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A new damping mechanism for vertically-sheared inertial motions is described
involving an inertia–gravity wave that oscillates at half the inertial frequency, f , and
that grows at the expense of inertial shear. This parametric subharmonic instability
forms in baroclinic, geostrophic currents where thermal wind shear, by reducing the
potential vorticity of the fluid, allows inertia–gravity waves with frequencies less than
f . A stability analysis and numerical simulations are used to study the instability
criterion, energetics, and finite-amplitude behaviour of the instability. For a flow
with uniform shear and stratification, parametric subharmonic instability develops
when the Richardson number of the geostrophic current nears RiPSI = 4/3+ γ cos φ,
where γ is the ratio of the inertial to thermal wind shear magnitude and φ is the
angle between the inertial and thermal wind shears at the initial time. Inertial shear
enters the instability criterion because it can also modify the potential vorticity and
hence the minimum frequency of inertia–gravity waves. When this criterion is met,
inertia–gravity waves with a frequency f /2 and with flow parallel to isopycnals
amplify, extracting kinetic energy from the inertial shear through shear production.
The solutions of the numerical simulations are consistent with these predictions
and additionally show that finite-amplitude parametric subharmonic instability both
damps inertial shear and is itself damped by secondary shear instabilities. In this
way, parametric subharmonic instability opens a pathway to turbulence where kinetic
energy in inertial shear is transferred to small scales and dissipated.
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1. Introduction
A large fraction of the kinetic energy in the ocean’s inertia–gravity wave spectrum

is contained in inertial motions (Ferrari & Wunsch 2009). These motions are primarily
generated by wind forcing, resulting in oscillatory currents with a frequency equal
to the local Coriolis parameter, f = 2Ω sin λ, where Ω is the angular velocity of the
Earth and λ is the latitude. While the generation mechanisms of inertial motions are
relatively well-understood, the manner in which their kinetic energy is lost is less
certain. Various damping mechanisms have been proposed, including shear instability
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(Alford & Gregg 2001), wave absorption in critical layers (Kunze, Schmitt & Toole
1995), and energy transfer via wave–wave interactions (Müller et al. 1986). One
wave–wave interaction is parametric subharmonic instability, which leads to the
transfer of energy from a wave of a given frequency to its subharmonic at half
the frequency. In principle, using classical inertia–gravity wave theory, parametric
subharmonic instability can be ruled out as a local damping mechanism for inertial
motions because the classical dispersion relation does not allow for freely-propagating
waves of frequency f /2. Non-locally though, near-inertial waves that propagate
equatorward, and hence become superinertial, can undergo parametric subharmonic
instability when they reach the latitude where the local inertial frequency is half their
frequency (Nagasawa, Niwa & Hibiya 2000).

The classical dispersion relation does not, however, take into consideration
background flows that can change the range of permissible frequencies for propagating
inertia–gravity waves. A more general expression for the minimum frequency of
inertia–gravity waves in a unidirectional current u(y, z) and density field ρ(y, z) is

σmin =
√

fq
N2
, (1.1)

where q = ( f − ∂u/∂y)N2 + (∂u/∂z)(∂b/∂y) is the Ertel potential vorticity, y and
z are the coordinates perpendicular to the current in the horizontal and vertical
directions, respectively, b = −gρ/ρo is the buoyancy (g is the acceleration due
to gravity and ρo is a reference density used in the Boussinesq approximation), and
N=

√
∂b/∂z is the buoyancy frequency which is assumed to be larger than f (Hoskins

1974; Whitt & Thomas 2013). When N > f , the waves of minimum frequency are
those that drive fluid parcel displacements, (Y, Z), that follow density surfaces, i.e.
Z =−Y(∂b/∂y)/N2, and thus lack a buoyancy force. For these motions the restoring
force is purely ascribable to the Coriolis force, −fu′, where u′ is the wave-induced
velocity anomaly in the direction of the background current. Since the flow does not
vary in this direction, in the inviscid limit, the absolute momentum, u′ + u − fY , is
conserved and consequently, u′ = ( f − ∂u/∂y)Y − (∂u/∂z)Z for small displacements.
When these displacements are constrained to density surfaces, the Coriolis force
follows Hooke’s law: −fu′ = −[ f ( f − ∂u/∂y) + f (∂u/∂z)(∂b/∂y)/N2]Y , resulting in
oscillatory motions with frequency (1.1).

