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This paper is devoted to the effects of rotation on the linear dynamics of two-dimensional vortices.
The asymmetric behavior of cyclones and anticyclones, a basic problem with respect to the
dynamics of rotating flows, is particularly addressed. This problem is investigated by means of
linear stability analyses of flattened Taylor—Green vortices in a rotating system. This flow
constitutes an infinite array of contra-rotating one-signed nonaxisymmetric vorticity structures. We
address the stability of this flow with respect to three-dimensional short-wave perturbations via both
the geometrical optics method and via a classical normal mode analysis, based on a matrix
eigenvalue method. From a physical point of view, we show that vortices are affected by elliptic,
hyperbolic and centrifugal instabilities. A complete picture of the short-wave stability properties of
the flow is given for various levels of the background rotation. For Taylor—Green cells with aspect
ratio E=2, we show that anticyclones undergo centrifugal instability if the Rossby number verifies
Ro>1, elliptic instability for all values of Ro except 0.#3R0<1.25 and hyperbolic instability. The
Rossby number is here defined as the ratio of the maximum amplitude of vorticity to twice the
background rotation. On the other hand, cyclones bear elliptic and hyperbolic instabilities whatever
the Rossby number. Besides, depending on the Rossby number, rotation can either strengthen
(anticyclonic vorticesor weaken elliptic instability. From a technical point of view, in this article

we bring an assessment of the links between the short-wave asymptotics and the normal mode
analysis. Normal modes are exhibited which are in complete agreement with the short-wave
asymptotics both with respect to the amplification rate and with respect to the structure of the
eigenmode. For example, we show centrifugal eigenmodes which are localized in the vicinity of
closed streamlines in the anticyclones; elliptical eigenmodes which are concentrated in the center of
the cyclones or anticyclones; hyperbolic eigenmodes which are localized in the neighborhood of
closed streamlines in cyclones. €999 American Institute of Physid$§1070-663(99)00912-5

I. INTRODUCTION dergo barotropic instability. In experiments, this barotropic
instability is only observed in cyclones where multipoles are
Rotation strongly affects the evolution and properties ofgenerated, anticyclones being dominated by the 3D centrifu-
three-dimensional turbulence. In a rotating tank, Hopfingergal instability described abousee Orlandi and Carnevale
Browand and Gagrteobserve the rapid formation of coher- In the present paper we focus on the link between linear
ent structures, which are quasi two-dimensional vorticestability and the asymmetric behavior between cyclones and
aligned with the rotation axis. These structures, which do noanticyclones. Fully 3D perturbations have therefore to be
emerge in the nonrotating case, comprise intense cycloniconsidered. In this article, we will focus on short-wave per-
vortices and(much weaker anticyclonic vortices. The ex- turbations. These short-wave instabilities are analyzed in a
periments of Kloosterziel and van Hefisalso showed a rotating Taylor—Green flow which is an array of contra-
strong asymmetry in behavior between released cyclones aridtating single-signed vortices. Two different techniques are
anticyclones: the cyclones remain two-dimensional at alused: the geometrical optics method and a normal mode
times whereas anticyclones are first disrupted into 3D turbuanalysis. In the geometrical optics method introduced by
lence and 2D columnar structures then re-emerge after sonfeckhoff and Lifschitz and Hameirl,a localized short-wave
time. The Rayleigh centrifugal instabiliy> which is a three-  perturbation is characterized by a wavevedtaand an am-
dimensional mechanism, is responsible for these phenomenplitude vectora, that we follow along the particle trajectories
The dynamics of such an instability may be captured by &f the flow. The flow is unstable if there exists a streamline
model based on a single-signed vorticity structure, as, fopn which a particular solutioa(t) grows unboundedly as
example, in the numerical simulations by Carneetlal? A —. The classical normal mode analysis considers normal
2D barotropic instability® which is governed by Rayleigh’s modes of the formy’,p’) = (U, p)explkz)expt) wherek is
“inflection point” criterion may also develop in an isolated the vertical wavenumber ansl the complex amplification
vortex which has zero net circulatidmultiple-signed vor- rate, the flow lying in the X,y) plane orthogonal to the ro-
ticity structure$. This 2D mechanism of instability does not tation axis. The flow is unstable if a normal mode exhibits a
differentiate cyclones and anticyclones which both can uneomplex amplification rats which has a positive real part.
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Note that the eigenmodai(p) has to be square integrable,
otherwise it belongs to the continuous spectrum.
Physically, the short-wave instabilities can be explained
by local vorticity stretching. Three different types of short-
wave instabilities exist, the elliptic, hyperbolic and centrifu-
gal ones, depending on the stretching directions. Elliptic
instability’ 12 occurs on elliptically shaped streamlines and
hyperbolic instability*~*®takes place at hyperbolic stagna-
tion points. The extension to rotating systems has been done % /2
in Refs. 19-22 for elliptic instabilities and in Refs. 22-24
for hyperbo"c instabilities. Differentiation between Cyc|ones FIG. 1. The Taylor—Green flow: iso-values of the vorticity This station-

