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ABSTRACT

A stratified bottom Ekman layer over a nonsloping, rough surface is studied using a three-dimensional
unsteady large eddy simulation to examine the effects of an outer layer stratification on the boundary layer
structure. When the flow field is initialized with a linear temperature profile, a three-layer structure de-
velops with a mixed layer near the wall separated from a uniformly stratified outer layer by a pycnocline.
With the free-stream velocity fixed, the wall stress increases slightly with the imposed stratification, but the
primary role of stratification is to limit the boundary layer height. Ekman transport is generally confined to
the mixed layer, which leads to larger cross-stream velocities and a larger surface veering angle when the
flow is stratified. The rate of turning in the mixed layer is nearly independent of stratification, so that when
stratification is large and the boundary layer thickness is reduced, the rate of veering in the pycnocline
becomes very large. In the pycnocline, the mean shear is larger than observed in an unstratified boundary
layer, which is explained using a buoyancy length scale, u*/N(z). This length scale leads to an explicit
buoyancy-related modification to the log law for the mean velocity profile. A new method for deducing the
wall stress based on observed mean velocity and density profiles is proposed and shows significant im-
provement compared to the standard profile method. A streamwise jet is observed near the center of the
pycnocline, and the shear at the top of the jet leads to local shear instabilities and enhanced mixing in that
region, despite the fact that the Richardson number formed using the mean density and shear profiles is
larger than unity.

1. Introduction

The surface wind-driven Ekman layer forms when
frictional terms contribute to the leading-order momen-
tum balance, leading to an ageostrophic flow. Because
the velocity gradients, and hence the size of the viscous
stresses, are strongest at the sea surface, the ageo-
strophic component of the flow decreases with depth,
leading to a turning of the mean velocity profile known
as the Ekman spiral. The bottom Ekman layer, formed
as a mean current flow over the seafloor, is directly
analogous to the surface wind-driven Ekman layer. In a
surface Ekman layer, the Ekman transport (the vertical
integral of the Ekman layer velocity) is directed 90° to
the right of the wind stress in the Northern Hemi-
sphere. In a bottom Ekman layer, the Ekman transport
is also directed to the right of the bottom stress. How-
ever, because the stress at the seafloor is in the opposite

direction of the geostrophic current, the Ekman trans-
port in the bottom boundary layer is 90° to the left of
the geostrophic current, and the Ekman spiral turns
counterclockwise with increasing depth in the Northern
Hemisphere. Also like the surface mixed layer, the bot-
tom boundary layer is a site of intense turbulent dissi-
pation and mixing (Garrett et al. 1993; Thorpe 2005).
Together with the surface mixed layer, the bottom
boundary layer is a major “hotspot” for diapycnal mix-
ing in the ocean (Thorpe 2005). It has long been hy-
pothesized that mixing of the density field in bottom
boundary layers may be important to abyssal mixing
through along-isopycnal advection out of the boundary
layer and boundary layer detachment (Munk 1966;
Armi 1978). In addition, through frictional loss and Ek-
man pumping, the bottom boundary layer provides an
important momentum sink for deep currents and me-
soscale eddies.

Three-dimensional numerical simulations of strati-
fied bottom Ekman layers have been described previ-
ously by several authors but, in all cases, stratification
was applied with a cooling heat flux at the lower wall,
akin to the stable atmospheric boundary layer. Cole-
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man et al. (1992) performed a direct numerical simula-
tion (DNS) of a turbulent Ekman layer with a friction
Reynolds number of Re* ! 340 and a constant heat
flux at a smooth, no-slip lower wall. They compared the
stratified Ekman layer to a previous study of an un-
stratified Ekman layer (Coleman et al. 1990) and found
that the surface heat flux limits the transport of turbu-
lent kinetic energy into the outer layer and broadens
the Ekman spiral. Shingai and Kawamura (2002) con-
sidered the same flow at a friction Reynolds number
Re* ! 428.6. They found that the boundary layer thick-
ness defined in terms of either the momentum or the
buoyancy flux decreases sharply with the application of
a surface heat flux. In general, these studies imply that
when a strong, stable stratification is applied to the wall
under an Ekman layer, stratification acts to suppress
the turbulent production in the boundary layer, increas-
ing the turning angle and decreasing the boundary layer
height.

In the ocean, with the exception of isolated hotspots,
the seafloor can be assumed to be adiabatic. Changes in
density then affect the Ekman layer through the strati-
fication associated with the ambient water. Because a
mixed layer can be found near the seafloor throughout
most of the ocean, stratification can be expected to
affect the boundary layer in a much different manner
than in a typical stable atmospheric boundary layer,
where a heat flux is often present at the ground. By
comparing the expected unstratified turbulent Ekman
layer depth to the thickness of bottom mixed layers in
field data, it is apparent that stratification often limits
the boundary layer height. In an unstratified Ekman
layer, the boundary layer height is expected to be ap-
proximately h ! 0.5 u*/f, where u* is the friction ve-
locity and f is the Coriolis parameter. Typical midlati-
tude values, say u* ! 1 cm s"1 and f ! 10"4 s"1, imply
an unstratified Ekman layer depth of about h ! 50 m.

In many cases, especially in a coastal environment
where the stratification is typically large, the observed
mixed layer heights are often much smaller than 50 m.
For example, Perlin et al. (2007) observed a mixed layer
thickness of about 10 m in an Ekman layer over the
Oregon shelf. It is not fully clear how the Ekman layer
structure changes when the Ekman layer height is lim-
ited by stratification, and this will be one focus of the
present study.

The bottom boundary layer plays an important role
in the drag induced on mean currents and mesoscale
eddies. To obtain an accurate prediction of the ocean
state, numerical ocean models must represent this loss
of momentum. However, due to computational restric-
tions on the grid size, this is not straightforward. To
accurately apply the no-slip boundary condition at the

seafloor, a numerical model must resolve the viscous
sublayer. Because the viscous sublayer in the ocean is
thin, O(0.1–10 cm) (Caldwell and Chriss 1979), numeri-
cal models are clearly unable to resolve this region, and
an approximate boundary condition must be used. It is
common practice to model the seafloor stress, which
then provides a Neumann boundary condition for the
horizontal momentum equations. For example, the Re-
gional Ocean Modeling System (ROMS) provides three
methods for modeling the bottom stress based on the
velocity at the lowermost grid cell: linear and quadratic
drag coefficients and a law-of-the-wall using a specified
bottom roughness. A general form for the bottom stress
using the linear drag coefficient #1 and the quadratic
drag coefficient #2 is

!w,x

"0
! $#1 % #2&u2 % $2'u,

!w,y

"0
! $#1 % #2&u2 % $2'$, $1'

where (w,x and (w,y are the zonal and meridional com-
ponents of the bottom stress, respectively. Typical val-
ues of the bottom stress coefficients are #1 ! 2 ) 10"4

m s"1 and #2 ! 0 for linear bottom drag and #1 ! 0 and
#2 ! 2 ) 10"3 for quadratic bottom drag (Haidvogel
and Beckmann 1999).