In the limit of no flow the potential vorticity simplifies to q= fN2, and the classical
result for the minimum frequency, σmin = f , is recovered. However, in a baroclinic
flow with a horizontal buoyancy gradient in hydrostatic and geostrophic balance with a
‘thermal wind’ shear ∂u/∂z=−(∂b/∂y)/f , the minimum frequency is always reduced
by baroclinicity, σmin=

√
f ( f + ∂u/∂y)− (∂b/∂y)2/N2. It follows that for a sufficiently

strong horizontal buoyancy gradient, the minimum frequency of inertia–gravity waves
can be lowered to a value near f /2, suggesting that parametric subharmonic instability
could grow locally from inertial motions. This mechanism could play an important
role in dissipating wind-driven inertial currents at ocean fronts – highly baroclinic
regions with strong lateral density gradients. In this article we explore this scenario
using a combination of analytical theory and numerical simulation.

2. Analytical model
2.1. Basic state

A simple configuration is used to study the damping of inertial motions by parametric
subharmonic instability in a baroclinic current. Specifically, we will consider an
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unbounded domain and background buoyancy, b, and flow fields, (u, v, w), with
spatially uniform gradients:

u= S2

f
z+ ŭ(t)z, v = v̆(t)z, w= 0, b=N2(t)z− S2y. (2.1)

This basic state is in hydrostatic balance with a pressure field

p=−ρo
[
S2yz− 1

2 N2z2
]
. (2.2)

Since the geostrophic current needed to balance p is (S2/f )z, the background flow
departs from geostrophy by an amount set by ŭ and v̆, the ageostrophic shear.
Substitution of (2.1) and (2.2) into the Boussinesq, inviscid, adiabatic equations of
motion:

Du
Dt
+ f ẑ× u=− 1

ρo
∇p+ bẑ, (2.3)

Db
Dt
= 0, (2.4)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, results in a set of ordinary
differential equations for the ageostrophic shear (ŭ, v̆) and the stratification N2(t):

∂ ŭ
∂t
− f v̆ = 0, (2.5)

∂v̆

∂t
+ f ŭ= 0, (2.6)

∂N2

∂t
= v̆S2. (2.7)

For convenience, the ageostrophic shear can be written in terms of the geostrophic
shear with a scaling factor γ so that the initial conditions are

N2(t= 0)=N2
o , ŭ(t= 0)= γ

(
S2

f

)
cos φ, v̆(t= 0)= γ

(
S2

f

)
sin φ, (2.8)

where φ is the initial phase of the inertial oscillation. The background flow then
satisfies the exact solution

u= S2

f
z
[
1+ γ cos( ft− φ)] , (2.9)

v =−γ
(

S2

f

)
z sin( ft− φ), (2.10)

N2 =N2
o − γ

S4

f 2

[
cos φ − cos( ft− φ)] . (2.11)

This basic state is a superposition of an inertial oscillation and an idealization of
a front with a vertically-sheared geostrophic flow. Similar to other studies of fronts
(e.g. Hoskins 1982), we assume that variations of the variables in the along-front, x,
direction are much weaker than those in the cross-front, y, direction, and set them
explicitly equal to zero in the analysis. Changes in stratification are caused by the
cross-front component of the inertial shear which differentially advects buoyancy, e.g.
(2.7). Since the flow is inviscid and adiabatic, the potential vorticity is conserved, i.e.
Dq/Dt= 0. Thus, while the stratification of the background flow changes in time, its
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potential vorticity is constant and equal to:

q= fN2 + ∂u
∂z
∂b
∂y
= fN2

o −
S4

f
(1+ γ cos φ). (2.12)

It is important to note that at a front, the presence of a vertically-sheared inertial
oscillation can modify the potential vorticity relative to an undisturbed balanced state.
The reason for this is that the horizontal component of the vorticity associated with
the oscillation can project into the horizontal buoyancy gradient of the front. How
large a contribution this is depends on the strength of the inertial shear (i.e. γ ) and
the phase of the oscillation φ. If at t= 0 the inertial shear is entirely in the down-front
direction, i.e. φ= 0, then the potential vorticity is reduced relative to the case with no
inertial oscillation since the inertial and thermal wind shears add; the opposite is true
if the inertial shear is up-front (φ = π) at t = 0. When the inertial shear is entirely
cross-front at t= 0, i.e. φ=π/2, the potential vorticity is unaffected by the oscillation.