; TETRE o ary basic flow forms a 2D array of contra-rotating vortices. The magnitude
and anticyclones appears for elliptic instability but not for of the vorticity in the center of the vortices W, the periodicities in the

hyperbolic instability if the hyperbolic points are irrotational 4nqy girections are 2a and 2rb, respectively, and the background rota-
(which is the case with the Taylor—Green flowCentrifugal  tion is Q. E=a/b is the aspect ratio. Cage=2.

short-wave instabilities were first identified by Ba¥lyho

generalized the classical Rayleigh centrifugal instability cri-

terion to general nonaxisymmetric plane flows. The exten- W Xy

sion to the rotating case has been achieved in Ref. 26. YY) = —— 5 sin_sin.
In this article, we consider the Taylor—Green vortices in Va®+1/b

a rotating frame and characterize its short-wave stabilityThis is an exact solution of the inviscid Euler equations in a

properties for various levels of background rotation. Thisframe rotating at the angular velocify, which will be con-

will enable us to differentiate the dynamics of cyclones andsidered as positive. The dimensionless parameters are the

anticyclones through the determination of the stable and urfollowing: the aspect rati€=a/b, the Reynolds Number

stable regions in the parameter space. The choice of thRe=a?W/v and the Rossby number RW/2Q). In the fol-

Taylor—Green flow will also enable us to assess the impadbwing, we takeL=a and T=W! as unit length and time

of the nonaxisymmetry of the vortices. It should be notedscales. The nondimensional streamfunction is thus given by

that nearly all stability studies in the present field are con-=(sinxsinEy)/(1+E?) and the nondimensional linearized

straint to circular vortices. Hence, elliptic and hyperbolic Navier—Stokes equations read as

type instabilities, which are intrinsically nonaxisymmetric, au’

0 /2 n

@

are always left aside and only circular centrifugal type insta-  —— +u’-Vu+u-Vu'=—-Vp'— iezx u' + iAu’,
bilities are usually considered. Secondly, an important ques- Jt Ro Re

tion concerns the link between the short-wave asymptotics &)
and the normal mode analysis. In this article we aim at giv- V.u’'=0, ®)

ing a further assessment of this link. Partial results exist Or\]/vhereu is the 2D basic flow related to the above stream
this point. In a specific case, Bayfexplained how the

) L )
short-wave asymptotics formalism could be used to construcﬂ’mCtIon and (",p’) are the 3D perturbations.

localized amplified normal modes. Direct comparisons be-
tween linearized direct numerical simulation results and!l- THE SHORT-WAVE ASYMPTOTICS
short-wave asymptotics’ results have also shidvenqualita- A presentation

tive agreement between the two approaches. Qualitative and
quantitative agreement has been obtatfiéat elliptic insta-

bility occurring in the center of flattened Taylor—Green vor- : . . —_
tices. But a general theory making the link between theLlfschnz and Hameir?, we consider a rapidly oscillating lo-

short-wave asymptotics and a normal mode analysis is Stiﬁalized_ perturbation subject to rgtation 1/Ro evolving along
lacking2®® The paper is organized as follows. After a brief (€ trajectoryx(t) and characterized by a waveveckt)

description of the Taylor—Green flow, Sec. Iil is devoted to2nd & velocity envelopa(t). These quantities are governed
the short-wave asymptotics which will give a complete pic-by the following sgt of or_dlnary differential equations, which
ture of the short-wave stability properties of both CycloniceVOIVe along particle trajectories:

and anticyclonic vortices. These results are then compared to  dx

a normal mode analysis in Sec. IV. There, we try to make a g7 = 4(X), (4)
general assessment on the link between the short-wave as-

