig. 9, it is
apparent that many of the small-scale features that are seen
in the DNS are not present in the resolved or NWM–LES.
Since the LES is unable to resolve all of the scales, and the
subgrid-scale heat flux is negligible at this height, the plane
averaged turbulent heat flux is underestimated.

Since the turbulent heat flux is significantly under-repre-
sented by the LES, it seems likely that small-scale motions
contribute significantly to the turbulent heat flux at the top
of the boundary layer. The length scale associated with
density overturns can be estimated by the Ellison scale,

LE ¼ ðh02Þ1=2

dhhi=dz
: ð19Þ

The Ellison scale from the DNS, along with the vertical grid
spacing in each simulation are shown in Fig. 10. When
Ri* = 1000, density stratification limits the scale of turbu-
lent overturns, resulting in a much smaller Ellison scale
compared to that when Ri* = 0. In the DNS at
Ri* = 1000, at z = 0.2d, the Ellison scale is LE ’ 0.03d. At
this location, the gridspacing in the NWM–LES is (Dx,
Dy, Dz) = (0.04d, 0.04d, 0.03d) which clearly is not suffi-
ciently to resolve the density overturns. The gridspacing in
the resolved LES, at the same location, is roughly half of
the Ellison scale. Therefore, the resolved LES is also not
able to fully capture turbulent eddies at the Ellison scale,
and underestimates the turbulent heat flux (see Fig. 7).

The turbulent Prandtl number, defined as the ratio of
the turbulent viscosity and diffusivity can be written:

PrT ¼ mT
jT

¼
hu0w0i2 þ hv0w0i2

! "1=2

$hh0w0i
dhhi=dz
dhjuji=dz

: ð20Þ

In both the stratified and unstratified DNS, the mixed re-
gion is characterized by PrT ) 1 as has been previously re-
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Fig. 11. Turbulent Prandtl number.
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ported for turbulence in a low stratification environment
(Schumann and Gerz, 1995). The low value of the turbulent
Prandtl number near the wall in the LES is directly related
to an underestimate of the mean temperature gradient. In
the DNS, the temperature gradient only vanishes in a thin
viscous layer near the wall. In each LES, the temperature
gradient is much smaller near the wall. Specifically, at
z/d = 0.05 when Ri* = 1000, the temperature gradient nor-
malized by the outer layer value is 0.0136, 0.0029, and
0.00094 in the DNS, resolved LES, and NWM–LES,
respectively (see Fig. 11).

5. Conclusions

We have conducted simulations of an Ekman layer
formed when a steady, linearly stratified fluid flows over
a smooth boundary in the absence of a surface heat flux.
The boundary layer thickness is strongly limited by the
outer layer density stratification. A DNS was used to eval-
uate LES at two different resolutions with emphasis placed
on the thermal structure of the boundary layer. We have
found that when the temperature is treated as a passive sca-
lar, both low and high resolution LES compare well with
the DNS. However, when the outer layer is stratified, the
turbulent heat flux in the boundary layer is significantly
under-predicted by the LES. Flow visualizations revealed
that small-scale motions that are not resolved by the
LES, nor represented in the subgrid-scale model, are
responsible for the entrainment of fluid into the boundary
layer in the DNS. The Ellison scale provides a good esti-
mate for the turbulent scales responsible for the entrain-
ment and indicates that the entrainment motions are
much smaller when the flow is stably stratified.

The dynamic mixed model used for the subgrid-scale
terms does not adequately capture the subgrid-scale turbu-
lent heat flux at the top of the mixed layer. One solution to
this problem is to increase the resolution in the LES so that

the Ellison scale, LE ¼
ffiffiffiffiffiffiffiffiffi
hh02i

q
=dhhi=dz, is resolved. Since

the Ellison scale does not scale with the Reynolds number,
and since the LES captures the mean velocity profile and
the boundary layer height well, it is still possible to use this
subgrid-scale model for a high Reynolds number LES. The
overturning scale at the top of the mixed layer is limited by
the potential energy needed to entrain the relatively light
fluid from the pycnocline into the mixed layer. This scale
can therefore be expected to scale with the Richardson
number but not the Reynolds number of the flow. A
NWM–LES with a dynamic Smagorinsky model was used
by Taylor and Sarkar (2008) to simulate a stratified bottom
Ekman layer at a field-scale Reynolds number of about
Re* = 100,000 with Nx,Ny,Nz = 96,96,201 gridpoints. The
vertical resolution of these simulations in terms of the Elli-
son scale (not the Kolmogorov scale) was equivalent to
that from the present DNS shown in Fig. 10. The turbulent
heat flux from the simulation of Taylor and Sarkar (2008)
with Ri* = 1000 is included in Fig. 7. Despite the fact that

the Reynolds number is much larger, the turbulent heat
flux from these simulations shows excellent agreement with
the DNS at the same Richardson number.

Thus far, we have considered non-dimensional quantities.
It is useful to estimate relevant dimensional parameters for a
typical oceanic bottom boundary layer. If the free stream
velocity is taken to be U1 = 5 cm/s and with u*/U1 =
0.05, f = 10$4 s$1, and m = 10$6 m2/s, then d = 25 m and
Re* = 62,500. Clearly this Reynolds number is much larger
than what we have considered here. Since u*/U1 does not
depend strongly on the Reynolds number, if we keep the vis-
cosity and the Coriolis parameter constant, Re* = 960 is
equivalent to a free stream velocity of U1 = 0.077 cm/s.
The Richardson number Ri* = 1000 implies that N/f =
31.6 so that the free stream buoyancy frequency is 1.86
cycles/h. With a thermal expansion coefficient of a = 10$4

"C$1, this implies that the background temperature gradient
is 0.01 "C/m. Although this temperature gradient is much
smaller than is typically seen in engineering flows, buoyancy
effects are still very important since the length scales are typ-
ically much larger in geophysical flows. In the deep ocean,
buoyancy effects are significant since the velocities tend to
be very low while the dynamical length-scales are large.
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