Given the potential vorticity (2.12), the time-mean stratification N2t = N2
o −

(S4/f 2)γ cos φ, and the expression for the minimum frequency of inertia–gravity
waves, (1.1), we may suppose heuristically that the first subharmonic of the inertial
frequency can exist in this background flow when√

f q

N2t =
f
2
, (2.13)

or, in terms of the Richardson number of the geostrophic flow,

Rib,o ≡ N2
o f 2

S4
, (2.14)

when
Rib,o = RiPSI = 4

3 + γ cos φ. (2.15)

Note that this result can be derived formally using a parcel argument (not included
here for brevity) that assumes along-isopycnal fluid parcel displacements and weak
inertial shears, i.e. γ � 1. The implication of the above equations is that a parametric
subharmonic instability can develop in baroclinic, geostrophic currents that are
exposed to inertial shear when the Richardson number of those currents satisfies the
criterion (2.15). In the next section we test this prediction using a model for the
evolution of plane-wave perturbations to the basic state.

2.2. Stability analysis
The basic state described by (2.1) and (2.2) is perturbed with a two-dimensional (i.e.
invariant in the x-direction) disturbance, with velocity, buoyancy, and pressure fields
u′(y, z, t), b′(y, z, t), and p′(y, z, t). The dynamics of the perturbations are governed
by the incompressible, Boussinesq equations:

Du′

Dt
+ u′ ·∇u+ u′ ·∇u′ + f ẑ× u′ =− 1

ρo
∇p′ + b′ẑ, (2.16)

Db′

Dt
+ u′ ·∇b+ u′ ·∇b′ = 0, (2.17)

∇ · u′ = 0, (2.18)
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where D/Dt= ∂/∂t+v∂/∂y is the rate of change following the background flow. Since
the perturbations are two-dimensional, the flow in the y–z plane can be expressed
in terms of a streamfunction, i.e. v′ = ∂ψ/∂z, w′ = −∂ψ/∂y. Due to the lack of
boundaries, and to the spatially-uniform gradients of the basic state, the method of
Craik (1989) can be employed, i.e. solutions in the form of plane wavesu′

ψ

b′
p′

=
U(t)
Ψ (t)
B(t)
P(t)

 eiϕ + c.c., (2.19)

are sought, where ϕ = ly+mz is the phase and k= (l,m) is the wavevector which is
spatially uniform, yet varies with time. Here, the evolution of a single plane wave is
considered, which makes the nonlinear terms in (2.16)–(2.17) identically equal to zero.
In the next section, numerical simulations will consider more general perturbations.
With the ansatz (2.19) it follows that the phase does not change following the
background flow, i.e. Dϕ/Dt = 0, yielding the following solution for the wavevector:

l= lo, m=mo + γ S2

f 2

[
cos φ − cos( ft− φ)] lo, (2.20)

where (lo,mo) denotes its initial value. The slope of streamlines, −l/m, which sets the
direction of the velocity vector in the y–z plane, can be computed from (2.20). When
the initial slopes of isopycnals and streamlines are equal, i.e.

lo

mo
=− S2

N2
o

, (2.21)

isolines of the two fields remain parallel for all times (compare (2.11) and (2.20)).
Perturbations with this wavevector have flow that is purely along isopycnals and thus
should yield oscillatory motions with the lowest frequency due to a lack of buoyancy
forces. They should thus be the first perturbations to grow via parametric subharmonic
instability when Rib,o is lowered to the critical value (2.15). Consequently we will
only consider plane waves that satisfy constraint (2.21) in the stability analysis, but
will make no such restriction in the numerical simulations, allowing us to test the
theoretical prediction.

Substituting the ansatz (2.19) into (2.16)–(2.18), using constraint (2.21), which
implies that b′ = 0 for all times, and deriving a streamwise vorticity equation to
eliminate pressure, yields a set of two coupled ordinary differential equations for the
amplitude of the plane-wave disturbance a= [U Ψ ]T :

ȧ= E(t)a, (2.22)

where the overdot denotes a time derivative and the matrix E has the elements

E11 = 0 E12 = ifm+ i
S2

f
[1+ γ cos( ft− φ)]l

E21 = imf |k|−2 E22 =−( ˙|k|2)|k|−2.