The friction velocity u* ! &(w/*0 is often used in
scaling arguments for both bulk and turbulent proper-
ties, such as the boundary layer height, turbulent dissi-
pation, Reynolds stresses, etc. Despite its first-order
relevance, there remains some uncertainty about how
to estimate the wall stress from observational data, es-
pecially when the velocity profile is affected by wall
roughness and stratification. A common method used
to evaluate the friction velocity is the so-called profile
method (Johnson et al. 1994), which utilizes the classi-
cal law-of-the-wall (see, e.g., Pope 2000). Using this
method, the friction velocity and wall roughness z0 are
determined by fitting the observed velocity profile to
the logarithmic profile

|u| !
u*
%

ln! z
z0
", $2'

where |u| is the horizontal velocity magnitude and + !
0.41 is the von Kármán constant.

Johnson et al. (1994) applied this method to estimate
the friction velocity at the bottom of the Mediterranean
outfall plume. They found that estimates of the friction
velocity depended on how far away from the bottom
the fit was applied, even when restricted to the bottom
mixed layer. This implies that the standard law-of-the-
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wall was not valid throughout the bottom mixed layer.
Dewey et al. (1988) compared several methods for es-
timating the bottom stress using microstructure profiles
over a continental shelf. They found that the wall stress
estimated using the profile method was a factor of 4.5
larger than that estimated using the dissipation method,
with the friction velocity given by

u* ! "!"z#1#3, "3#

where again $ ! 0.41 is the von Kármán constant. The
authors speculated that this discrepancy may be the
result of form drag induced by local bedforms. Stahr
and Sanford (1999) obtained velocity and dissipation
measurements in the North Atlantic deep western
boundary current and similarly found that the wall
stress estimated from the profile method was 3 times
larger than the wall stress estimated using the dissipa-
tion method.

Perlin et al. (2005) also found that the profile method
gave large values of the wall stress compared to the
dissipation method and proposed that the elevated
mean shear could be explained by the influence of
stratification on the boundary layer structure. They
proposed that when the local stratification is suffi-
ciently large, stratification, not distance from the wall,
limits the size of the largest turbulent eddies. To quan-
tify this hypothesis, they used an empirical function in-
volving the Ozmidov scale LOz ! (%/N3)1/2, where % is
the turbulent dissipation rate. Estimates of the wall
stress using this method, which will be referred to here
as the “modified law-of-the-wall,” gave much better
agreement with the dissipation method. Because direct
field observations of dissipation require instruments ca-
pable of capturing finescale velocity fluctuations, it
would be desirable to have an accurate method for es-
timating the wall stress from more commonly observed
quantities such as the velocity and density profiles.

Weatherly and Martin (1978) considered a stratified
Ekman layer using a one-dimensional numerical model
and the Mellor–Yamada level-II closure to parameter-
ize turbulent mixing. They assumed that the flow out-
side the boundary layer was uniformly stratified,
steady, and in geostrophic balance; the same assump-
tions that will be made in the present study. Near the
wall, a mixed layer formed, which was separated from
the outer layer by a strongly stable pycnocline. They
found that the thickness of the bottom Ekman layer
was strongly limited by the presence of a stable strati-
fication outside the boundary layer. When the outer
layer buoyancy frequency was N&/f ! 200, they found
that the angle made by the surface stress relative to the
free-stream velocity was '0 ! 27°, nearly twice the

value in an unstratified boundary layer of '0 ! 15°.
Most of the change in the turning angle occurred in the
pycnocline, and the flow in the mixed layer was nearly
unidirectional. Perlin et al. (2007) observed a lower
turning angle of 15° ( 5° in a stratified bottom Ekman
layer over the Oregon shelf. In agreement with the
simulations by Weatherly and Martin (1978), they
found that nearly all of the Ekman transport occurs in
the relatively thin bottom mixed layer.

Weatherly and Martin (1978) proposed a scaling
for the height of a stratified turbulent Ekman layer
given by

hWM ! A
u*
f !1 )

N$
2

f 2 "*1#4

, "4#

where A # 1.3 as determined empirically by the one-
dimensional model results. In the limit of an unstrati-
fied Ekman layer, Eq. (4) gives a significantly larger
height than the conventional value of h ! 0.4 * 0.5+.
This is a result of the choice by Weatherly and Martin
to use the criteria that the turbulent kinetic energy be-
comes zero at the top of the boundary layer. Choosing
the location where the velocity magnitude becomes
equal to the free stream would have yielded a boundary
layer height nearly a factor of 3 smaller than that ob-
tained using the turbulent kinetic energy (TKE) criteria
when the outer flow is unstratified. A somewhat differ-
ent scaling law was proposed by Zilitinkevich and Esau
(2002):

hZE ! CR

u*
f !1 )

CR
2 CuN

CS
2

N$

f "*1#2

, "5#

where the constants CR ! 0.5 and CuN/C2
S ! 0.6 were

determined by fitting to data from a large eddy simu-
lation (LES). The functional form in Eq. (5) was found
to be an adequate fit to field observations by Zil-
itinkevich and Baklanov (2002).

When a stable stratification is found outside of a tur-
bulent well-mixed region, internal waves generated by
the interaction between the turbulent eddies and the
stratification are possible. Turbulence-generated inter-
nal waves have been found in laboratory experiments
and numerical simulations in a wide variety of flows:
shear layers, gravity currents, boundary layers, etc. Tay-
lor and Sarkar (2007a) observed turbulence-generated
internal waves in numerical simulations of a stratified
Ekman layer over a smooth wall at a modest Reynolds
number. They found that the vertical energy flux asso-
ciated with the upward-propagating internal waves was
small compared to the integrated boundary layer dissi-
pation but was of the same order as the integrated
buoyancy flux. Because the buoyancy flux is respon-
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sible for the transfer of turbulent kinetic energy to the
potential energy field, this implies that the energy ra-
diated by internal waves is comparable to that used to
mix the background density field. As in many previous
studies, they found that the waves propagating through
the outer layer were associated with a relatively narrow
band of frequencies leading to vertical propagation
angles between 30° and 60°. Because the waves are
generated in a turbulent region with a wide range of
spatial and temporal scales, this result is remarkable.
The authors described a model based on viscous ray
tracing that was used to predict the decay in amplitude
of a wave packet after it had traveled a given distance
from the source. They found that this relatively simple
linear model was able to capture many characteristics
of the observed frequency spectrum of the internal
waves in the outer layer, including the range of domi-
nant propagation angles.

This paper will be organized as follows: the govern-
ing equations and physical approximations are dis-
cussed in section 2, and the numerical method used to
evolve the governing equations is presented in section
3. Results from the simulations will be separated into
several sections: evolution of the mean density and ve-
locity profiles will be discussed in section 4, boundary
layer turbulence will be discussed in section 5, methods
for estimating the friction velocity from field data will
be evaluated in section 6, and turbulence-generated in-
ternal waves will be considered in section 7.

2. Formulation
The turbulent Ekman layer considered here is

formed when a steady flow in geostrophic balance en-
counters a nonsloping, adiabatic lower wall, as illus-
trated in Fig. 1. The primary objective of this study is to
consider a controlled environment in which we can ex-
amine the influence of the outer layer stratification on
a turbulent Ekman layer. Therefore, we make several
simplifying approximations. The free stream is assumed
to be in geostrophic balance and aligned with the x axis.
The seafloor is represented by a nonsloping, rough sur-
face. The roughness elements are too small to be re-
solved directly by the grid, but their effect is param-
eterized through a near-wall model. The lateral bound-
aries are periodic, which is consistent with the
assumption that the flow is statistically homogeneous in
the horizontal plane and that the domain is large
enough so that the flow is decorrelated over a distance
equal to the domain size. In outer units, D ! U"/f, the
domain size is 0.108D # 0.108D # 0.0405D in the x, y,
and z directions, respectively. If we assume that U" !
0.0674 m s$1 and f ! 10$4 rad s$1, then D ! 674 m and
the domain size is 72.8 m # 72.8 m # 27.3 m. As a result

of the horizontal periodicity, the mean vertical velocity
must be zero. Therefore, the features of oceanic bound-
ary layers owing to Ekman pumping/suction driven by
large-scale horizontal gradients in the outer flow will
not be present here.