In this section, we study the short-wave stability proper-
ties of the steady Taylor—Green flow(x). Following

mptotics and a normal mode analysis. dk
ymp y gt= " LT00k, (5)
Il. THE TAYLOR-GREEN FLOW T -
da [ 2kk 1 [ kk
We consider the Taylor-Green flow which is character- ;= W_I Lx)a+ 5o W_I eXa, (6)

ized by thex andy periodicities 2ra and 27b and the maxi-
mum vorticity W>0 (see Fig. 1 The corresponding stream- where £L=Vu designates the velocity gradient tensor of the
function is basic flow,Z the identity tensor and the superscriptthe
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transpose. Lifschitz and Haméiproved that a sufficient cri- ture of the short-wave stability properties of the Taylor—
terion for instability is that this system has at least one soluGreen flow, since the streamlinesl<7 <0 correspond to
tion for which the amplitude(t) increases unboundedly as {he anticyclonic vortex and the streamlines B<1 refer to

e, . . . i the cyclonic vortex.
We restrict our analysis to the streamlines belonging to o, weak background rotations RA0000, the plot is

ti]eiW?E(;eI[:sethzgfoiloe,moi);ggélze)tr'ind'téozgge:t, tc()) the symmetric with respect tay=0. This means that anticy-
=y=mit). P IS Sy icwi P clones and cyclones behave similarly. But as the Rossby

gzgﬁl;%m:ggorrz;gsx’fgr_};ey S\r/]g Z;hzér't(lz”te;fjiyoto number decreases, this symmetry is broken so that the linear
 m/E=y=0) and (0sx=, —7/E<y=0). Al s\tre;m,— dynamics of anticyclones and cyclones differ.
_mESY= =, —mEsy=u). The three different kinds of short-wave instabilities are

streamline will be referred to in the following by its Stream_%?esent(elllptlc, hyperbolic and centrifugal instabilitis

function valuey and the corresponding time-period is noted
T(#). The maximum value ofl¢|, ¥n=1/(1+E?), is
reached in the center of the vortices. Let us introdgce 1. The élliptic instability

=l . With Ro>0, the streamlingy= —1 corresponds to In the case Re10000, the cyclones and the anticy-
the center of the anticyclonic vortefteft cell) whereasyy  clones bear the well-known elliptic instability:131°2°This
=+ 1 refers to the center of the cyclonic vort&ight cell). instability is related to the elliptic shape of the streamlines in
=0 denotes the cell-bounding streamlines. the center of the vortices. Only the perturbations wittom-

In the case of closed streamlines, the differential equaPrised in a given interval around=0.9 are unstable. This
tions (5) and (6) may be investigated by means of a Floquetcase has been thoroughly investigated in Ref. 28.
theory by integrating the equations over one period. The ori- When Ro decreases, we can follow the elliptic unstable

gin of the streamline  is defined by x(t=0) regionsineach cell:

=[arcsinj,7/(2E)]. It is sufficient to consider the cadet () in the cyclonic vortices, the elliptic instability weak-
=0)-¢=0 sincé® the other perturbations die out because of ens as the background rotation increases: the unstable
viscosity. Furthermore, the differential equatit) for a(t) 0 interval shrinks and the instability affects perturba-
is independent of the wavenumi&t. Therefore results only tions with increasing values of the co-latitude angle
depend on the co-latitude angteof the initial wavevector Nevertheless, this instability never vanishes and cy-
k(t=0)=sin(f)e,+cos@)e,. The stability properties of the clonic vortices are always elliptically unstable what-
streamlineys are then characterized by the 3 eigenvalues of ever the Rossby number;

the fundamental Floquet matrix associated to @&. It can (i) in the anticyclonic vortices, the trend is opposite: as
be shown that one of them is 1 and that the other two must the Rossby number decreases, the unstalfeerval
multiply to 1. Hence, the associated Floquet exponents, moves towards¥=0 and the maximum value of the
which are the natural logarithms of these eigenvalues divided amplification ratec, which is obtained for a given

by the turnaround (¢), ares;, s, ands;=0 with the fol-
lowing properties: in the case of instabilitg;=0o, s,
=—¢ with ¢>0; in the case of stability,s;=iw,
S,= —iw with >0.