 (2.23)

These ordinary differential equations were solved numerically as an initial-value
problem for a range of background flow parameters, Rib,o, γ , and φ. A regime
diagram highlighting the regions where perturbations grow in the space spanned
by these three parameters is shown in figure 1. To rule out symmetric instability
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FIGURE 1. Regime diagram illustrating the locations in the parameter space Rib,o–γ where
parametric subharmonic instability occurs for an inertial shear that is initially directed
(a) down-front (φ= 0), (b) across-front (φ=π/2) and (c) up-front (φ=π). The prediction
for the critical Richardson number for parametric subharmonic instability, RiPSI (2.15),
is denoted by the grey line. The colour shading is the logarithm of the perturbation
kinetic energy normalized by its initial value, ko, and evaluated at four inertial periods
for flow perturbations that are purely isopycnal and satisfy (2.21). The part of parameter
space where the background flow is unstable to symmetric instability or Kelvin–Helmholtz
instability (i.e. where the potential vorticity of the background flow is less than zero and/or
where the minimum value of the Richardson number of the background flow is less than
0.25) has been left blank.

and Kelvin–Helmholtz instability we only consider background flows with positive
potential vorticity and gradient Richardson numbers Ri= N2/|∂u/∂z|2 > 1/4. Despite
these constraints, growing modes exist that occupy regions in parameter space that
are centred about the prediction for the critical Richardson number for parametric
subharmonic instability, i.e. RiPSI (2.15). The growth of the instabilities is strongly
dependent on the initial direction of the inertial shear relative to the thermal wind
shear. In particular, a background flow that is unstable for an inertial shear that is
initially in the direction of the thermal wind shear (i.e. down-front with φ = 0) can
be stable for an initial inertial shear in the opposite direction. This is fundamentally
due to the modification of the potential vorticity by inertial shear, e.g. (2.12), and its
effect on the minimum frequency of inertia–gravity waves.

In this calculation m and N2 are specified at t = 0 and results are presented for
various values of φ. This is one approach that emphasizes the importance of the
modification of the potential vorticity by the inertial motions and its effect on the
instability. Perhaps a more common approach for time-periodic flows would be to
consider fixed average values of m and N2 over the periodic cycle; in this case, the
results would be independent of φ. This does not imply any contradiction with the
present results, but merely a different manner of presentation of the same results.
However, in making the time-mean value of N2 invariant with φ, the stratification
in the absence of inertial motions, N2

o , has to be adjusted to compensate for the
modification of the potential vorticity by the inertial shear, which is not the physical
application that we have in mind.
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FIGURE 2. Example solution illustrating parametric subharmonic instability for γ = 0.1,
Rib,o= 4/3, φ=π/2, and lo/mo=−S2/N2

o = 0.013 obtained by solving (2.22) numerically.
(a) The perturbation to the along- and across-front velocity, u′ and v′ (dashed and solid
lines, respectively) normalized by the initial value of the across-front velocity, v′o. (b) The
vertical shear of the across-front flow of the basic state, ∂v/∂z, normalized by the thermal
wind shear. Time is non-dimensionalized in terms of inertial periods.

The underlying physics behind the growing modes apparent in figure 1 can be
illustrated using an example solution, as shown in figure 2. For this example the
Richardson number of the geostrophic flow satisfies criterion (2.15) and, as predicted,
the perturbations are characterized by waves that oscillate at half the inertial frequency
but that grow in amplitude. The amplitudes of the along- and across-front perturbation
velocity (u′ and v′, respectively) are not equal, consistent with the polarization
relations of subinertial inertia–gravity waves in a unidirectional, baroclinic current
(Whitt & Thomas 2013). Figure 2 also reveals the particular phase relation between
the perturbation and the inertial oscillation, namely v′ = 0 when ∂v/∂z nears its
maximum. This phase relation is essential to the growth mechanism of parametric
subharmonic instability and can be understood in terms of the energetics of the
perturbations.