The goal of an LES is to accurately solve a low-pass-
filtered version of the Navier–Stokes equations. Be-
cause the filtered version of the nonlinear advection
terms involves the total and filtered velocity fields, we
are left with fewer equations than unknowns, the well-
known turbulence closure problem. A model is then
necessary to write the residual stresses in terms of the
filtered quantities. After normalizing with the free-
stream velocity U", the length scale, D ! U"/f, and the
outer layer density gradient, d%/dz", the LES-filtered
governing equations can be written as

!u
!t

& u " !u ! $
1
#0

!p$ & f k̂ # 'ı̂ $ u (

$ Ri%
#$

#0
k̂ &

1
Re%

!2 u $ ! " &, '6(

!#$

!t
& u " !#$ !

1
Re%Pr

!2#$ $ ! " ", '7(

! " u ! 0 '8(

where the Reynolds number, Richardson number, and
Prandtl number are defined by

Re% !
U%D

'
, Ri% ! $

g
#0

d#

dz%

D2

U%
2 , Pr !

'

(
, '9(

%0 is the constant density used to define the momentum
using the Boussinesq approximation, ) is the molecular
kinematic viscosity, * is the molecular diffusivity, and #
and " are the subgrid-scale stress and density flux, re-

FIG. 1. Schematic of computational model. Dimensional param-
eters can be obtained by assuming U" ! 0.0674 m s$1 and f !
10$4 rad s$1. The domain size is 72.8 m # 72.8 m # 27.3 m. Three
values of outer layer stratification are considered: N"/f ! 0, 31.6,
and 75.
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spectively. The density and pressure have been decom-
posed into a plane average plus a fluctuation; that is,
! " #!$ % !&. The hydrostatic pressure gradient and the
plane-averaged buoyancy force are in balance and do
not appear in Eq. (6). An alternative normalization can
be carried out using the friction velocity u* " '(w/!0.
This leads to the friction Reynolds and Richardson
numbers:

Re* "
u*!

"
, Ri* " )

g
#0

d#

dz$

!2

u2
*

"
N$

2

f 2 , ! "
u*
f

.

*10+

Relevant input and output nondimensional parameters
are listed in Table 1. The dimensional parameters U,,
N,, f, -, and the roughness length scale z0 are inputs to
the simulations. Note that Re, is the same for each
simulation, but the drag coefficient depends on the
outer layer stratification, and hence the friction Reyn-
olds number varies between each case. We have per-
formed simulations at three different values of Ri*,
equivalent to changing the free-stream density gradi-
ent. For comparison with oceanographic conditions, ob-
servations of the bottom boundary layer over the Or-
egon shelf by Perlin et al. (2007) provide estimates of
Re* " 4 . 104 ) 8 . 105 and N,/f " 75. Therefore,
both the Reynolds numbers and stratification levels
considered in the present study are comparable with
the field data of Perlin et al. (2007). To provide dimen-
sional scalings for our simulations, we will use U, "
0.0674 m s)1, f " 10)4 s)1, and - " 10)6 m2 s)1, which,
assuming that u*/U, " 0.049, yields / " u*/f 0 33 m.
The applied roughness length scale z0 " 0.16 cm is
consistent with observations by Perlin et al. (2005), who
found that z0 " 0.05–2 cm, depending on the method
used to infer the wall stress.

3. Numerical methods

Simulations have been performed using a computa-
tional fluid dynamics solver developed at the University
of California, San Diego. The algorithm and numerical
method are described in detail in Bewley (2008). Be-
cause periodic boundary conditions are applied in the
horizontal directions, derivatives in these directions are

computed using a pseudospectral method, while deriva-
tives in the vertical direction are computed with sec-
ond-order finite differences. Time stepping is accom-
plished with a mixed explicit/implicit scheme using
third-order Runge–Kutta and Crank–Nicolson. It can
be shown that the numerical scheme ensures the dis-
crete conservation of mass, momentum, and energy. To
prevent spurious aliasing due to nonlinear interactions
between wavenumbers, the largest 1/3 of the horizontal
wavenumbers are set to zero, the so-called 2/3 de-
aliasing rule (Orszag 1971).

To prevent the formation of spurious energy near the
grid scale, a low-pass spatial filter is applied to the ve-
locity and temperature fields. A fourth-order compact
filter with a sharp wavenumber cutoff (Lele 1992) is
applied in the vertical direction every 10 time steps. An
open boundary condition is implemented at the top of
the computational domain to prevent spurious reflec-
tions of upward-propagating internal gravity waves.
The combination of a radiation boundary condition
(Durran 1999) and a sponge-damping region that is
used here was also used by Taylor and Sarkar (2007a),
who found that only 6% of the wave energy was re-
flected back from the open boundary.

The subgrid-scale stress tensor ! and the subgrid-
scale density flux " in Eqs. (6) and (7) are evaluated
using the dynamic Smagorinsky model. The Smagorin-
sky coefficients, C and C!, are evaluated using the dy-
namic procedure as formulated by Germano et al.
(1991). As in Germano et al. (1991), the Smagorinsky
coefficients have been averaged over horizontal planes.
After averaging, if either of the Smagorinsky coeffi-
cients is negative, it is truncated to zero. This effectively
prevents backscatter of energy from the subgrid scales
to the resolved scales and helps to ensure numerical
stability (Armenio and Sarkar 2002). While it is more
computationally intensive than other methods, the dy-
namic Smagorinsky model has been chosen here be-
cause it avoids the empirical specification of the Smag-
orinsky coefficient and has been shown to perform well
for wall-bounded and density-stratified flows (e.g., Ar-
menio and Sarkar 2002; Taylor et al. 2005).

To ensure accuracy of the solution obtained using
LES, it is generally necessary to resolve the turbulent
scales responsible for a substantial portion, say, 150%,

TABLE 1. Relevant physical parameters. Re,, N,/f, Pr, and z0 are input parameters and the other parameters are outputs of the
numerical model.

Re, Re* Ri* N,/f Pr u*/U, z0// 20

4.55 . 107 1.08 . 105 0 0 0.0488 4.80 . 10)5 15.4°
4.55 . 107 1.09 . 105 1000 31.6 5–10 0.0490 4.78 . 10)5 18.9°
4.55 . 107 1.12 . 105 5625 75 0.0497 4.71 . 10)5 24.8°
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of the turbulent kinetic energy. Near walls, this crite-
rion becomes increasingly stringent as the Reynolds
number increases. To avoid the need to resolve the very
small turbulent motions near the lower wall, we have
used a near-wall model to estimate the wall stress based
on the resolved velocity at the first grid point. We have
used a model proposed by Marusic et al. (2001), which
Stoll and Porte Agel (2006) found works well for high
Reynolds number, rough wall boundary layers. To com-
pensate for known deficiencies in the Smagorinsky LES
model at very large Reynolds numbers, the near-wall
model was augmented by a novel adaptive stochastic
forcing procedure. The forcing amplitude is small, less
than 6% of !w/!t, and limited to the first nine grid
points near the wall. This technique is described in de-
tail and validated in Taylor and Sarkar (2007b).