Finally, the co-latitude angl® of the wave-vector at

value of g for the streamliné,l= —1, first increases to

the value 0.3 obtained for R&2, then decreases down
to zero for Re=1.25. Below this Rossby number, the
elliptic instability does not affect anymore the anticy-
clonic vortex until Re=0.75. The flow then becomes

=0 is taken in the intervdl0,7/2] since the Floguet expo-
nents are invariant with respect to the transformations
6—— 6 and —m— 6. Given a streamling/ and a co-latitude These features are summarized in Fig. 3. In the upper
angle 6, we now determine the numerical value of the realP!0t, we have sketched the maximum valueogfwhich is

part of the Floquet exponent(, 6). The stability properties  Obtained in the center of the vortices= =1, versus the

of the rapidly oscillating localized perturbations will there- ROSSbY number. In the lower plot, we have figured the cor-
fore be characterized. responding # angle where the above maximum occurs.

Hence, as the Rossby number decreases, elliptic instability is
first strengthened in anticyclonic vortices; then it weakens
B. Results before vanishing below Rel.25. At Ro=0.75, it re-

) ) emerges and is maintained down to=Rdbwherec—0.074.
Numerical results of the short-wave analysis are ob-his is a striking featurd3! which is observed also in the
tained by integrating numerically the equatidds, (5) and ¢y cjones where the background rotation only weakens the

(6) by means of a classical fourth-order Runge-Kuttag|jintic instability without killing it. Note that these results
scheme. The results concerning the cBse2 are given in 516 in accordance with those of some previously published
Fig. 2 for various values of the Rossby number: Rogicles: the case Re0 has already been considered in
=0.4,1.25,2,4,7,25,100,10000. For each Rossby number, Wgeily rotating Kirchhoff—Kida vorticésand the so-called
have sketched in they( 6) plane the iso-values of the am- “spanwise” perturbationg #=0) have been investigated in
plification ratec(#,6). Each plot gives an exhaustive pic- Ref. 24.

elliptically unstable agairisee the case Re0.4).
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FIG. 2. Short-wave stability properties
of the Taylor—Green flow for various
Rossby numbers. Each plot sketches
the iso-values of the real part of the

Floguet exponento in the (i,6)
plane. Casd&=2.
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Ro 3. The hyperbolic instability
0.3

The classical hyperbolic instabillty”-?2?%s obtained at

P=-1 the hyperbolic stagnation points of the flow with spanwise
------ P=+1 perturbationg#=0). For E=2, the corresponding amplifica-

0.2p j I ton rate is the following: o(¥%=0,6=0)
'
1

. =0.4J1—(2.5/Ro} if Ro>2.5. The flow is hyperbolically
s il R stable on the stagnation points for lower Rossby numbers.
. . In the case of weak background rotatigrigh R9, only

the streamlingy=0 bears the hyperbolic instabili§.But as

Ro decreases, streamlines ngar0 become affected: this
can be seen, for example, in the case=Rowhere a large
number of closed streamlines are hyperbolically unstable
both in the cyclonic and in the anticyclonic vortices.

2 4 Ro ¢ 8 10 For Ro<2.5, spanwise perturbations are not unstable
m/2 \\ R R AR DR anymore on the hyperbolic stagnation points. But the vorti-
> ] —————— ==l ces still exhibit unstable streamlines nea=0 but at high

:\ I R R e P=+1 co-latitude angle9.
/3 |

0.1

Thanks to the short-wave asymptotics, we have com-
/ pletely characterized the short-wave stability properties of
/ . the Taylor—Green flow. In this section, we make a thorough

@ n/4 \ IV. NORMAL MODE ANALYSIS
n/6f l

investigation of the correspondence between the short-wave
1 asymptotics and a normal mode analysis by means of a ma-
0.75 1.2 trix eigenvalue method. For the specific case of spanwise
FIG. 3. Elliptic instability: short-wave stability results obtained in the center P€rturbations(¢=0), Bayly showed explicitly how normal
of the vorticesj= = 1. The upper plot sketches the maximum amplification Modes could be constructed from the short-wave asymptotics
rateo over the co-latitude angléversus the Rossby number. The lower plot results. Section IV A is devoted to the results that can be
figures the correspondingangle. obtained with this formalism. Other correspondences are ad-
dressed in Sec. IV B where the matrix eigenvalue method is
developed. There, we will first try to retrieve the features
obtained in Sec. IV A for spanwise perturbations, then try to
make a further assessment on the link between the short-
wave asymptotics and the normal mode analysis.