The energetics of the perturbations is governed by the following equation:

D
Dt

k=−u′w′
S2

f︸ ︷︷ ︸
GSP

−v′w′v̆ − u′w′ŭ︸ ︷︷ ︸
AGSP

−∇ · u′p′︸ ︷︷ ︸
PWORK

+ w′b′︸︷︷︸
BFLUX

, (2.24)

where k= (1/2)u′ · u′ is the perturbation kinetic energy, averaged in the y–z plane. In
general, k can be changed by convergences/divergences of the energy flux (PWORK)
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FIGURE 3. Terms in the perturbation kinetic energy equation (2.24) and their time
integrals for the example solution illustrating parametric subharmonic instability shown
in figure 2. (a) The shear production terms non-dimensionalized by the initial kinetic
energy of the perturbation, ko, and f , i.e. AGSP/(2fko) (solid) and GSP/(2fko) (dashed). (b)
The total change in kinetic energy of the perturbation, (k − ko)/ko (solid grey) and that
attributable to ageostrophic and geostrophic shear production, i.e.

∫ t
0(AGSP/ko)dt′ (solid

black) and
∫ t

0(GSP/ko)dt′ (dashed black).

and the release of potential energy via the buoyancy flux (BFLUX). However, for
perturbations with no buoyancy anomaly that we consider, BFLUX = 0 and the
divergence of the mean energy flux (PWORK) is negligibly small. The disturbances
can also exchange kinetic energy with the background flow through shear production.
The shear production can be decomposed into its geostrophic and ageostrophic parts
(GSP and AGSP respectively) with the latter representing the rate of kinetic energy
extraction from the inertial oscillation.

The two shear production terms were evaluated using the solution shown in figure 2
and are presented in figure 3(a). Both terms oscillate in time yet have biases. On
average, AGSP is positive while GSP is negative. The change in kinetic energy caused
by the two shear production terms can be quantified by taking their time integrals. As
shown in figure 3(b), the kinetic energy increase by the AGSP outweighs the decrease
by the GSP, resulting in a net growth of the perturbations. Thus the waves gain kinetic
energy at the expense of the inertial oscillation.

The AGSP is on average positive in spite of the changing sign of the oscillatory
background shear because of the phase relation between the inertial shear and the
vertical flux of across-front momentum. This momentum flux, v′w′, is positive definite
because the perturbation velocity is constrained to run along isopycnals, e.g. (2.21),
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Rib,o φ L/H No/f S/f γ q/f 3 Re=U0H/ν Pe=U0H/κ

1.65 0 15 75.9 7.7 0.6 175 1.3× 106 1.3× 106

1.80 0 15 79.3 7.7 0.6 698 1.3× 106 1.3× 106

1.91 0 15 81.7 7.7 0.6 1089 1.3× 106 1.3× 106

2.00 0 15 83.5 7.7 0.6 1395 1.3× 106 1.3 ×106

1.91 π 15 81.7 7.7 0.6 5277 1.3× 106 1.3× 106

TABLE 1. Non-dimensional simulation parameters. The parameter values in bold
correspond to the simulation shown in figures 4–6. The Reynolds and Péclet numbers are
calculated using the maximum initial ageostrophic velocity, U0 ≡ S2f−1γH.

which slope upwards for this background flow. Consequently, the perturbations gain
(lose) kinetic energy via the AGSP during periods when ∂v/∂z< 0 (∂v/∂z> 0). The
vertical flux of across-front momentum scales with |Ψ |2, and is therefore minimum
when Ψ = 0 and hence v′ = 0. Since the frequency of the perturbation is half the
inertial frequency, by timing the zeros in Ψ and v′ with the maxima in ∂v/∂z (as
illustrated in figure 2), the perturbations minimize the loss of kinetic energy via the
AGSP and maximize the extraction of kinetic energy from the inertial oscillation.

While the waves extract kinetic energy from the inertial motions, part of this
kinetic energy is transferred to the geostrophic flow via the GSP. The net result
is an exchange of kinetic energy from an unbalanced flow (an inertial oscillation)
to a balanced flow (a baroclinic geostrophic current) with parametric subharmonic
instability acting as the conduit for the energy transfer. This is in stark contrast to
symmetric instability which derives its kinetic energy from the geostrophic flow via
the GSP (Thomas & Taylor 2010).

