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type instabilities
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This paper is devoted to the effects of rotation on the linear dynamics of two-dimensional vortices.
The asymmetric behavior of cyclones and anticyclones, a basic problem with respect to the
dynamics of rotating flows, is particularly addressed. This problem is investigated by means of
linear stability analyses of flattened Taylor–Green vortices in a rotating system. This flow
constitutes an infinite array of contra-rotating one-signed nonaxisymmetric vorticity structures. We
address the stability of this flow with respect to three-dimensional short-wave perturbations via both
the geometrical optics method and via a classical normal mode analysis, based on a matrix
eigenvalue method. From a physical point of view, we show that vortices are affected by elliptic,
hyperbolic and centrifugal instabilities. A complete picture of the short-wave stability properties of
the flow is given for various levels of the background rotation. For Taylor–Green cells with aspect
ratio E52, we show that anticyclones undergo centrifugal instability if the Rossby number verifies
Ro.1, elliptic instability for all values of Ro except 0.75,Ro,1.25 and hyperbolic instability. The
Rossby number is here defined as the ratio of the maximum amplitude of vorticity to twice the
background rotation. On the other hand, cyclones bear elliptic and hyperbolic instabilities whatever
the Rossby number. Besides, depending on the Rossby number, rotation can either strengthen
~anticyclonic vortices! or weaken elliptic instability. From a technical point of view, in this article
we bring an assessment of the links between the short-wave asymptotics and the normal mode
analysis. Normal modes are exhibited which are in complete agreement with the short-wave
asymptotics both with respect to the amplification rate and with respect to the structure of the
eigenmode. For example, we show centrifugal eigenmodes which are localized in the vicinity of
closed streamlines in the anticyclones; elliptical eigenmodes which are concentrated in the center of
the cyclones or anticyclones; hyperbolic eigenmodes which are localized in the neighborhood of
closed streamlines in cyclones. ©1999 American Institute of Physics.@S1070-6631~99!00912-5#
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I. INTRODUCTION

Rotation strongly affects the evolution and properties
three-dimensional turbulence. In a rotating tank, Hopfing
Browand and Gagne1 observe the rapid formation of cohe
ent structures, which are quasi two-dimensional vorti
aligned with the rotation axis. These structures, which do
emerge in the nonrotating case, comprise intense cycl
vortices and~much! weaker anticyclonic vortices. The ex
periments of Kloosterziel and van Heijst2 also showed a
strong asymmetry in behavior between released cyclones
anticyclones: the cyclones remain two-dimensional at
times whereas anticyclones are first disrupted into 3D tur
lence and 2D columnar structures then re-emerge after s
time. The Rayleigh centrifugal instability,2,3 which is a three-
dimensional mechanism, is responsible for these phenom
The dynamics of such an instability may be captured b
model based on a single-signed vorticity structure, as,
example, in the numerical simulations by Carnevaleet al.4 A
2D barotropic instability5,6 which is governed by Rayleigh’s
‘‘inflection point’’ criterion may also develop in an isolate
vortex which has zero net circulation~multiple-signed vor-
ticity structures!. This 2D mechanism of instability does no
differentiate cyclones and anticyclones which both can
3711070-6631/99/11(12)/3716/13/$15.00
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dergo barotropic instability. In experiments, this barotrop
instability is only observed in cyclones where multipoles a
generated, anticyclones being dominated by the 3D centr
gal instability described above~see Orlandi and Carnevale7!.

In the present paper we focus on the link between lin
stability and the asymmetric behavior between cyclones
anticyclones. Fully 3D perturbations have therefore to
considered. In this article, we will focus on short-wave p
turbations. These short-wave instabilities are analyzed
rotating Taylor–Green flow which is an array of contr
rotating single-signed vortices. Two different techniques
used: the geometrical optics method and a normal m
analysis. In the geometrical optics method introduced
Eckhoff8 and Lifschitz and Hameiri,9 a localized short-wave
perturbation is characterized by a wavevectork and an am-
plitude vectora, that we follow along the particle trajectorie
of the flow. The flow is unstable if there exists a streamli
on which a particular solutiona(t) grows unboundedly ast
→`. The classical normal mode analysis considers nor
modes of the form (u8,p8)5(ũ,p̃)exp(ikz)exp(st) wherek is
the vertical wavenumber ands the complex amplification
rate, the flow lying in the (x,y) plane orthogonal to the ro
tation axis. The flow is unstable if a normal mode exhibits
complex amplification rates which has a positive real part
6 © 1999 American Institute of Physics
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3717Phys. Fluids, Vol. 11, No. 12, December 1999 Vortices in rotating systems: Centrifugal, elliptic . . .
Note that the eigenmode (ũ,p̃) has to be square integrabl
otherwise it belongs to the continuous spectrum.

Physically, the short-wave instabilities can be explain
by local vorticity stretching. Three different types of sho
wave instabilities exist, the elliptic, hyperbolic and centrif
gal ones, depending on the stretching directions. Ellip
instability9–13 occurs on elliptically shaped streamlines a
hyperbolic instability9,14–18takes place at hyperbolic stagn
tion points. The extension to rotating systems has been d
in Refs. 19–22 for elliptic instabilities and in Refs. 22–2
for hyperbolic instabilities. Differentiation between cyclon
and anticyclones appears for elliptic instability but not f
hyperbolic instability if the hyperbolic points are irrotation
~which is the case with the Taylor–Green flow!. Centrifugal
short-wave instabilities were first identified by Bayly25 who
generalized the classical Rayleigh centrifugal instability c
terion to general nonaxisymmetric plane flows. The ext
sion to the rotating case has been achieved in Ref. 26.