!
1

2. The centrifugal instability

The centrifugal instability only affects anticyclonic vor-
tices. Weak anticyclone§Ro<1) are not affected by this
instability. But, as Ro-1, an unstable) interval appeargsee _ ) o .
the Ro=1.25 casgin the center of the anticyclonic vortex A. The spanwise centrifugal and elliptic instabilities

(= —1) with maximum instability occurring for spanwise in the anticyclonic vortex
perturbations(6=0). As the Rossby number increases, the In the specific case of spanwise perturbatigfis:0),
instability strengthens and moves disee the Re2 case¢  Bayly” explained how the short-wave asymptotics formal-

towards the bounding streamling € 0). One of the bounds iSm could be used to construct localized amplified normal

of the unstable} interval always corresponds to the stream-mo.des' As shown in Appendix A if the short—yvave amp_llfl—
line where the sign of the absolute vorticity 2 changes cation rate o(y) of the spanwise perturbations verifies

. ~ . . ! = " <0 f li h
(¢ denotes the vorticity on the streamligie. This resultis in o (0)=0 and o"(yg) <0 for some streamlinglo then a

i . . family (n=0,1,2...) of normal modes localized in the
accord_ance with Ref. 26 _wher_e it has_ been conjectureq that ighborhood of the streamling, could be constructed. The
flow with closed streamlines is centrifugally unstable if the

) f the absolut ticity ch here in the fi amplification rates,, of each memben of this family be-
sign 9 e absolute yor icity changes somew ere in the flow, oo as, = (o) — pun /K With = (2n+ 1) Where g
Physically, the centrifugally unstable streamlineare char- g 5 positive constant. Hence, a local maximumsaf, 6=0)

acterized by the negativity of the following quantity some-ear . is related to an infinite set of localized eigenmodes

where alongj: near 5. The amplification rates of all these eigenmodes
vV converge towards the short-wave valu€y,,6=0) ask
o(xy)=2 §+Q)(§+29), (7 —ee.

In this section, we apply this formalism and look for
whereV is the local norm of the velocity an® the local  streamlinesyy whereo' () =0 ando” () <O0. In Fig. 2,
algebraic radius of curvatufé.This is a local form of the we can see that this happens in the anticyclonic vortex for
axisymmetric criterion of instability given by Kloosterziel the centrifugal instabilitfcase Re=2) and also for the span-
and van Heijst wise elliptic instability (case Re=7). We now vary the
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Of B. The matrix eigenvalue method
01F — Centrifugal ) ) ) )

0 N 4 B . Elliptic The technical presentation of the matrix eigenvalue
'0‘25 / T method is given in Appendix B. For a given set of values of
03 E -t the aspect rati&, the Rossby number Ro, the wavenumker
04p / - and the Reynolds number Re, a discrete spectrum of

=0.5¢ / ; eigenvalues/eigenvectors is obtained. This discrete spectrum
-0.6F / P can be decomposed into four independent subsets referred by
-0.7E | two parametersa=+1 and S==+1. This decomposition
-0.8F | 3 comes from the fact that the eigenmodes are either even or
-0-9§ i odd both with respect to the center of the vortices and with

B N AL respect to the origin.
Ro The three basic short-wave instabilitieentrifugal, el-

0.25r liptic and hyperbolic onesare now successively investigated

[ I by means of the matrix eigenvalue method. In each case, we
0.2f } show typical eigenmodes obtained for a given value of the

[ N wavenumberk. The precise convergence properties kas
0.15f ) . —o0 are postponed to Appendix C.

° | el . 1. Centrifugal instabilities
0.1 i / Centrifugal instabilities are investigated for R@a. The

[ . short-wave results were reported in Fig. 2. Figure 4 gives the
0.05 — Centrifugal i ,

B Elliptic characteristics of the normal modes deduced from Bayly's

[ formalism. The Reynolds number is Re and the spatial

012 .5""A','”é"s;“é““;”'é“”é'“io resolution of the matrix eigenvalue method is60<m,n
S <60. The spatial energy repartition of the most unstable
o5k A S S N N N B centrifugal eigenmode of théa=—1, B=+1) subset is

[ / Centrifugal given in Fig. 5 fork=20. This eigenmode is both odd with
0. 43 ------ Elliptic , respect to the origin and the center of the anticyclonic vorti-

- ces. A dashed line sketches the streamiifie —0.3558
-0.3F > where the eigenmode should be localized, according to Fig.