The flow has been discretized using 128 grid points in
the horizontal directions and 201 points in the vertical
direction. The horizontal grid spacing in wall units was
"#

x $ "#
y $ 1856 before dealiasing. The minimum ver-

tical grid spacing, which occurs at the lower wall, was
"z# (1) $ 121, while the maximum grid spacing is "#

z $
1075, or "z /D $ 4.86 % 10&4. The first grid point, where
the near-wall model is applied, was located 60.7 wall
units away from the wall, which is within the expected
logarithmic region. The grid spacing at the top of the
mixed layer is always sufficient to resolve the local El-
lison scale, defined as

LE $
'!"2(1#2

d)!*#dz
. '11(

It has been found by Taylor and Sarkar (2008) that the
Ellison scale provides a reasonable estimate for the
scale of the turbulent eddies that are primarily respon-
sible for entrainment in to the bottom mixed layer. Re-
solving the Ellison scale at the top of the boundary
layer is therefore necessary in order to capture the
growth of the mixed layer due to turbulent entrainment
(Taylor and Sarkar 2008). The vertical grid spacing and
the Ellison scale for each of the stratified simulations
presented here are shown in Fig. 2. The asterisks mark
the location where the local Reynolds stress is 10% of
its maximum value, which provides a good estimate for
the boundary layer height.

To obtain an initial condition for the velocity field, a
low Reynolds number unstratified simulation was con-
ducted until the flow reached a steady state. The veloc-
ity field from this simulation was then interpolated onto
a finer grid and a simulation at a higher Reynolds num-
ber was continued until all transients had decayed. The
stratified simulations were initialized using the steady-

state unstratified velocity field and an undisturbed,
piecewise-linear temperature profile. The initial tem-
perature profile has a relatively thin mixed layer with a
thickness of about z ! 0.04+. This was done so that the
stochastic forcing, mentioned above, would not pro-
duce spurious internal waves by forcing a stratified re-
gion. For z , 0.08+, the temperature profile was set to
- $ zd-/dz|., and for 0.04 / z/+ / 0.08, a linear profile
was used to make the integrated heat content over the
domain the same as if - $ zd-/dz|. everywhere. Each
stratified simulation was run for about tf $ 1.5 to allow
the unstratified turbulence levels to adjust to the im-
posed stratification. This creates a better initial velocity
field, and the temperature field was then reset to the
piecewise-linear profile. The time at which the tem-
perature field was reset will be referred to as t $ 0.

4. Mean boundary layer structure

The time history of the plane-averaged temperature
gradient is shown in Fig. 3. After the flow is initialized,
the mixed layer near the wall grows rapidly. As the flow
develops, a strongly stratified pycnocline forms above
the mixed layer. It can be shown that if there is no net
heat flux into the domain (which is a good approxima-
tion given that the molecular heat flux through the top
of the domain is small), then a pycnocline is necessary
to maintain heat conservation after the formation of a
mixed layer. At the start of each stratified simulation,
two distinct pycnoclines are visible for a short time, one
above the bottom mixed layer and another above a

FIG. 2. Vertical grid spacing and the Ellison scale. Asterisks
mark the top of the boundary layer, defined as the location where
the local Reynolds stress is 10% of its maximum value.
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region where the residual motions from the initial ve-
locity field mix the temperature field. Eventually these
pycnoclines merge, and the resulting single pycnocline
gradually moves away from the wall as the mixed layer
grows. In the case with N!/f " 75, the pycnocline has a
larger stratification, 4 times the outer layer value, com-
pared to the case with N!/f " 31.6. After about tf " 6,
the temperature fields in both stratified simulations
reach a quasi-steady state where the temperature gra-
dient in the pycnocline does not grow further and the
mixed layer growth is relatively slow.

Two averaging methods will be used for velocity- and
temperature-dependent fields. The Reynolds average,
denoted by angle brackets, will be taken as an average
over a horizontal plane and in time. To remove any bias
due to inertial oscillations, averages are taken over one
inertial period after the flow has reached a quasi-steady
state. However, because the mixed layer thickness con-
tinues to increase in time, albeit slowly, temporal aver-
ages are not appropriate for the thermal fields and
would, for example, lead to a smearing out of the pyc-
nocline. Temperature will therefore not be averaged in
time, but the plane average of the temperature-depen-
dent fields will be taken at the time corresponding to
the center of the Reynolds average window, unless oth-
erwise noted.

The plane-averaged temperature profiles after the
flow that have reached quasi-steady state are shown in
Fig. 4a. Both profiles correspond to a time t " 9.4/f after

initializing the temperature field. The components of
the Reynolds-averaged horizontal velocity are shown in
Fig. 4b. Compared to the temperature profiles, it is
apparent that most of the Ekman transport is confined
to the mixed layer. The Ekman layer height is reduced
by the outer layer stratification at a level that is quan-
titatively consistent with the scaling law of Zilitinkevich
and Esau (2002), given in Eq. (5). The magnitude of the
cross-stream velocity increases when the outer layer is
stratified, resulting in a broadening of the Ekman spi-
ral, as shown in Fig. 5. It is interesting to note that
although the density gradient is zero near the lower
wall, the surface turning angle #0 " tan$1(%y/%x) in-
creases with the outer layer stratification, as listed in
Table 1. The angle of Ekman veering, defined by

! " tan$1! &"'
&u'", (12)

is shown as a function of z/* in Fig. 6. When the flow is
unstratified, the turning of the mean velocity occurs
gradually throughout the boundary layer. The rate of
turning in the mixed layer does not depend strongly on
the outer layer stratification, and when the boundary
layer height decreases significantly, the rate of turning,
d#/dz, becomes very large in the pycnocline.

Despite the fact that the boundary layer height
changes significantly, the Ekman transport is nearly in-
dependent of the outer layer stratification. An expres-

FIG. 3. Evolution of the plane-averaged temperature gradient.
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sion for the Ekman transport can be found by integrat-
ing the mean streamwise momentum equation. Assum-
ing that the mean flow is steady, and neglecting the
molecular viscosity,

!
0

!

!"" dz #
u2
*
f

cos$#0%. $13%

As seen in Table 1, both u*/U&, and '0 increase with
N&/f. Their effect partially cancels, so that the Ekman
transport normalized by U& and f is nearly independent
of N&. Specifically, evaluation of the right-hand side of
Eq. (13) yields a transport of 0.107 m2 s(1, 0.105 m2 s(1,
and 0.101 m2 s(1 for N&/f # 0, 31.6, and 75, respectively,
where the transport has been made dimensional by tak-
ing U& # 0.0674 m s(1 and f # 10(4 rad s(1. The same
result could be obtained by numerically integrating the
cross-stream velocity profiles.