In this article, we consider the Taylor–Green vortices
a rotating frame and characterize its short-wave stab
properties for various levels of background rotation. T
will enable us to differentiate the dynamics of cyclones a
anticyclones through the determination of the stable and
stable regions in the parameter space. The choice of
Taylor–Green flow will also enable us to assess the imp
of the nonaxisymmetry of the vortices. It should be not
that nearly all stability studies in the present field are c
straint to circular vortices. Hence, elliptic and hyperbo
type instabilities, which are intrinsically nonaxisymmetr
are always left aside and only circular centrifugal type ins
bilities are usually considered. Secondly, an important qu
tion concerns the link between the short-wave asympto
and the normal mode analysis. In this article we aim at g
ing a further assessment of this link. Partial results exist
this point. In a specific case, Bayly25 explained how the
short-wave asymptotics formalism could be used to const
localized amplified normal modes. Direct comparisons
tween linearized direct numerical simulation results a
short-wave asymptotics’ results have also shown27 a qualita-
tive agreement between the two approaches. Qualitative
quantitative agreement has been obtained28 for elliptic insta-
bility occurring in the center of flattened Taylor–Green vo
tices. But a general theory making the link between
short-wave asymptotics and a normal mode analysis is
lacking.29,30 The paper is organized as follows. After a bri
description of the Taylor–Green flow, Sec. III is devoted
the short-wave asymptotics which will give a complete p
ture of the short-wave stability properties of both cyclon
and anticyclonic vortices. These results are then compare
a normal mode analysis in Sec. IV. There, we try to mak
general assessment on the link between the short-wave
ymptotics and a normal mode analysis.

II. THE TAYLOR–GREEN FLOW

We consider the Taylor–Green flow which is charact
ized by thex andy periodicities 2pa and 2pb and the maxi-
mum vorticityW.0 ~see Fig. 1!. The corresponding stream
function is
Downloaded 08 Oct 2004 to 128.103.60.225. Redistribution subject to AI
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c~x,y!5
W

1/a211/b2
sin

x

a
sin

y

b
. ~1!

This is an exact solution of the inviscid Euler equations in
frame rotating at the angular velocityV, which will be con-
sidered as positive. The dimensionless parameters are
following: the aspect ratioE5a/b, the Reynolds Number
Re5a2W/n and the Rossby number Ro5W/2V. In the fol-
lowing, we takeL5a andT5W21 as unit length and time
scales. The nondimensional streamfunction is thus given
c5(sinxsinEy)/(11E2) and the nondimensional linearize
Navier–Stokes equations read as

]u8

]t
1u8•¹u1u•¹u852¹p82

1

Ro
ez3u81

1

Re
Du8,

~2!

¹•u850, ~3!

whereu is the 2D basic flow related to the above strea
function c and (u8,p8) are the 3D perturbations.

III. THE SHORT-WAVE ASYMPTOTICS

A. Presentation

In this section, we study the short-wave stability prop
ties of the steady Taylor–Green flowu(x). Following
Lifschitz and Hameiri,9 we consider a rapidly oscillating lo
calized perturbation subject to rotation 1/Ro evolving alo
the trajectoryx(t) and characterized by a wavevectork(t)
and a velocity envelopea(t). These quantities are governe
by the following set of ordinary differential equations, whic
evolve along particle trajectories:

dx

dt
5u~x!, ~4!

dk

dt
52L T~x!k, ~5!

da

dt
5S 2kkT

uku2
2IDL~x!a1

1

RoS kkT

uku2
2ID ez3a, ~6!

whereL5¹u designates the velocity gradient tensor of t
basic flow,I the identity tensor and the superscriptT the

FIG. 1. The Taylor–Green flow: iso-values of the vorticityz. This station-
ary basic flow forms a 2D array of contra-rotating vortices. The magnit
of the vorticity in the center of the vortices isW, the periodicities in thex
andy directions are 2pa and 2pb, respectively, and the background rota
tion is V. E5a/b is the aspect ratio. CaseE52.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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transpose. Lifschitz and Hameiri9 proved that a sufficient cri-
terion for instability is that this system has at least one so
tion for which the amplitudea(t) increases unboundedly a
t→`.

We restrict our analysis to the streamlines belonging
the two cells (2p<x<0, 0<y<p/E) and (0<x<p, 0
<y<p/E). As the problem is symmetric with respect to th
transformationx→2x, y→2y andz→z, it is then easy to
deduce the results for the two other cells (2p<x<0,
2p/E<y<0) and (0<x<p, 2p/E<y<0). All stream-
lines are closed except those bounding the cells. Each cl
streamline will be referred to in the following by its stream
function valuec and the corresponding time-period is not
T(c). The maximum value ofucu, cm51/(11E2), is
reached in the center of the vortices. Let us introducec̃

5c/cm . With Ro.0, the streamlinec̃521 corresponds to
the center of the anticyclonic vortex~left cell! whereasc̃
511 refers to the center of the cyclonic vortex~right cell!.
c̃50 denotes the cell-bounding streamlines.

In the case of closed streamlines, the differential eq
tions ~5! and~6! may be investigated by means of a Floqu
theory by integrating the equations over one period. The
gin of the streamline c̃ is defined by x(t50)
5@arcsinc̃,p/(2E)#. It is sufficient to consider the casek(t
50)•ey50 since28 the other perturbations die out because
viscosity. Furthermore, the differential equation~6! for a(t)
is independent of the wavenumberuku. Therefore results only
depend on the co-latitude angleu of the initial wavevector
k(t50)5sin(u)ex1cos(u)ez . The stability properties of the
streamlinec̃ are then characterized by the 3 eigenvalues
the fundamental Floquet matrix associated to Eq.~6!. It can
be shown that one of them is 1 and that the other two m
multiply to 1. Hence, the associated Floquet expone
which are the natural logarithms of these eigenvalues divi
by the turnaroundT(c), ares1 , s2 ands350 with the fol-
lowing properties: in the case of instability,s15s, s2

52s with s.0; in the case of stability,s15 iv,
s252 iv with v.0.

Finally, the co-latitude angleu of the wave-vector att
50 is taken in the interval@0,p/2# since the Floquet expo
nents are invariant with respect to the transformatio
u→2u andu→p2u. Given a streamlinec̃ and a co-latitude
angleu, we now determine the numerical value of the re
part of the Floquet exponents(c̃,u). The stability properties
of the rapidly oscillating localized perturbations will ther
fore be characterized.