= 1 A - 4. We can see that the two results agree very well. A detailed
0.2F comparison of the internal spatial structure of the eigenmode

F -7 shows that there is a complete accordance between the eigen-
01F P mode constructed with Bayly’s method and the eigenmode

: el obtained by the matrix eigenvalue method. The amplification

00““1'"'2'“'3”“4“'33;“6"“7""3""9"'io rate of the eigenmode &=0.107 which has to be compared

to the value obtained with Bayly’s formalisrm€0) for k
FIG. 4. Spanwis€¢=0) centrifugal and elliptic instabilities in the anticy- =20: s=0.1283-0.4913(20+1)/20=0.104.
clonic vortex for various Rossby numbers. The upper plot gives the stream- The precise convergence properties kagcreases are
line ¢ in th(i neighborhood of which the eigenmode is construfted ) investigated in Appendix C 1. There we identify the first 3
=0 ando” () <0]. Middle plot: corresponding amplification rage Lower members of the family of eigenmodes% 0.1 2) whose am-
plot: eigenvalue convergence parameigrof then=0 branch. e . L

plification rates converge towards a single valuekas~:

both the short-wave amplification rate(y) and the eigen-
value convergence parameters are retrieved by the matrix

. igenvalue method.
Rossby number and follow these streamlines. For eacﬁ genvalue method

Rossby number we have sketched in Fig. 4, the location 05
these streamlme& the corresponding amplification rate o o ] ] ]
and the eigenvalue convergence paramgter The follow- The elliptic instabilities are |nvest.|gate.d with R@. The
ing conclusions can be drawn from these plots: #Ro short-wave results were reported in Figs. 2 and 3. The
<3.2, we can explicitly construct centrifugal normal modesstreamlines=+ 1 of the cyclonic vortex is unstable with
and if Ro>3.2, we can build elliptic normal modes. amplification rates=0.1387 and the streamling=—1 of

It can also be shown that the centrifugal normal modeghe anticyclonic vortex is unstable with amplification rate
are odd with respect to the center of the anticyclonic vortex=0.1754. The short-wave asymptotics shows that the pertur-
and that the elliptic normal modes are even. This comes frormbations are not spanwise since the maximum of instability is
the symmetry properties of the basic flow which inducereached in the center of the vortices for high values of the
analogous symmetries for the normal modes. These symmeeo-latitude angle). Bayly’s analysis of Sec. IV A can there-
tries — even or odd — were depicted in Fig. 2 in the casedore not be applied and precise convergence propertiés as
Ro=2 and Re=7. —oo are lacking in this case.

Elliptic instabilities
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E=2,0=-1,p=+1,R0=2,k=20,Re=x,N=60 s=0.107 E FIG. 5. Energy repartition of a typical

0.9 centrifugal unstable normal mode ob-
0‘8 tained by the matrix eigenvalue
0:7 method. The dashed white line
0.6 sketches the streamling= —0.3558
0.5 in the vicinity of which Bayly's
0.4 method enables us to construct asymp-
0.3 totically the centrifugal unstable nor-
0.2 mal mode. This mode is odd both with
L | 0.1 respect to the origiie=—1) and with
0 +J.[/2 +7T respect to the center of the anticy-
X clonic vortexg=—1 (af=—1).

The matrix eigenvalue method is conducted wila 3. Hyperbolic instabilities
=—1, B=—1). The eigenmodes are odd with respect to the
origin but are even with respect to the center of the vortices. ~ The hyperbolic instabilities are investigated for Ra
The spatial resolution is fixed te 50<m,n<50 and Re=c. In Sec. Il B 3, we established that the hyperbolic stagnation
In the casek=10, Fig. 6 depicts the spatial energy reparti- points were unstable, with amplification radd=0,6=0)
tion of the most amplified elliptic unstable modes: the upper=0.3736 if Ro=7. Again, Bayly’s formalism of Sec. IVA
plot is relative to elliptic instability in the anticyclonic vortex cannot be applied so that a clear link between this short-
whereas the lower plot concerns the cyclonic case. We cawave result and a normal mode analysis does not exist. Here,
see two eigenmodes which are concentrated in the center @& a result, we could not identify any normal mode whose
the vortices /= +1). Plots of the vertical vorticity pertur- amplification rate converges toward this last valuekéas-
bation show a dipole structure that is typical of elliptical creases. But we have to be very cautious in the interpretation
eigenmoded?**?The amplification ratess=0.129 for the  of this result since the explored vertical wavelengths are not
cyclonic mode ands=0.165 for the anticyclonic mode are that high k<40) and the available resolution is quite limited
close to the values predicted by the short-wave asymptotics- 60<m,n<60.