As has been found in previous studies, the large den-
sity gradient at the top of the boundary layer coincides
with an increase in the mean shear. The temperature
gradient normalized by the outer layer value is shown
in Fig. 7a, and the Reynolds-averaged velocity and
shear profiles are shown in Figs. 7b–c. A peculiar fea-
ture of the mean velocity profile when N&/f # 75 is that

the mean velocity and the mean shear are maximum at
the same location near the center of the pycnocline. It
can be shown that this is the result of the rapid rate of
veering that occurs in the pycnocline in this case. Using
the definition of the Ekman veering angle, the square of
the mean shear can be written as

"d!u"
dz #2

) "d!""
dz #2

# "d!|u|"
dz #2

) !|u|"2"d#

dz#2

, $14%

where |u| # *u2 ) +2. At the center of the pycnocline,
the first term on the right-hand side is zero because the
velocity magnitude |u| is maximum at this location.

FIG. 5. Mean velocity hodograph showing the Ekman spiral.

FIG. 4. (a) Instantaneous plane-averaged temperature profiles. Thick lines show the profiles
at the center of the velocity- averaging window; thin lines show the profiles at the start and end
of the averaging window. (b) Plane and time-averaged horizontal velocity components, aver-
aged over one inertial period.
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However, because the Ekman veering rate is very large
at this location, the second term leads to a local maxi-
mum of the mean shear in the pycnocline. Most of the
enhanced shear in the lower portion of the pycnocline is
due to the spanwise shear, while the streamwise shear
dominates in the upper portion of the pycnocline.

Coleman (1999) showed that in an unstratified tur-
bulent Ekman layer, the mean velocity magnitude
should follow the classical logarithmic law (or law-of-
the-wall). The law-of-the-wall is expected to hold in a
region far enough from the wall where viscosity can be
neglected, but near enough to the wall so that the
boundary layer depth is not felt. In this case, the only
relevant length scale must be the distance from the wall,
so that

|d!u"
dz | #

u*
l

, $15%

where l # &z and & is the von Kármán constant that is
empirically found to be about 0.41. The Reynolds-
averaged horizontal velocity magnitude is plotted in
Fig. 8 on a semilogarithmic scale. Very near the wall, all

cases are in reasonably good agreement with the un-
stratified logarithmic law. Deviations from the logarith-
mic velocity profile in the cases when stratification is
present can be seen clearly by plotting the normalized
velocity gradient

! #
"z
u*

|d!u"
dz |. $16%

The quantity ' can be interpreted as the ratio of the
observed mean velocity gradient to that expected from
the logarithmic law and is shown in Fig. 9. When the
outer layer is stratified, the mean shear in the pycno-
cline increases significantly compared to the log-law
value. It is worth noting that deviations from the law-
of-the-wall begin well within the mixed layer. The con-
sequences for this observation will be discussed in sec-
tion 7.

5. Boundary layer turbulence

To understand the increase in mean velocity and
mean shear in the pycnocline, it is necessary to consider
the influence of stratification on the turbulent eddies.
The turbulent kinetic energy in the mixed layer scales
with the friction velocity u*, which as we have seen does
not change significantly with the addition of an outer
layer stratification. In addition, the density gradient in
the pycnocline appears to scale with the outer layer
stratification. Therefore, as the stratification in the
outer layer increases, the kinetic energy associated with
eddies at the top of the mixed layer remains about the
same while the potential energy required for an eddy to
overturn increases. Therefore, when the stratification
becomes large enough, turbulence is inhibited at the
top of the boundary layer, and as a result, the growth of
the mixed layer is strongly limited.

One consequence of the damping of turbulence by
stratification is a decrease in the turbulent stresses,
!u(w(" and !) (w(". The decrease in boundary layer
height with increasing stratification is very apparent
from the Reynolds stress profiles shown in Fig. 10.
Here, the Reynolds stress includes both the resolved
and subgrid-scale contributions. Note that above the
boundary layer, the Reynolds stress approaches a small,
nonzero value owing to the presence of turbulence-
generated internal gravity waves. It is evident from Fig.
10 that the Reynolds stresses change more rapidly with
height when the outer layer stratification is stronger.
Changes in the Reynolds stress with height result in a
momentum flux that must be balanced by other terms
at a steady state. The steady-state plane-averaged hori-
zontal momentum equations can be written as

FIG. 6. Ekman veering angle.
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!!#"w""
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!2!#"

dz2 . &18'

We have found that the Reynolds-averaged eddy vis-
cosity is cogradient. Hence, in the upper portion of the
Ekman layer where d!("/dz ) 0, the spanwise Reynolds
stress is positive as evidenced in Fig. 10. Because both
components of the Reynolds stress become nearly zero
in the outer layer, there must be a region near the top
of the Ekman layer where d!(*w*"/dz ) 0. When the
leading-order y-momentum balance is between the
Reynolds stress and Coriolis terms, the region with
d!(*w*"/dz + 0 leads to !u" + U,. Therefore, a zonal jet
is an inherent feature of a steady-state turbulent Ek-
man layer.

The turbulent kinetic energy budget can be found by
dotting u* into the perturbation momentum equations
and taking the plane average, to give

!k
!t

# $
1
2

!

!z!w"u"iu"i" $
!

!z
1
&0

!w"p"" %
1

Re*

!2k

!z2

$ !Sij"!u"iu"j" $
1

Re*
!!u"i

!xj

!u"i
!xj
" $ Ri*!w"&""

$
!

!z!u"i'31" % !'ji

!u"i
!xj
", &19'

where k # !u*i u*i "/2 is the turbulent kinetic energy.
Reading from left to right, the terms on the right-hand
side of Eq. (19) can be identified as the turbulent trans-
port, pressure transport, viscous diffusion, production,
dissipation, buoyancy flux, subgrid transport, and sub-
grid dissipation, respectively. The leading terms in the
turbulent kinetic energy budget for N,/f # 75 are
shown in Fig. 11. Near the wall, the leading-order bal-
ance is between production and dissipation and does
not differ significantly from the unstratified case as
shown in the inset. In the upper portion of the mixed

FIG. 8. Reynolds-averaged horizontal velocity magnitude.

FIG. 7. (a) Temperature gradient, (b) horizontal velocity magnitude, and (c) mean shear.
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layer, the turbulent transport appears as a source term
representing the advection of turbulent eddies toward
the pycnocline. Pressure transport, buoyancy flux, and
dissipation act as energy sinks in the upper mixed layer.
In the pycnocline, starting at about z/! " 0.15, the tur-
bulent transport and buoyancy flux decrease as strati-
fication suppresses turbulent motion while pressure
transport becomes the dominant source term. When
the pressure transport is positive the vertical energy
flux, #p$w$% increases with height, consistent with an
internal wave field that is gaining energy. This is direct
evidence of the generation of internal waves by the
interaction between boundary layer turbulence and a
stable stratification. The properties of these waves will
be discussed in section 6.

The instantaneous temperature field is shown for
N&/f " 75 in Fig. 12 in an x–z plane at t " 11.2/f. Figure
12b shows an enlarged version of the box drawn in Fig.
12a. Isotherms are drawn every 0.025!d#'%/dz&. The
mixed layer is very homogeneous with disturbances
rarely exceeding the contour level. Turbulence-gener-
ated internal waves are visible as disturbances of the
isotherms in the outer layer, which is generally stati-
cally stable with the notable exception of the region just
above the pycnocline. Density overturns are visible
both below and above the pycnocline. As highlighted in
Fig. 12b, the overturns above the pycnocline are remi-
niscent of Kelvin–Helmholtz billows associated with a
negative mean shear. The irreversible mixing resulting
from these overturns may be responsible for the re-
duced temperature gradient above the pycnocline as
seen in Fig. 7a.