3. Numerical simulations
3.1. Setup

To complement the stability analysis described above, we ran numerical simulations
of the fully-nonlinear, incompressible Boussinesq equations. The simulations have
two primary objectives: to test the predictions of the theory, and to explore the
equilibration of the instability through nonlinear dynamics. Like the stability analysis
above, the simulations are restricted to a two-dimensional plane, allowing for velocity
in all three directions, while assuming that all flow variables are independent of the
along-front (x) direction. However, while the stability analysis considered a single
along-isopycnal mode, the simulations are initialized with random perturbations to
the velocity field. This more general initial condition allows us to test the theoretical
prediction that an along-isopycnal disturbance will emerge as the most unstable mode.

Table 1 lists the non-dimensional parameters used in each simulation. The
parameters (S = 7.7f , γ = 0.6) were chosen to represent a relatively strong ocean
front such as the Gulf Stream, with intense ageostrophic shear. Note that the potential
vorticity is positive in all simulations, which implies that the flow will be stable to
convective and symmetric instability. Periodic boundary conditions are applied to all
fields in the horizontal direction, after subtracting a background horizontal density
gradient. This makes these simulations very similar to the ‘frontal zone’ configuration
used by several previous studies (Taylor & Ferrari 2009; Thomas & Taylor 2010;
Taylor & Ferrari 2010). Free-slip boundary conditions are imposed at the top and
bottom of the domain (∂u/∂z = ∂v/∂z = 0, w = 0 at z = 0, −H) with a buoyancy
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FIGURE 4. (a) Time series of the perturbation kinetic energy (k), normalized by the
value at tf /(2π) = 5 (k5) for the numerical simulations (solid) and theory (dashed) for
the parameters listed in table 1. (b) Time series of the kinetic energy associated with the
ageostrophic shear (black), time-integrated ageostrophic shear production (blue), and the
perturbation kinetic energy (red) for the simulation highlighted in bold in table 1. Each
of these terms has been normalized by the initial value of the kinetic energy associated
with the ageostrophic shear, Ko. Green dots indicate the fraction of gridpoints where the
gradient Richardson number is less than 0.25. Note that only the cross-front shear is used
to calculate the gradient Richardson number since potential shear instabilities associated
with the along-front shear are not resolved in the two-dimensional simulations.

gradient matching the initial condition. The simulations use a staggered grid with
1024 × 200 gridpoints in the y and z directions with uniform resolution. Details of
the numerical method can be found in Taylor (2008).

3.2. Results
Figure 4(a) shows time series of the perturbation kinetic energy, k, for all five cases
listed in table 1. For comparison with the numerical simulations (solid lines), results
from a viscous version of the analysis presented in § 2.2 are shown as dashed lines,
using the same Reynolds and Péclet numbers as in the simulations. To avoid a
brief spin-up period in the simulations, and to focus on the most unstable modes,
results are shown starting at 5 inertial periods. In general, the agreement between
the simulations and theory is very good. The somewhat slower growth seen in the
simulations appears to be primarily due to the finite vertical extent in the simulations
and boundary effects. The strong dependence on the phase of the inertial shear is
particularly striking. When the inertial shear is down-front at t= 0 (Ri= 1.91, φ = 0,
blue curves), the perturbation kinetic energy grows by more than three orders of
magnitude over four inertial periods. In contrast, when the inertial shear is up-front
at t= 0 (Ri= 1.91, φ=π, magenta curves), the perturbation kinetic energy decreases,
albeit slowly. The difference between the simulations and theory in this latter case
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stems from the fact that the simulations started with a broad range of wavenumbers,
several of which decay slowly, while the dashed curve for the theory shows only the
single, most slowly decaying mode.