The convergence propertieskas: o are analyzed in Ap- In the case Re7 (Fig. 2), we can also see that closed
pendix C 2. We show that the structure of the problem is thetreamlines bear the hyperbolic instability: both the cyclones
same as in Sec. IVA: an infinite number of branches ( and the anticyclones undergo instability for streamlines
=0,1,2...) actually converge toward the predicted maxi- which are close to the bounding streamlifie=0. Here,
mum short-wave amplification raie()=+1 and a single streamlines witho' () =0 and ¢”(1)<0 do not exist.
relation for the amplification rates, fits all the resultss, We can again not apply the results of Sec. IVA, i.e., con-
=o(P=+1)— pn/Kk With ,=(2n+1) o and ue>0. struct a family of eigenmodes which concentrate along a

E=2,0=-1,5=-1,R0=7,k=10,Re=cx,N=50 s=0.165 E
+71/2 0.8

> B - 0.5

0 0.2 FIG. 6. Energy repartition of two typi-
| L ! 0.1 cal elliptic unstable normal modes ob-

- - tained by the matrix eigenvalue
T /2 0 +11/2 + method: the upper plot refers to an an-

ticyclonic mode §/= — 1) whereas the
lower plot is a cyclonic mode %=

E=2,(7.=-1 ,B='1 ,RO=7,k=1 0,Re=°0,N=50 S=0.1 29 E +1). These modes are odd=—1)
0.9 with respect to the origin but evea3
+11/2 0.8 =+1) with respect to the center of the
0.7 vortices = + 1.

o I | | | | 0'2
-7 -n/2 0 +71/2 +7
X
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E=2,0=-1,p=+1,R0=7,k=20,Re=x,N=60 s=0.0716

E
0.9
+71/2 0.8
0.7
0.6
> B 8‘2 FIG. 7. Energy repartition of a cy-
0'3 clonic unstable normal mode obtained
| 0'2 by the matrix eigenvalue method for
0 | | ! | 0'1 k=20 andk=30. It is the same eigen-
’ mode but for differenk. The dashed
9 3'5/2 g +1/2 * white lines sketch the streamlingfs
=0.515 (upper plo} and %=0.413
(lower ploy where the short-wave as-
- - — - - - - - ymptotics predicts the same amplifica-
E—2,0t— 1 ’B_ 1 ,RO—7,k—30,R9—00,N—60 0=0.111 E tion rate for spanwise perturbations as
0.9 the matrix eigenvalue method. These
+71/2 0.8 modes are both odd with respect to the
0.7 origin (a=—1) and with respect to the
0.6 center of the cyclonic vortexj=1
> n 8-2 (af=—1).
0.3
0.2
0 ! \ 0.1
-7 -1/2 0
X

single ¢y and whose amplification rates converge towardsv. CONCLUSION

(tho) ask—z. In this article, we have studied the short-wave linear

The matrix eigenvalue method is conducted wid dynamics of the Taylor—Green flow in a rotating system by

=-—1, B=+1) so that the eigenmodes are both odd with . . .
’ - . f th I h I | nor-
respect to the origin and the center of the vortices. The Reyr_neans of the geometrical optics method and a classical nor

. ) . mal mode analysis.
nolds number is Rex and the spatial resolution accounts y . :
. o In Sec. Ill, we have given a complete picture of the
for —60=m,n=<60. In the cas&k=20, we identified three o .
. ! : short-wave stability properties of the Taylor—Green flow for
cyclonic unstable normal modes which are localized alon

. e . arious Rossby numbers. For high Rossby numbers, it has
closed streamlines and whose amplification rates ar y g y

#=0.0716,0—0.110 ando—0.1464. The first one is repre- Been shown that cyclones and anticyclones behave similarly

and that elliptic instability occurs in the center of the vorti-

sented in the upper plot of Fig. 7. The white dashed IIr‘eces. Hyperbolic instability affects the hyperbolic stagnation

represents the streamlir"z‘]e= 0.515 where the short-wave as- points but not the closed streamlines.