The stability of the shear above the pycnocline can be

examined using the gradient Richardson number. The
mean gradient Richardson number, defined as

#Rig% "
()g!"0*d##%!dz

)d#u%!dz*2 + )d#$%!dz*2 "
#N2%

#S2%
, )20*

FIG. 9. Nondimensional velocity gradient, , " (-z/u*) d#u%/dz. FIG. 10. Reynolds stress profiles.

FIG. 11. TKE budget at the top of the mixed layer and pycnocline
for N&/f " 75. Inset shows the TKE budget near the wall.
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as shown in Fig. 13a. Heaving of the pycnocline, which
is visible in Fig. 12, causes significant variations in the
pycnocline height. Because we are interested in the
shear and stratification a small distance above the
pycnocline, averaging over a constant height could be
problematic.

Therefore, the average operator in Eq. (20) has been
taken with respect to a constant distance from the cen-
ter of the pycnocline (identified by the maximum tem-
perature gradient). It has been shown that a stratified
flow can develop linear shear instabilities if Rig is less
than 0.25 somewhere in the flow (Miles 1961; Howard
1961). In our simulations !Rig" # 0.25 in the mixed
layer, while !Rig" becomes very large in the outer layer
where the stratification is large compared to the mean
shear. Because !Rig" $ 1 above the pycnocline in both
cases, it is perhaps surprising that local occurrences of
Rig # 0.25 are not uncommon even above the pycno-
cline. Figure 13b shows the probability of the local
Rig # 0.25. In the mixed layer (where the distance from
the pycnocline is large and negative), the probability of
Rig # 0.25 is very high, as expected. The probability of

Rig # 0.25 drops to nearly zero in the pycnocline, but a
local maximum in the probability occurs above the pyc-
nocline. A coincident local maximum in the probability
of local density overturns can also be seen above the
pycnocline (not shown). About 70% of the overturns
occurring above the pycnocline are associated with a
local shear that is larger in magnitude than the plane-
averaged value. This suggests that while the mean shear
is not unstable based on the typical gradient Richard-
son number criteria, local shear instabilities may drive
the overturns observed in this region.

To illustrate the appearance of overturns and un-
stable shear profiles in the region above the pycnocline,
Fig. 14 shows an instantaneous x%z slice through a
small section of the flow when N&/f ' 75. The shading
indicates du(/dz, lines show isotherms at an interval of
0.01)d!*"/dz&, and circles indicate locations where
Rig # 0.25. The perturbation shear appears to be
closely associated with undulations in the pycnocline
height. As we have seen, occurrences of Rig # 0.25 are
common above and below the pycnocline. Most of the
regions with an unstable shear above the pycnocline are

FIG. 12. Isotherms projected onto an x–z plane for the case with N&/f ' 75 (a) full
computational domain and (b) zoom of boxed region near the pycnocline.
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associated with a negative streamwise shear perturba-
tion. It also appears that radiated internal waves (vis-
ible by phase lines of du!/dz that slope up and to the
left) are sometimes associated with Rig " 0.25, but this
only occurs near the pycnocline; in the outer layer, Rig
is always large.

Because changes in the local shear and the local
stratification can cause variations in Rig, it is of interest

to examine the distribution of low Rig events. Figure 15
shows a scatterplot of the deviation of the local shear
and buoyancy frequency from the background values,
for events with 0 " Rig " 0.25. Only one height is
shown for clarity, z/# $ 0.195, which corresponds to the
secondary peak in Rig above the pynocline, as shown in
Fig. 13b. At this location, the mean buoyancy frequency
is 73f, and the mean gradient Richardson number is

FIG. 14. Instantaneous streamwise shear, du!/dz, with overlaid isopycnals for N%/f $ 75.
Circles show where Rig " 0.25 locally.

FIG. 13. (a) Mean gradient Richardson number, &Rig', and (b) probability of occurrences of
the local Rig " 0.25. Vertical profiles have been averaged in terms of the distance from the
maximum temperature gradient.
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Rig ! "N2#/"S#2 ! 3.15. Because the mean shear is domi-
nated by the streamwise component at this location,
only this component is considered. It is clear from Fig.
15 that most of the occurrences of Rig $ 0.25 are when
du%/dz $ 0 and nearly all occurrences of Rig $ 0.25 are
when the stratification is less than its mean value. Few
exceptions occur when the shear is very large and nega-
tive, with Rig $ 0.25 even though the local stratification
is high.

6. Turbulence-generated internal waves

In the outer layer above the pycnocline, vertically
propagating internal waves can be observed. These
waves, which are generated as turbulent eddies interact
with the stratified ambient, were also observed at a low
Reynolds number and are described in detail by Taylor
and Sarkar (2007a). The importance of the energy ra-
diated by turbulence-generated internal waves to the
mixed layer growth has been discussed in several pre-
vious studies (Linden 1975; E and Hopfinger 1986). An

examination of the steady-state turbulent kinetic en-
ergy equation, integrated through the boundary layer,
reveals that the turbulent production can be balanced
by three sink terms: the integrated dissipation rate, the
integrated buoyancy flux, and the vertical energy flux
associated with the internal wave field. To compare the
relative sizes of the three sink terms, Fig. 16 shows the
vertical energy flux, "p%w%#, normalized by the inte-
grated dissipation and the integrated buoyancy flux. To
leading order, the turbulent production is balanced by
the dissipation, indicating that the bulk mixing effi-
ciency is very small. This is expected given that most of
the dissipation occurs in the unstratified region near the
seafloor. Of the two remaining sink terms, the vertical
energy flux is comparable to the integrated buoyancy
flux.

Taylor and Sarkar (2007a) made a similar analysis of
the boundary layer energetics for a lower Reynolds
number boundary layer and also found that the vertical
energy flux was much smaller than the integrated dis-
sipation but of the same order as the integrated buoy-
ancy flux. Specifically, they found that the ratio of the
vertical energy flux to the integrated dissipation at the
top of the pynocline was between 0.01 and 0.03, while
the ratio of the vertical energy flux to the integrated
buoyancy flux at the same location was between 0.5 and
1. The present results are generally consistent with
those of Taylor and Sarkar (2007a), but the vertical
energy flux is about a factor of 2 smaller in the present
study.

Taylor and Sarkar (2007a) found that the internal
wave energy spectrum in the outer layer could be ex-
plained by viscous damping of the waves based on the
wavenumber and vertical propagation speed for a par-
ticular frequency. Given a turbulent spectrum that was
assumed to be characteristic of the waves upon genera-
tion, they showed that the viscous decay term in the
fully nonlinear numerical simulations resulted in outer
layer waves in a relatively narrow frequency range. Vis-
cous ray tracing was used to show that the vertical ve-
locity amplitude for a specific frequency and wavenum-
ber can be written as

A&kh, !, z' ! A0&kh, !, z0'
|k0|
|k| exp! ("!

kh&!2 ( f 2'1#2 "
z0

z

|k|4&N2 ( !2'(1#2 dz$#, &21'

where k0 and A0 are the wavenumber and wave ampli-
tude at z ! z0 in the generation region. Because the
molecular viscosity and diffusivity used by Taylor and
Sarkar were two orders of magnitude smaller than the

present values, it is of interest to evaluate their viscous
internal wave model using the present high Reynolds
number simulations. The viscous decay model is com-
pared to the observed frequency spectra of the outer