B. Results

Numerical results of the short-wave analysis are
tained by integrating numerically the equations~4!, ~5! and
~6! by means of a classical fourth-order Runge–Ku
scheme. The results concerning the caseE52 are given in
Fig. 2 for various values of the Rossby number: R
50.4,1.25,2,4,7,25,100,10000. For each Rossby number
have sketched in the (c̃,u) plane the iso-values of the am
plification rates(c̃,u). Each plot gives an exhaustive pic
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ture of the short-wave stability properties of the Taylo
Green flow, since the streamlines21<c̃,0 correspond to
the anticyclonic vortex and the streamlines 0,c̃<1 refer to
the cyclonic vortex.

For weak background rotations Ro510000, the plot is
symmetric with respect toc̃50. This means that anticy
clones and cyclones behave similarly. But as the Ros
number decreases, this symmetry is broken so that the li
dynamics of anticyclones and cyclones differ.

The three different kinds of short-wave instabilities a
present~elliptic, hyperbolic and centrifugal instabilities!.

1. The elliptic instability

In the case Ro510000, the cyclones and the antic
clones bear the well-known elliptic instability.11,13,19,20This
instability is related to the elliptic shape of the streamlines
the center of the vortices. Only the perturbations withu com-
prised in a given interval aroundu50.9 are unstable. This
case has been thoroughly investigated in Ref. 28.

When Ro decreases, we can follow the elliptic unsta
regions in each cell:

~i! in the cyclonic vortices, the elliptic instability weak
ens as the background rotation increases: the unst
u interval shrinks and the instability affects perturb
tions with increasing values of the co-latitude angleu.
Nevertheless, this instability never vanishes and
clonic vortices are always elliptically unstable wha
ever the Rossby number;

~ii ! in the anticyclonic vortices, the trend is opposite:
the Rossby number decreases, the unstableu interval
moves towardsu50 and the maximum value of th
amplification rates, which is obtained for a given
value ofu for the streamlinec̃521, first increases to
the value 0.3 obtained for Ro52, then decreases dow
to zero for Ro51.25. Below this Rossby number, th
elliptic instability does not affect anymore the antic
clonic vortex until Ro50.75. The flow then become
elliptically unstable again~see the case Ro50.4!.

These features are summarized in Fig. 3. In the up
plot, we have sketched the maximum value ofs, which is
obtained in the center of the vorticesc̃561, versus the
Rossby number. In the lower plot, we have figured the c
responding u angle where the above maximum occu
Hence, as the Rossby number decreases, elliptic instabili
first strengthened in anticyclonic vortices; then it weake
before vanishing below Ro51.25. At Ro50.75, it re-
emerges and is maintained down to Ro50 wheres→0.074.
This is a striking feature21,31 which is observed also in the
cyclones where the background rotation only weakens
elliptic instability without killing it. Note that these result
are in accordance with those of some previously publis
articles: the case Ro50 has already been considered
steadily rotating Kirchhoff–Kida vortices21 and the so-called
‘‘spanwise’’ perturbations~u50! have been investigated i
Ref. 24.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Short-wave stability properties
of the Taylor–Green flow for various
Rossby numbers. Each plot sketch
the iso-values of the real part of th

Floquet exponents in the (c̃,u)
plane. CaseE52.
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2. The centrifugal instability

The centrifugal instability only affects anticyclonic vo
tices. Weak anticyclones~Ro,1! are not affected by this
instability. But, as Ro.1, an unstablec̃ interval appears~see
the Ro51.25 case! in the center of the anticyclonic vorte
(c̃521) with maximum instability occurring for spanwis
perturbations~u50!. As the Rossby number increases, t
instability strengthens and moves out~see the Ro52 case!
towards the bounding streamline (c̃50). One of the bounds
of the unstablec̃ interval always corresponds to the strea
line where the sign of the absolute vorticityz12V changes
~z denotes the vorticity on the streamlinec̃!. This result is in
accordance with Ref. 26 where it has been conjectured th
flow with closed streamlines is centrifugally unstable if t
sign of the absolute vorticity changes somewhere in the fl
Physically, the centrifugally unstable streamlinesc̃ are char-
acterized by the negativity of the following quantity som
where alongc̃:

d~x,y!52S V

R 1V D ~z12V!, ~7!

whereV is the local norm of the velocity andR the local
algebraic radius of curvature.26 This is a local form of the
axisymmetric criterion of instability given by Kloosterzie
and van Heijst.2

FIG. 3. Elliptic instability: short-wave stability results obtained in the cen

of the vorticesc̃561. The upper plot sketches the maximum amplificati
rates over the co-latitude angleu versus the Rossby number. The lower pl
figures the correspondingu angle.
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3. The hyperbolic instability

The classical hyperbolic instability9,17,22,24is obtained at
the hyperbolic stagnation points of the flow with spanw
perturbations~u50!. For E52, the corresponding amplifica
tion rate is the following: s(c̃50,u50)
50.4A12(2.5/Ro)2 if Ro.2.5. The flow is hyperbolically
stable on the stagnation points for lower Rossby number

In the case of weak background rotation~high Ro!, only
the streamlinec̃50 bears the hyperbolic instability.28 But as
Ro decreases, streamlines nearc̃50 become affected: this
can be seen, for example, in the case Ro57 where a large
number of closed streamlines are hyperbolically unsta
both in the cyclonic and in the anticyclonic vortices.

For Ro,2.5, spanwise perturbations are not unsta
anymore on the hyperbolic stagnation points. But the vo
ces still exhibit unstable streamlines nearc̃50 but at high
co-latitude anglesu.