As predicted by the theory, the primary energy source of the simulated instability is
the inertial shear via the ageostrophic shear production (AGSP, see (2.24)). Figure 4(b)
shows the evolution of the mean depth-dependent ageostrophic kinetic energy (K) with
Ri= 1.91 and φ = 0 (black line). Here, K is calculated using the mean velocity after
removing the thermal wind shear and the depth-averaged mean flow: K = (1/2)vs · vs

where vs = u− 〈u〉 − S2z/f x̂ is the mean velocity associated with the ageostrophic
shear and the angular brackets denote a depth average. The linear phase of the
instability, with exponentially growing perturbations continues until about 15 inertial
periods. At this point, the instability becomes finite-amplitude, nonlinear, and unstable
to a secondary shear instability with the across-front shear causing the gradient
Richardson number to drop below 0.25 at many points in the domain (see figure 4b,
dots). The decrease in ageostrophic kinetic energy, K, is almost entirely balanced
by an increase in the time-integrated AGSP (blue line). The AGSP transfers energy
from the mean shear into the perturbation kinetic energy (k), but only a relatively
small fraction of this energy remains stored in k. Most of the remainder is either lost
through viscous dissipation or is used to raise the centre of gravity of the fluid by
mixing the stable stratification.

The terms in the perturbation kinetic energy budget are shown in figure 5(b) for
the simulations (solid lines) and the theory (dashed lines), for two inertial periods
during the linear phase of the instability with Ri= 1.91 and φ= 0. For reference, the
time-series of the domain-averaged buoyancy frequency N is shown in figure 5(a).
To more easily compare changes in the kinetic energy during this phase of rapid
exponential growth, each term in the budget has been divided by k. Again, the
agreement between the theory and simulations is excellent. Consistent with figure 4(b),
when integrated over a full inertial period, the AGSP is the dominant source of kinetic
energy. However, the geostrophic shear production (GSP) is of a similar magnitude,
which results in a significant shift of the phase of the maximum growth rate and
negative growth rates during the weakly stratified phase of the inertial cycle.

Figure 6 shows the cross-front velocity (colour shading) and isopycnals (white
contours) at several times during the simulation with Ri = 1.91 and φ = 0. The left
and right columns correspond to times with maximum and minimum stratification,
respectively. Figure 6(a) shows the flow during the early (linear) phase with
exponential growth. Although the simulations are not constrained to have a particular
perturbation slope, the most rapidly growing motions are closely aligned with the
isopycnals throughout the inertial cycle, consistent with the assumption made in
the stability analysis. The along-isopycnal velocity bands are associated with strong
vertical shear, and as the unstable mode grows in amplitude, it eventually becomes
unstable to a secondary shear instability with Rig = N2/(∂v/∂z)2 < 0.25, as indicated
in figure 4(b). Figure 6(b) shows the flow just after the onset of this shear instability
(left), and a half-inertial period later (right). At tf /(2π)= 16, small Kelvin–Helmholtz
billows are visible between the alternating bands of cross-front velocity. This is highly
reminiscent of the secondary shear instability that equilibrates symmetric instability
(Taylor & Ferrari 2009). By tf /(2π)= 16.5, the resulting turbulence and down-scale
energy transfer has significantly decreased the energy associated with the primary
parametric subharmonic instability, leaving a larger-scale mode behind.



Damping of inertial motions by parametric subharmonic instability 291

80

70

60

50

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

0

(a)

(b)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0 0.2 0.4 0.6 0.8 1.0 1.2

Solid: Simulations, Dashed: Stability theory

1.4 1.6 1.8 2.0

FIGURE 5. Time series showing (a) two inertial periods of the domain-averaged buoyancy
frequency and (b) the terms in the turbulent kinetic energy budget, where ε is the
dissipation of kinetic energy.

4. Discussion and conclusion
We have discovered a parametric subharmonic instability that can damp inertial

waves locally as opposed to remotely (i.e. after propagation to lower latitudes, (e.g.
Nagasawa et al. 2000)). For the instability to develop, both inertial and thermal
wind shear must be present, since the latter can lower the minimum frequency of
inertia–gravity waves (1.1) to a subharmonic of the inertial frequency. The instability
is predicted to form when the Richardson number of the geostrophic flow nears a
critical value, RiPSI (2.15), which is a function of the initial value of the inertial shear.