FIG. 15. Perturbation streamwise shear and buoyancy frequency
for events with 0 $ Rig $ 0.25 at z/) ! 0.195. The mean gradient
Richardson number, "Rig# ! 3.15.
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layer waves in Fig. 17. To compare the predicted wave
amplitude to the simulations, it is convenient to con-
sider the spectral distribution of dw/dz, which is esti-
mated by multiplying A(kh, !, z) by the vertical wave-
number

m " #kH!N2 # !2

!2 # f 2 "1"2

. $22%

Because the subgrid-scale eddy viscosity that is used as
part of the LES model is not negligible compared to the
molecular viscosity in the outer layer, we have used & '
&sgs in Eq. (21). Figure 17 shows the spectral amplitudes
of (w)/(z normalized by * and u*. To show the com-
bined contributions of all values of kH, the square root
of the sum of the squared amplitudes of (w)/(z is shown
as a function of !/f. The left-hand side shows the ob-
served spectra at z " z0, corresponding to a location
just above the pycnocline (solid line). The spectrum at
z " z0 was then smoothed and used as input (dashed
line) to the viscous decay model. The viscous decay
model predicts the amplitude of each frequency and
wavenumber component after propagating a distance
z # z0. The predicted amplitude from the model is
compared to the observed amplitudes from the numeri-
cal simulation on the right-hand side, corresponding to
a location at the top of the computational domain. The

qualitative agreement between the observed and pre-
dicted wave amplitudes is good; in particular, the de-
crease in amplitude of the low-frequency waves is cap-
tured well. At high frequencies, as ! → N, the observed
wave amplitudes are significantly lower than the model
prediction. It is possible that this is the result of non-
linear wave–wave and wave–mean flow interactions
that are neglected in the linear viscous model.

7. Evaluating methods for estimating the wall
stress

Because we have high-resolution velocity and density
profiles through a steady Ekman layer, we are able to
evaluate the performance of several methods for esti-
mating the friction velocity from observational data un-
der idealized conditions. The profile method estimates
the friction velocity by assuming that the mean shear
follows the unstratified law-of-the-wall, to give

u*,p " #z
d+u,
dz

. $23%

When the turbulent dissipation is measured, the friction
velocity can be estimated by assuming a balance be-
tween the turbulent production and dissipation. As
shown in the inset of Fig. 11, the production and dissi-

FIG. 16. Vertical energy flux normalized by (a) the integrated turbulent dissipation and (b)
the integrated buoyancy flux.
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pation are in approximate balance throughout the
mixed layer. The so-called balance method assumes a
production and dissipation balance using the observed
mean shear and disspation rate, so that the friction ve-
locity is

u*,b !!!"d"u#
dz

. $24%

A third method called the dissipation method can be
formed through a combination of the profile and bal-
ance methods by using the production and dissipation
balance and assuming that the mean shear follows the
unstratified law-of-the-wall. The friction velocity pre-
dicted by this method takes the form

u*,! ! "!"z#1#3. $25%

Estimates from these models are compared to the ob-
served friction velocity in Fig. 18. To illustrate the tem-
poral variability in the friction velocity, &1' (the stan-
dard deviation) is also shown. As has been found by
previous studies (Perlin et al. 2005; Johnson et al. 1994;
Lien and Sanford 2004), the performance of the friction
velocity estimates depends on the location of the ob-
served shear and on dissipation. Therefore, estimates of
the friction velocity are shown using the mean shear
and/or the dissipation rate at two heights, z/( ! 0.06
and z/( ! 0.12, which correspond to about 1.98 and 3.96
mab, respectively. When the outer flow is unstratified,

as shown in the left column of Fig. 18, all of the above
methods provide a reasonable estimate of the friction
velocity. However, when the outer layer is stratified,
the profile method and to a lesser degree the balance
method do not provide accurate estimates for the fric-
tion velocity. The dissipation method appears to be the
most accurate of the three methods in the mixed layer.
However, because direct measurements of the dissipa-
tion rate are not always available from observations, it
is desirable to have a method for estimating the friction
velocity using more commonly measured quantities
such as velocity and density profiles.

The error in the profile method is the result of the
increase in the mean shear with stratification as was
seen in Fig. 9, which is not accounted for by the tradi-
tional law-of-the-wall. A modified law-of-the-wall that
accounts for the increase in mean shear at the top of a
stratified boundary layer was proposed by Perlin et al.
(2005). They proposed that the mean velocity gradient
could be modeled as

d"u#
dz

!
u*
lp

, $26%

where

lp ! "z$1 ) z#hd%, $27%

and hd is a measure of the boundary layer depth, which
is limited by stratification. To use Eq. (26) to predict
the friction velocity for a given velocity profile, an es-

FIG. 17. Spectra of *w+/*z from simulated results (solid line) and the viscous decay
model (dashed line) for (a),(b) N, f ! 31.6 and (c),(d) N, f ! 75. Vertical lines
show N/f.

2550 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 38



timate for hd must first be obtained. Perlin et al. (2005)
proposed using the Ozmidov scale, lOz ! "#/N3, at the
top of the mixed layer to set hd. We have used a similar
criterion to evaluate this method in Fig. 18. Specifically
the mixed layer height d is defined as the location
where $%/d ! 0.01d%/dz&. Then hd is set so that lp ! lOz

at z ! d.
It is evident from Fig. 18 that the modified law-of-

the-wall provides a significant improvement over the
profile method. However, as shown in Fig. 19, the
Ozmidov scale varies very rapidly between the mixed
layer and the pycnocline, so the estimate of hd depends
strongly on the definition of the mixed layer depth. In
the case when N&/f ! 31.6, the rapid change in the
Ozmidov scale leads to hd ! 0.67', which is significantly
larger than the boundary layer height, h ! 0.215'. As a
result, lp is significantly larger than the observed shear
length scale in the upper half of the mixed layer, as
shown in Fig. 20. An alternative method to account for
the decrease in the length scale with stratification was
proposed by Brost and Wyngaard (1978) and can be
written as

1
l

!
1

!z
(

1
lb

, )28*

where lb ! Cb+w ,w ,-1/2/N is a buoyancy length scale.
Nieuwstadt (1984) suggested the value of Cb ! 1.69,
which was consistent with his local scaling theory. This

length scale is shown in Fig. 20 and compares favorably
to the observed shear length scale below the center of
the pycnocline. Practically, it is difficult to measure the
vertical velocity, especially in the boundary layer where
it cannot be deduced from isopycnal displacements. We
have found that most of the decrease in the length scale
with height is due to an increase in the local stratifica-
tion rather than to a change in the turbulent velocity.
An alternative length scale can then be formed by re-

FIG. 19. Ozmidov scale.

FIG. 18. Estimates of the friction velocity using several different methods at two locations in the mixed layer.
Horizontal lines show the friction velocity observed in the simulations and .1/ of the time series. (left to right)
Models are the balance method Eq. (24), the dissipation method Eq. (25), the profile method Eq. (23), the modified
law-of-the-wall Eq. (26), and the modified profile method Eq. (30). Note that when the flow is unstratified, the
modified law-of-the-wall and the modified profile method are identical to the profile method.
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placing the vertical turbulent velocity with the friction
velocity:

1
l

!
1

!z
"

N#z$

Cbu*
. #29$

This simplified form still provides a reasonable estimate
for the shear length scale, as shown in Fig. 20. The
friction velocity can then be recovered from the mean
velocity and density profile without the need for direct
turbulence measurements, specifically

u*,m%p ! !z!"#d&u'
dz $2

" #d&"'
dz $2%1#2

% N#z$&, &30'

where we have taken Cb ! 1. In the limit of an unstrati-
fied boundary layer, this method becomes equivalent to
the profile method, so we will refer to this as the modi-
fied profile (m-p) method. Estimates of the friction ve-
locity based on Eq. (30) are shown as triangles in Fig.
18. While the estimated friction velocity is somewhat
large, the modified profile method provides a signifi-
cant improvement over the profile method and is com-
parable to the modified law-of-the-wall. It is worth not-
ing that because stratification effects enter into the
modified law-of-the-wall through hd in Eq. (27), which
is independent of z, stratification effects are nonlocal in
this model. By comparison, the modified profile

method is the result of a local balance between shear
and stratification.