IV. NORMAL MODE ANALYSIS

Thanks to the short-wave asymptotics, we have co
pletely characterized the short-wave stability properties
the Taylor–Green flow. In this section, we make a thorou
investigation of the correspondence between the short-w
asymptotics and a normal mode analysis by means of a
trix eigenvalue method. For the specific case of spanw
perturbations~u50!, Bayly showed explicitly how norma
modes could be constructed from the short-wave asympto
results. Section IV A is devoted to the results that can
obtained with this formalism. Other correspondences are
dressed in Sec. IV B where the matrix eigenvalue metho
developed. There, we will first try to retrieve the featur
obtained in Sec. IV A for spanwise perturbations, then try
make a further assessment on the link between the sh
wave asymptotics and the normal mode analysis.

A. The spanwise centrifugal and elliptic instabilities
in the anticyclonic vortex

In the specific case of spanwise perturbations~u50!,
Bayly25 explained how the short-wave asymptotics form
ism could be used to construct localized amplified norm
modes. As shown in Appendix A, if the short-wave ampli
cation rate s~c! of the spanwise perturbations verifie
s8(c0)50 and s9(c0),0 for some streamlinec0 then a
family (n50,1,2, . . . ) of normal modes localized in the
neighborhood of the streamlinec0 could be constructed. The
amplification ratesn of each membern of this family be-
haves assn5s(c0)2mn /k with mn5(2n11)m0 wherem0

is a positive constant. Hence, a local maximum ofs~c,u50!
nearc0 is related to an infinite set of localized eigenmod
near c0 . The amplification rates of all these eigenmod
converge towards the short-wave values(c0 ,u50) as k
→`.

In this section, we apply this formalism and look fo
streamlinesc0 wheres8(c0)50 ands9(c0),0. In Fig. 2,
we can see that this happens in the anticyclonic vortex
the centrifugal instability~case Ro52! and also for the span
wise elliptic instability ~case Ro57!. We now vary the

r
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Rossby number and follow these streamlines. For e
Rossby number we have sketched in Fig. 4, the location
these streamlinesc̃, the corresponding amplification rates
and the eigenvalue convergence parameterm0 . The follow-
ing conclusions can be drawn from these plots: if 1,Ro
,3.2, we can explicitly construct centrifugal normal mod
and if Ro.3.2, we can build elliptic normal modes.

It can also be shown that the centrifugal normal mod
are odd with respect to the center of the anticyclonic vor
and that the elliptic normal modes are even. This comes f
the symmetry properties of the basic flow which indu
analogous symmetries for the normal modes. These sym
tries — even or odd — were depicted in Fig. 2 in the ca
Ro52 and Ro57.

FIG. 4. Spanwise~u50! centrifugal and elliptic instabilities in the anticy
clonic vortex for various Rossby numbers. The upper plot gives the stre

line c̃ in the neighborhood of which the eigenmode is constructed@s8(c̃)

50 ands9(c̃),0]. Middle plot: corresponding amplification rates. Lower
plot: eigenvalue convergence parameterm0 of the n50 branch.
Downloaded 08 Oct 2004 to 128.103.60.225. Redistribution subject to AI
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B. The matrix eigenvalue method

The technical presentation of the matrix eigenva
method is given in Appendix B. For a given set of values
the aspect ratioE, the Rossby number Ro, the wavenumbek
and the Reynolds number Re, a discrete spectrum
eigenvalues/eigenvectors is obtained. This discrete spec
can be decomposed into four independent subsets referre
two parametersa561 and b561. This decomposition
comes from the fact that the eigenmodes are either eve
odd both with respect to the center of the vortices and w
respect to the origin.

The three basic short-wave instabilities~centrifugal, el-
liptic and hyperbolic ones! are now successively investigate
by means of the matrix eigenvalue method. In each case
show typical eigenmodes obtained for a given value of
wavenumberk. The precise convergence properties ask
→` are postponed to Appendix C.

1. Centrifugal instabilities

Centrifugal instabilities are investigated for Ro52. The
short-wave results were reported in Fig. 2. Figure 4 gives
characteristics of the normal modes deduced from Bay
formalism. The Reynolds number is Re5` and the spatial
resolution of the matrix eigenvalue method is:260<m,n
<60. The spatial energy repartition of the most unsta
centrifugal eigenmode of the~a521, b511! subset is
given in Fig. 5 fork520. This eigenmode is both odd wit
respect to the origin and the center of the anticyclonic vo
ces. A dashed line sketches the streamlinec̃520.3558
where the eigenmode should be localized, according to
4. We can see that the two results agree very well. A deta
comparison of the internal spatial structure of the eigenm
shows that there is a complete accordance between the e
mode constructed with Bayly’s method and the eigenmo
obtained by the matrix eigenvalue method. The amplificat
rate of the eigenmode iss50.107 which has to be compare
to the value obtained with Bayly’s formalism (n50) for k
520: s50.128320.4913(2•011)/2050.104.

The precise convergence properties ask increases are
investigated in Appendix C 1. There we identify the first
members of the family of eigenmodes (n50,1,2) whose am-
plification rates converge towards a single value ask→`:
both the short-wave amplification rates(c̃) and the eigen-
value convergence parametersmn are retrieved by the matrix
eigenvalue method.

2. Elliptic instabilities

The elliptic instabilities are investigated with Ro57. The
short-wave results were reported in Figs. 2 and 3. T
streamlinec̃511 of the cyclonic vortex is unstable with
amplification rates50.1387 and the streamlinec̃521 of
the anticyclonic vortex is unstable with amplification rates
50.1754. The short-wave asymptotics shows that the per
bations are not spanwise since the maximum of instability
reached in the center of the vortices for high values of
co-latitude angleu. Bayly’s analysis of Sec. IV A can there
fore not be applied and precise convergence propertiesk
→` are lacking in this case.