A stability analysis involving plane-wave perturbations with streamlines parallel
to isopycnals confirms this prediction and elucidates the growth mechanism of the
instability. The parametric subharmonic instability extracts kinetic energy from the
inertial motion through shear production associated with wave momentum fluxes.
While the ageostrophic shear changes sign during the inertial cycle, the wave
momentum flux is of a single sign determined by the isopycnal slope. In spite of the
variable shear, the growing perturbations are able to maximize shear production by
modulating the amplitude of the momentum flux so that it is strongest (weakest) when
the momentum flux is directed down (up) the gradient in momentum of the inertial
current. This requires a particular phase relation between the perturbation and inertial
motion that can be attained when the frequency of the perturbation inertia–gravity
wave is a subharmonic of the inertial frequency, hence the parametric subharmonic
instability.
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FIGURE 6. Visualizations of the cross-front velocity (colour shading) and isopycnals
(white contours) from the numerical simulation highlighted in bold in table 1. (a) A time
during the linear phase of the instability, with nearly along-isopycnal motion, and at times
of maximum (left) and minimum (right) stratification. (b) Again times corresponding to
minimum and maximum stratification, but now at a later time immediately following the
onset of a secondary shear instability.

Numerical simulations initialized with random noise rather than plane waves
develop a growing mode with phase lines parallel to isopycnals when the instability
criterion is satisfied in accordance with the theory. The growing parametric subharmonic
instability damps the inertial motion at rates in agreement with the stability analysis,
but when it reaches finite amplitude it develops secondary shear instabilities that
dissipate its kinetic energy and mix density. We would like to emphasize that these
shear instabilities would not form in the absence of the parametric subharmonic
instability because the minimum Richardson numbers of the combined geostrophic
and inertial motions considered here are above the criterion for Kelvin–Helmholtz
instability (the gradient Richardson number is greater than 1/4 everywhere in the
flow). By enhancing the vertical shear, the growth of the parametric subharmonic
instability lowers the gradient Richardson number to subcritical values, thereby
opening a pathway to turbulence where kinetic energy in inertial motions is transferred
to small scales and dissipated.

Where might this form of parametric subharmonic instability occur in the ocean?
The instability requires a baroclinic, geostrophic current and hence a horizontal
buoyancy gradient. Such gradients are concentrated at ocean fronts, which are a
ubiquitous feature of the upper ocean as evidenced by the observed, near universal
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−2 scaling law for the slope of horizontal wavenumber spectra of buoyancy in the
mixed layer (e.g. Fox-Kemper et al. 2011, and references therein). Thus thermal wind
shear is found throughout the upper ocean. However, for the parametric subharmonic
instability to develop the thermal wind shear must be accompanied by relatively weak,
but non-zero, stratification so that the Richardson number of the geostrophic flow
satisfies the instability criterion (2.15). Such conditions are likely to be found beneath
the surface mixed layer and above the strongly stratified pycnocline. It is precisely in
this region where inertial shears are observed to be strongest and where much of the
near-surface dissipation of inertial motions is thought to occur (Plueddemann & Farrar
2006), and it is possible that the parametric subharmonic instability described here
contributes to this dissipation. However, to investigate this possibility more fully, the
effects on the instability of spatially-varying stratification and shear, and the presence
of a boundary should be studied.

In addition, it would be of interest to extend the analysis to fully three-dimensional
disturbances as it may yield a richer set of instabilities. For example, it is known that
oscillatory, sheared equatorial flows develop two-dimensional parametric subharmonic
instabilities that feed off of inertial motions (e.g. d’Orgeville & Hua 2005) as well
as three-dimensional instabilities that involve resonant interactions of inertia–gravity,
Kelvin and Rossby waves (Natarov & Richards 2009). While Kelvin and Rossby
waves are absent in the mid-latitude, open-ocean, f -plane applications considered
here, it is possible that edge waves that form in the presence of a horizontal density
gradient and a boundary could resonantly interact with inertia–gravity waves and
result in analogous three-dimensional instabilities.

To conclude we would like to comment on the dependence of the instability
criterion (2.15) on the initial direction of the inertial shear. This dependence arises
because the inertial shear modulates the potential vorticity. Although built into the
initial conditions of our simplified model, in reality the potential vorticity of the
flow is set by frictional or diabatic processes. Frictional forces associated with winds
are particularly effective at modifying the potential vorticity of baroclinic currents
for certain wind directions (e.g. Thomas 2005), and if these forces are temporally
variable, they can generate inertial motions as well. Therefore, at wind-forced fronts
the development of parametric subharmonic instability will probably depend on the
wind’s direction relative to the front and its time history. Fleshing out this story and
understanding the dynamics of parametric subharmonic instability at a front actively
forced by winds will be the subject of a future study.
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