The length scale given in Eq. (29) can also be used to
form a model velocity profile by integrating

dU
dz

!
u*
l

, #31$

to obtain

U#z$

u*
!

1
!

log#z#z0$ "
1

Cbu*
'

0

z

N#z$$ dz$. #32$

If a constant buoyancy frequency, say, N(, were used in
place of N(z) in Eq. (32), the form of the velocity pro-
file would become log linear. The model velocity in Eq.
(32) can, therefore, be viewed as an analog to the log-
linear profile from Monin–Obukhov theory that is com-
monly used in the atmospheric literature, with the
Obukhov length replaced by u*/N. Figure 21 shows
profiles of the observed mean velocity compared to Eq.
(32) for both a constant and a nonconstant N. To
smooth fluctuations in the instantaneous profile of
N(z), the profiles of N(z) have been averaged over a
time window of t ! 1/f. When a depth-dependent buoy-
ancy frequency, N(z), is used in Eq. (32), the parameter
is set to Cb ! 1 to be consistent with Eq. (30). When
N(z) is replaced by the constant free-stream buoyancy
frequency, N(, it is found that Cb ! 0.2 provides a good

FIG. 20. Length-scale profile derived from the mean shear from the LES (line with filled
circles) compared to several model profiles. Shaded regions show where d&p'/dz ) d&p'/dz(.
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fit to the observed profiles. Using either a constant or a
nonconstant buoyancy frequency in Eq. (32), the devia-
tions from the logarithmic law owing to stratification
are well represented. Note that in the outer layer, the
velocity profiles are affected by the boundary layer
height and Eq. (32) is not expected to hold.

8. Conclusions

We have examined a benthic Ekman layer formed
when a uniformly stratified, steady geostrophic flow en-
counters a flat, adiabatic seafloor. The thermal field
rapidly develops a three-layer structure with a well-
mixed region near the wall separated from the uni-
formly stratified outer layer by a pycnocline. The outer
layer is populated by upward-propagating internal
waves that are generated by the boundary layer turbu-
lence. After the initial spinup, a quasi-steady state is
reached, characterized by a slow mixed layer growth
and a nearly constant density gradient in the pycno-
cline. When the strength of the outer layer stratification
is increased, the wall stress increases slightly, but the
boundary layer thickness decreases significantly. The
structure of the boundary layer is clearly confined by
stratification as evidenced by the Reynolds stress, tur-
bulent heat flux, and turning angle, which all nearly
vanish above the pycnocline. Because the Ekman trans-
port balances the wall stress in the integrated stream-
wise momentum equation, and the wall stress remains

relatively constant, the increase in outer layer stratifi-
cation is accompanied by an increase in the magnitude
of the cross-stream velocity.

The increased cross-stream velocity in the mixed
layer leads to a broadening of the Ekman spiral. The
rate of veering in the mixed layer is a function of z but
does not depend strongly on the external stratification.
When the stratification is increased and the boundary
layer is thinner and the surface turning angle is larger,
the amount of veering that occurs in the pycnocline
increases. This finding is consistent with the results of
Weatherly and Martin (1978), who found that most of
the veering occurred in the pycnocline using one-
dimensional simulations. We have also found that when
the outer layer stratification is large, the rapid rate of
turning in the pycnocline causes the mean velocity and
the mean shear to be maximum at the same location
near the center of the pycnocline.

An interesting feature of the observed Ekman layer
structure is the appearance of local shear instabilities
above the pycnocline, despite the fact that the mean
shear is stable with respect to the local stratification.
Between 10% and 25% of the vertical profiles exhibit a
local gradient Richardson number less than 0.25. A
similar observation has been made in terms of the oc-
currence of overturning events. Mixing during these
events is significant and appears to cause a local mini-
mum in the density gradient above the pycnocline.
Analysis of events with Rig ! 0.25 at a height above the

FIG. 21. Simulated velocity profiles compared to predictions by the model profiles of Eq.
(32) for a constant and nonconstant N.
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pycnocline indicates that these events are more likely to
be associated with a below average density gradient
than an above average shear.

In the outer layer, turbulence-generated internal
waves are observed radiating away from the boundary
layer. The vertical energy flux associated with these
waves is negligible compared to the turbulent dissipa-
tion integrated through the boundary layer. This is not
surprising because most of the dissipation occurs near
the seafloor where the flow is unstratified. However,
the vertical energy flux at the top of the boundary layer
is nearly half of the integrated buoyancy flux. This find-
ing is consistent with a study at a lower Reynolds num-
ber by Taylor and Sarkar (2007a) and implies that the
turbulence-generated internal waves may remove
enough energy from the boundary layer to affect the
growth rate of the mixed layer. The viscous internal
wave model of Taylor and Sarkar (2007a) has been
applied using the combined molecular and turbulent
viscosity to estimate the decay rate of the turbulence-
generated internal waves. The model qualitatively cap-
tures the decay of low-frequency waves but overesti-
mates the amplitude of high-frequency waves.

As was seen in previous studies (e.g., Perlin et al.
2005; Johnson et al. 1994), an increase in the mean
shear has been observed at the top of the mixed layer.
The increase in mean shear with respect to an unstrati-
fied boundary layer can lead to significant errors in the
friction velocity estimated from observed velocity pro-
files using the profile method. It has been uncertain
whether this increase in the mean shear could be ex-
plained in terms of the local stratification. Because the
unstratified logarithmic law appears to hold very close
to the wall, the profile method is adequate, in principle,
if the mean velocity very near the wall can be obtained.
However, this is often difficult or impossible in practice.
We have evaluated the performance of a variety of
techniques for estimating the friction velocity given
mean quantities at various heights in the mixed layer.
Because the turbulent production and dissipation are
the dominant terms in the turbulent kinetic energy
equation throughout the mixed layer, the dissipation
method agrees very well with the observed friction ve-
locity. The modified law-of-the-wall, proposed by Per-
lin et al. (2005), shows considerable improvement over
the standard profile method, especially near the top of
the mixed layer. However, like the balance and dissi-
pation methods, the modified law-of-the-wall requires
knowledge of the turbulent dissipation rate. Direct ob-
servation of the dissipation rate is difficult, especially in
active turbulent regions because it involves small-scale
velocity gradients. When such information is not avail-
able, it is desirable to have an alternative method for

estimating the friction velocity u*. We have introduced
a buoyancy length scale, u*/N(z), which leads to a
modification of the well-known log-law by a buoyancy-
related augmentation of the mean velocity. Use of this
modified mean velocity profile instead of the unstrati-
fied log law leads to a significant improvement in de-
ducing the friction velocity.
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