-
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FIG. 5. Energy repartition of a typica
centrifugal unstable normal mode ob
tained by the matrix eigenvalue
method. The dashed white line

sketches the streamlinec̃520.3558
in the vicinity of which Bayly’s
method enables us to construct asym
totically the centrifugal unstable nor
mal mode. This mode is odd both with
respect to the origin~a521! and with
respect to the center of the anticy

clonic vortexc̃521 ~ab521!.
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The matrix eigenvalue method is conducted with~a
521, b521!. The eigenmodes are odd with respect to
origin but are even with respect to the center of the vortic
The spatial resolution is fixed to250<m,n<50 and Re5`.
In the casek510, Fig. 6 depicts the spatial energy repar
tion of the most amplified elliptic unstable modes: the up
plot is relative to elliptic instability in the anticyclonic vorte
whereas the lower plot concerns the cyclonic case. We
see two eigenmodes which are concentrated in the cent
the vortices (c̃561). Plots of the vertical vorticity pertur
bation show a dipole structure that is typical of elliptic
eigenmodes.11,13,28The amplification rates,s50.129 for the
cyclonic mode ands50.165 for the anticyclonic mode ar
close to the values predicted by the short-wave asympto

The convergence properties ask→` are analyzed in Ap-
pendix C 2. We show that the structure of the problem is
same as in Sec. IV A: an infinite number of branchesn
50,1,2, . . . ) actually converge toward the predicted ma
mum short-wave amplification rates(c̃)561 and a single
relation for the amplification ratessn fits all the results:sn

5s(c̃561)2mn /k with mn5(2n11)m0 andm0.0.
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3. Hyperbolic instabilities

The hyperbolic instabilities are investigated for Ro57.
In Sec. III B 3, we established that the hyperbolic stagnat

points were unstable, with amplification rates(c̃50,u50)
50.3736 if Ro57. Again, Bayly’s formalism of Sec. IV A
cannot be applied so that a clear link between this sh
wave result and a normal mode analysis does not exist. H
as a result, we could not identify any normal mode who
amplification rate converges toward this last value ask in-
creases. But we have to be very cautious in the interpreta
of this result since the explored vertical wavelengths are
that high (k<40) and the available resolution is quite limite
260<m,n<60.

In the case Ro57 ~Fig. 2!, we can also see that close
streamlines bear the hyperbolic instability: both the cyclon
and the anticyclones undergo instability for streamlin

which are close to the bounding streamlinec̃50. Here,
streamlines withs8(c0)50 and s9(c0),0 do not exist.
We can again not apply the results of Sec. IV A, i.e., co
struct a family of eigenmodes which concentrate along
-

-

FIG. 6. Energy repartition of two typi-
cal elliptic unstable normal modes ob
tained by the matrix eigenvalue
method: the upper plot refers to an an

ticyclonic mode (c̃521) whereas the

lower plot is a cyclonic mode (c̃5
11). These modes are odd~a521!
with respect to the origin but even~ab
511! with respect to the center of the

vorticesc̃561.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. Energy repartition of a cy-
clonic unstable normal mode obtaine
by the matrix eigenvalue method fo
k520 andk530. It is the same eigen-
mode but for differentk. The dashed

white lines sketch the streamlinesc̃

50.515 ~upper plot! and c̃50.413
~lower plot! where the short-wave as
ymptotics predicts the same amplifica
tion rate for spanwise perturbations a
the matrix eigenvalue method. Thes
modes are both odd with respect to th
origin ~a521! and with respect to the

center of the cyclonic vortexc̃51
~ab521!.
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single c0 and whose amplification rates converge towa
s(c0) ask→`.

The matrix eigenvalue method is conducted with~a
521, b511! so that the eigenmodes are both odd w
respect to the origin and the center of the vortices. The R
nolds number is Re5` and the spatial resolution accoun
for 260<m,n<60. In the casek520, we identified three
cyclonic unstable normal modes which are localized alo
closed streamlines and whose amplification rates
s50.0716,s50.110 ands50.1464. The first one is repre
sented in the upper plot of Fig. 7. The white dashed l
represents the streamlinec̃50.515 where the short-wave a
ymptotics predicts instability~for spanwise perturbations!
with the same amplification rate as the one given by
matrix eigenvalue methods50.0716. We can notice that th
spatial localization of the eigenmode corresponds appr
mately to that streamline. The two linear approaches
therefore in accordance. The same conclusions can be d
from the analysis of the spatial structure of the other t
eigenmodes. The only difference is that the eigenmodes
localized along streamlines which are closer to the bound
streamlinec̃50. But again, agreement between the two l
ear approaches is achieved.

As seen in Appendix C 3, here the convergence prop
ties are different from the standard spanwise case of S
IV A, where the normal modes concentrate in the neighb
hood of a single streamline whenk increases. In the presen
case, we observe that, ask increases, unstable normal mod
appear in the center of the vortex nearc̃50.55 and then
move outward towardsc̃50 ~see lower plot of Fig. 7!. For
each value of the wavenumberk, agreement is obtained be
tween the short-wave asymptotics and the normal m
analysis.
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V. CONCLUSION

In this article, we have studied the short-wave line
dynamics of the Taylor–Green flow in a rotating system
means of the geometrical optics method and a classical
mal mode analysis.

In Sec. III, we have given a complete picture of th
short-wave stability properties of the Taylor–Green flow f
various Rossby numbers. For high Rossby numbers, it
been shown that cyclones and anticyclones behave simi
and that elliptic instability occurs in the center of the vor
ces. Hyperbolic instability affects the hyperbolic stagnati
points but not the closed streamlines.

When the level of background rotation increases, the
clones and the anticyclones behave differently. The ellip
instability is first strengthened in the anticyclones, its amp
fication rate reaching its maximum value for Ro52. Then the
amplification rate decreases and vanishes for Ro51.25. Be-
low this value, elliptic instability does not affect the antic
clones until Ro50.75 where it re-emerges again. On t
other hand, rotation only weakens elliptic instability in c
clones. We note that for Ro50, the cyclones and the anticy
clones are still unstable with a finite value of the amplific
tion rate.

If Ro.1, an interval of unstable streamlines appears
the center of the anticyclones. This unstable region co
sponds to centrifugal instabilities as shown in Ref. 26. As
Rossby number increases, the amplification rate increa
and the unstable region moves out towards the bound
streamlinec̃50.

Concerning the hyperbolic instability, the amplificatio
rate on the hyperbolic stagnation points decreases as
level of background rotation increases. But in the same ti
closed streamlines become affected by this instability both
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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the cyclones and in the anticyclones. If Ro,2.5, hyperbolic
instability vanishes for spanwise perturbations but survi
for high co-latitude anglesu.

In Sec. IV A, we have used the short-wave formalism
construct localized normal modes in the vicinity of som
streamlines, following Bayly’s formalism.25 This amounts to
considering streamlinesc where the amplification rates~c!
of spanwise perturbations~u50! is such that:s8~c!50 and
s9~c!,0. We have found that localized centrifugal norm
modes can be constructed if 1,Ro,3.2 and localized elliptic
normal modes if Ro.3.2.

In Sec. IV B, a matrix eigenvalue method is used in
der to compare the results of a direct normal mode anal
with those of the short-wave asymptotics. The centrifu
normal modes in the case Ro52 have been retrieved an
their characteristics~amplification rate and spatial structur!
are in accordance with the results of Sec. IV A. The hyp
bolically unstable closed streamlines of the cyclones in
case Ro57 also correspond to localized normal mod
whose characteristics agree with the short-wave results.
the convergence properties are not the same as before:k
→`, localized eigenmodes emerge in the center of the
clones aroundc̃50.55 and move out towards the boundin
streamlinec̃50. Results of the hyperbolic instability on th
stagnation points have not been retrieved: higher vert
wavenumbers should be explored but this requires very h
resolution. The short-wave results for elliptic instability
the center of both the cyclones and the anticyclones for
case Ro57 are in complete agreement with the normal mo
analysis: typical elliptic normal modes with amplificatio
rates converging towards the short-wave amplification ra
ask→` have been identified.

In brief, from a physical point of view, we have ident
fied the three basic short-wave instabilities that affect ro
ing vortices. Critical values of the Rossby number Ro ha
been obtained: for example, the value Ro51 marks the de-
parture of centrifugal instability in anticyclones, the val
Ro52 corresponds to the maximum value of the amplific
tion rate obtained with elliptic instability in anticyclone
From a technical point of view, we have seen that the sh
wave asymptotics and the normal mode analysis are in ag
ment for centrifugal instability, for elliptic instability occur
ring in the center of the vortices and for hyperbo
instability developing on closed streamlines. In each ca
we have seen that normal modes could be associated to
results given by the short-wave asymptotics.

APPENDIX A: CONSTRUCTION OF NORMAL MODES
FOR SPANWISE PERTURBATIONS

In this section, we show how the short-wave asympto
can be used to construct normal modes in the specific cas
spanwise perturbations~u50!. We follow Bayly’s
formalism25 and extend it to the rotating case which is co
sidered here.

Normal modes are sought in the usual way by consid
ing a vertical wavelengthk and a complex amplification rat
s: (u8,p8)5@ ũ(x,y),p̃(x,y)#exp(ikz1st). The main idea is
to use a particular vector field basisf i for the representation
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of the eigenmode ũ(x,y): ũ(x,y)5ũ(x,y)f1(x,y)
1 ṽ(x,y)f2(x,y)1w̃(x,y)f3(x,y). f i(x,y) is a vector field
which diagonalizes the inertial operatoru•¹( )1( )•¹u
1Ro21ez3( ). f i is constructed using the eigenvaluessi(c)
and the eigenvectors of the fundamental Floquet matrix
sociated to the differential equation~6! obtained with span-
wise perturbations.

In the following, we choose a streamlinec0 where the
above Floquet exponentssi(c0) are all real: s1(c0)
5s(c0), s2(c0)52s(c0) and s3(c0)50 where s(c0)
.0. This means that the inertial operatoru•¹( )1( )•¹u
1Ro21ez3( ) has an unstablef1 direction. We also suppos
thats(c) takes a quadratic maximum on the streamlinec0 ,
i.e., s8(c0)50 and2s9(c0).0.

In the limit k→`, the eigenmodes are sought with th
following asymptotic behavior ink:

ũ~h!5U~h!, ṽ~h!5k21V~h!,
~A1!

w̃~h!5k21/2W~h! and p̃~h!5k23/2P~h!,

whereh5k1/2(c2c0) is a re-scaled streamfunction coord
nate which enables us to focus in the vicinity of the strea
line c0 . The dominant part of the eigenvector is therefo
along the unstablef1 direction of the inertial operatoru
•¹( )1( )•¹u1Ro21ez3( ).

The scaling of the eigenvalues is as follows:

s5s~c0!2
m

k
, ~A2!

wherem is a constant to be determined. Hence, ask→`, the
amplification rate of the constructed eigenmodes converges
to the predicted maximum value of the short-wave analy
s(c0). This convergence is achieved with a slope given
the parameterm, which can be called an eigenvalue conve
gence parameter.

Introducing this expansion in the linearized Euler equ
tions, we are led to the quantum harmonic oscillator:23,32

d2U
dh2

1S m

C~c0!
2l2h2DU50, with U~6`!50,

~A3!

where

l252
s9~c0!

2C~c0!
, ~A4!

C~c0!5
1

T~c0!
E

0

T(c0)

~ f1
†
•¹c!Fs~c0!1

d

dtG~ f1•¹c!dt.

~A5!

In these equations,f i
†(x,y) is the adjoint vector field corre

sponding tof i(x,y): f i
†(x,y)•f j (x,y)5d i j .

Provided that2s9(c0) and C(c0) are both positive
(l2.0), then this equation will have an infinite number
localized eigenfunctions (n50,1,2, . . . ) whose amplifica-
tion ratessn5s(c0)2mn /k converge towardss(c0) as k
→`:
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Un~h!5Hen~A2lh!expS 2
lh2

2 D , ~A6!

mn5~2n11!m0 , ~A7!

m05lC~c0!, ~A8!

where Hen is the Hermite polynomial of degreen. Hence, for
a given wavenumberk, as the branch numbern increases, the
amplification ratesn weakens ifm0.0. In the same time, the
complexity of the eigenmode increases in the (x,y) direc-
tion. But the eigenmodes remain exponentially concentra
in the neighborhood of the streamlinec0 on a characteristic
length scale 1/Al: the parameterl is therefore a spatial con
vergence parameter.

APPENDIX B: THE MATRIX EIGENVALUE METHOD

In this appendix, we first present the method of the m
trix eigenvalue method. We then analyze the symmetry pr
erties of the flow in order to reduce the linear dynamics i
four independent subsets.

1. General equations

The full incompressible viscous Navier–Stokes eq
tions, including the Coriolis force, are linearized around
basic flow. Normal modes will be sought in the for
esteikzf(x,y) where k is the realOz wavenumber ands
5s1 iv is the complex amplification rate.f(x,y) stands
for the velocity (ũ,ṽ,w̃) and pressurep̃ perturbations and is
complex. As the basic flow, the perturbations are assume
be periodic in thex and y directions, so thatf(x,y)
5(m,nf(m,n)eimxeiEny. By eliminating the pressure an
the vertical velocity perturbationsp̃(m,n) and w̃(m,n), we
are led to33

sũ~m,n!5
1

RoF E2n21k2

m21E2n21k2G ṽ~m,n!

1F 1

Ro

Emn

m21E2n21k2
2

m21E2n21k2

Re G ũ~m,n!

1 (
m8,n8561

A~m,n,m8,n8!ũ~m2m8,n2n8!

1B~m,n,m8,n8!ṽ~m2m8,n2n8! ~B1!

sṽ~m,n!52
1

RoF m21k2

m21E2n21k2G ũ~m,n!

1F2
1

Ro

Emn

m21E2n21k2
2

m21E2n21k2

Re G
3 ṽ~m,n!1 (

m8,n8561

C~m,n,m8,n8!

3ũ~m2m8,n2n8!

1D~m,n,m8,n8!ṽ~m2m8,n2n8!, ~B2!

where
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A~m,n,m8,n8!52
E

4~11E2!
F11mm82nn8

12
mm8nn82m2

m21E2n21k2G , ~B3!

B~m,n,m8,n8!52
E2

4~11E2!

3Fm8n812
mn2m2m8n8

m21E2n21k2G , ~B4!

C~m,n,m8,n8!51
1

4~11E2!

3Fm8n812E2
mn2n2m8n8

m21E2n21k2G , ~B5!

D~m,n,m8,n8!51
E

4~11E2!
F12mm81nn8

12E2
mm8nn82n2

m21E2n21k2G . ~B6!

The definition of the Reynolds and Rossby numbers
already been given and we recall that we tookL5a and T
51/W as the unit length and time scales.

The procedure is then as follows. We represent this
ear operator with a matrix, in which each component cor
sponds to a mode interaction. We truncate this matrix
representing only a finite number of modes2N<m,n<N.
We finally solve numerically the eigenvalue/eigenvec
problem by means of a standardQR algorithm.

2. Symmetries of the flow

In this section, we will prove that the eigenmodes can
decomposed into 4 independent subsets. These will be
ferred by 2 parametersa andb, each of which can be set t
21 or 11. The meaning of each parameter will be clarifi
below.

First, the problem is invariant under the transfo
mation x→2x, y→2y and z→z. An eigenvector
„ũ(m,n),ṽ(m,n)… therefore necessarily bears the followin
symmetries:

ũ~2m,2n!5aũ~m,n! and ṽ~2m,2n!5a ṽ~m,n!,

~B7!

wherea561.
Secondly, as pointed out by Bayly,27 the eigenmodes can

be decomposed into two independent subsets: the e
modes wherem1n is even and the odd modes wherem
1n is odd. This comes from the fact that each mode (m,n)
is only coupled with the four neighboring modes (m21,
n21), (m21,n11), (m11,n21), (m11,n11). The pa-
rameter dedicated to this parity isb5(21)m1n.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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These symmetries in the spectral space correspon
symmetries in the physical space. Iff(x,y) stands for the
velocity perturbationsũ(x,y) or ṽ(x,y), then it can be veri-
fied that

~i! f(2x,2y)5af(x,y) which means that the eigen
mode is even~a511! or odd~a521! with respect to
the origin;

~ii ! if x11x256p and y11y256p/E then f(x2 ,y2)
5abf(x1 ,y1). The eigenmode is even~ab511! or
odd ~ab521! with respect to the center of each vo
tex (x56p/2,y56p/2E).

APPENDIX C: CONVERGENCE PROPERTIES AS k
INCREASES

1. Centrifugal instabilities

Centrifugal instabilities are investigated in the particu
case Ro52. As indicated in Sec. IV A, the centrifugal eigen
modes are odd with respect to the center of the anticyclo

FIG. 8. A comparison between the results given by the short-wave asy
totics ~lines! and those given by a matrix eigenvalue method~symbols! for
the centrifugal instability in the case Ro52. The solid, long-dashed an
dashed lines represent the first 3 (n50,1,2) asymptotic relationssn

50.128320.4913(2n11)/k. These amplification rates are associated
eigenmodes which are more and more localized in the vicinity of the stre

line c̃520.3558 ask→`. The matrix eigenvalue results, i.e., the fille
triangles and the empty circles, converge towards these first o
asymptotic results.
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vortex (c̃521). This is why the matrix eigenvalue metho
is led with ab521: the eigenmodes~a521, b511! are
both odd with respect to the origin and the center of
vortices; the eigenmodes~a511, b521! are even with re-
spect to the origin but odd with respect to the center of
vortices. Figure 8 sketches the amplification ratess of some
particular nonoscillating instabilities versus the inverse of
wavenumberk. The symbols~filled triangles and empty
circles! refer to the results obtained by the matrix eigenva
method and the solid, long-dashed and dashed lines refe
the first 3 (n50,1,2) eigenmodes obtained in Sec. IV A
whose amplification rates converge towardss(c̃) as k

→`: sn5s(c̃)2mn /k.
It has first to be noticed that the filled triangles and t

empty circles coincide. In fact, the two corresponding eig
vectors have exactly the same structure except that the
one is odd with respect to the origin and the second on
even. Now, since the normal modes are concentrated in
anticyclonic vortices, by linear superposition, one is able
localize the eigenmode either in the cell (2p,x,0,0,y
,p/E) or in the cell (0,x,p,2p/E,y,0). This is im-
portant since a localized instability on one vortex is indep
dent of the dynamics of the other vortices.

The amplification rates of the 3 eigenmodes that we
following converge towards the corresponding asympto
relations of Sec. IV A ask→`. The discrepancy that we
observe for finitek comes from the fact that the asymptot
relations forsn are only first order in 1/k. As suggested by
Bayly,25 one could refine the asymptotic analysis to high
orders: sn5s(c̃)1mn

(1)/k1mn
(2)/k21¯ Hence, 2nd order

corrections could be found which would explain this discre
ancy. But the overall results are very good: for the first th
eigenmodes, both the slope and the extrapolated asymp
amplification rate fork5` are retrieved.

2. Elliptic instabilities

The elliptic instabilities are investigated with Ro57. All
these eigenmodes are even with respect to the center o
vortices. This is why the matrix eigenvalue methods are
with ab511. Furthermore, all the results that will be show
below are relative to the set of parametersa521, b521. It

p-

-

er
value
e

ods.
TABLE I. Comparison between amplification rates of elliptic eigenmodes given by the matrix eigen
method~columns 2–5! and the maximum amplification rate overu given by the short-wave asymptotics in th

center of the vorticesc̃561 ~column 6!. Column 7 estimates the discrepancy between the two linear meth
CaseE52, Ro57, Re5`, a521, b521, N550.

Localization/ Normal modes Lifschitz and Hameiri
Branch number s(k510) s(k520) s(k5`)a Slopeb s(c̃561) Discrepancy %

Cyclonic 0 0.1293 0.1340 0.1387 0.094 0.1387 0
Cyclonic 1 0.1105 0.1246 0.1387 0.282 0.1387 0
Cyclonic 2 0.0917 0.1153 0.1389 0.472 0.1387 0.2
Cyclonic 3 0.0723 0.1059 0.1395 0.672 0.1387 0.5

Anticyclonic 0 0.1647 0.1700 0.1753 0.106 0.1755 0.1
Anticyclonic 1 0.1446 0.1595 0.1744 0.298 0.1755 0.6
Anticyclonic 2 0.1244 0.1493 0.1742 0.498 0.1755 0.7

as0 as extrapolated from the results ofk510 andk520 assuming a relation of the forms5s02m/k.
bm as extrapolated from the results ofk510 andk520 assuming a relation of the forms5s02m/k.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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can be verified that in each case a calculation witha511,
b511 gives approximately the same eigenvalues, so
one can construct localized eigenmodes on only one vor

We have sketched in Table I the amplification ratess of
various elliptical modes~4 cyclonic modes and 3 anticy
clonic modes! for k510 andk520 ~columns 2 and 3!. An
extrapolated values0 for k5` has been calculated~column
4! using the results obtained fork510 andk520 and assum-
ing a relation of the types5s02m/k. The eigenvalue con
vergence parameterm has also been evaluated in each ca
~column 5!. The sixth column indicates the maximum valu
of the amplification rates(c̃) obtained in the center of th
corresponding~cyclonic and anticyclonic! vortex by the
short-wave asymptotics and the last column evaluates
discrepancy in percentages betweens0 ands(c̃). This dis-
crepancy is very small~,1%! so that a first order model o
the forms5s02m/k with s05s(c̃) is very efficient. Be-
sides, by comparing the various slopesm, we can show that
all branches of the cyclonic instabilities are well represen
by sn50.138720.094(2n11)/k. Also, all branches of the
anticyclonic instabilities are represented by a unique f
mula:sn50.175520.106(2n11)/k. The structure of the so
lutions is therefore exactly the same as the structure obta
with Bayly’s formalism for spanwise perturbations.

3. Hyperbolic instabilities

Hyperbolic instabilities on closed streamlines are inv
tigated with Ro57. These normal modes should be odd w
respect to the center of the vorticesc̃561 so that the cal-
culations are led withab521. In the casek520, a521,
b511 with 260<m,n<60, we identified in Sec. IV B 3 a
cyclonic unstable normal mode which is localized along
closed streamline and whose amplification rate iss50.0716.
Let us follow this eigenmode when we increasek. If k
530, the amplification rate becomess50.111 and the lower
plot of Fig. 7 represents the spatial energy repartition of
corresponding eigenmode. The dashed white line repres
the streamlinec̃50.413 where the short-wave asymptoti
predicts the same amplification rates50.111 as the matrix
eigenvalue method. The spatial localization of the eig
mode again agrees with this streamline. Comparing the c

FIG. 9. Amplification rates of unstable cyclonic normal modes localized
the vicinity of closed streamlines in the case Ro57 as given by the matrix
eigenvalue method. Ask increases, new unstable eigenmodes appear in

center of the cyclones and move outward towardsc̃50.
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k520 andk530, we easily notice that the localizing stream
line (c̃50.515 fork520 andc̃50.413 fork530) is mov-
ing outward towards the bounding streamlinec̃50. This
phenomenon is actually observed for all eigenmodes wh
are localized on closed cyclonic streamlines.

In brief, for a given vertical wavenumberk, a whole
family of localized eigenmodes in the neighborhood
closed streamlines do exist. The amplification rate of e
eigenmode is in accordance with the results of the sh
wave asymptotics. Ask increases, the eigenmodes move o
ward towardsc̃50 while their amplification rates increase
At the same time, new unstable eigenmodes appear in
central part of the vortex nearc̃50.55 and begin moving
outward. The emergence of new unstable eigenmodes ca
seen in Fig. 9 where the amplification rates of some cyclo
normal modes which are concentrated in the neighborh
of closed streamlines have been sketched versus the inv
of the wavenumberk.
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