ymptotics predicts  instabilityfor spanwise perturbations When the level of background rotation increases, the cy-
with the same amplification rate as the one given by th§|ones and the anticyclones behave differently. The elliptic
matrix eigenvalue methoa=0.0716. We can notice that the giapility is first strengthened in the anticyclones, its ampli-
spatial localization of the eigenmode corresponds approXifcation rate reaching its maximum value for R@. Then the
mately to that streamline. The two linear approaches argmpjification rate decreases and vanishes forR@5. Be-
therefore in accordance. The same conclusions can be drawgyy this value, elliptic instability does not affect the anticy-
from the analysis of the spatial structure of the other tWo.ones until Re=0.75 where it re-emerges again. On the
eigenmodes. The only difference is that the eigenmodes aigner hand, rotation only weakens elliptic instability in cy-
localized a~long streamlines which are closer to the bounding|snes. We note that for ReD, the cyclones and the anticy-
streamlineyy= 0. But again, agreement between the two lin-clones are still unstable with a finite value of the amplifica-
ear approaches is achieved. tion rate.

As seen in Appendix C 3, here the convergence proper- |f Ro>1, an interval of unstable streamlines appears in
ties are different from the standard spanwise case of Segne center of the anticyclones. This unstable region corre-
IV A, where the normal modes concentrate in the neighborsponds to centrifugal instabilities as shown in Ref. 26. As the
hood of a single streamline whénincreases. In the present Rossby number increases, the amplification rate increases
case, we observe that, kéncreases, unstable normal modesand the unstable region moves out towards the bounding
appear in the center of the vortex near0.55 and then streamlineyr=0.
move outward towardg/=0 (see lower plot of Fig. ¥ For Concerning the hyperbolic instability, the amplification
each value of the wavenumbleragreement is obtained be- rate on the hyperbolic stagnation points decreases as the
tween the short-wave asymptotics and the normal modével of background rotation increases. But in the same time,
analysis. closed streamlines become affected by this instability both in
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the cyclones and in the anticyclones. If R2.5, hyperbolic
instability vanishes for spanwise perturbations but survive
for high co-latitude angles.

In Sec. IV A, we have used the short-wave formalism to
construct localized normal modes in the vicinity of some
streamlines, following Bayly’s formalistfr. This amounts to
considering streamlineg where the amplification rate()
of spanwise perturbation®=0) is such thatio’ (=0 and
o"(¥)<0. We have found that localized centrifugal normal
modes can be constructed KKR0<3.2 and localized elliptic
normal modes if Re-3.2.

of the eigenmode u(x,y): u(x,y)=u(xy)fi(x.y)
SV, Y) (%, Y) + WX, Y)Fa(x,y). fi(x,y) is a vector field
which diagonalizes the inertial operatar-V()+()-Vu
+Ro e, x (). f; is constructed using the eigenvalueg))
and the eigenvectors of the fundamental Floquet matrix as-
sociated to the differential equatidf) obtained with span-
wise perturbations.

In the following, we choose a streamlinig where the
above Floquet exponents;(y,) are all real: s;(iq)
=0 (o), Sa(tho)=—0(tho) and s3(¢ho)=0 where a(i))

In Sec. IV B, a matrix eigenvalue method is used in 0r->%o:r Pézsxrzl)e?r;ss :]naturt]r:agl]g_rgﬁggt?ggaux:;?; (s)u.pvplé)se
der to compare the results of a direct normal mode analysi )

with those of the short-wave asymptotics. The centrifugaﬁatagw) tal<es a quad,r,anc maximum on the streamijfe
. . I.e., o' (p)=0 and— " () >0.
normal modes in the case R@ have been retrieved and - : .
In the limit k—oo, the eigenmodes are sought with the

their characteristicéamplification rate and spatial structure following asymptotic behavior ilk:
are in accordance with the results of Sec. IV A. The hyper- '
bolically unstable closed streamlines qf the cyclones in the U =Un), V(p)=k" W),

case Re7 also correspond to localized normal modes

whose characteristics agree with the short-wave results.. But W) =k"Y2W(5) and P(7)=k 32P(7),
the convergence properties are not the same as befoke: as

—, localized eigenmodes emerge in the center of the cywhere n=kY%(¢— i) is a re-scaled streamfunction coordi-
clones around)=0.55 and move out towards the bounding nate which enables us to focus in the vicinity of the stream-
streamlineys= 0. Results of the hyperbolic instability on the liN€ #o. The dominant part of the eigenvector is therefore
stagnation points have not been retrieved: higher vertica®long the unstablé, direction of the inertial operatou
wavenumbers should be explored but this requires very highV () +()-Vu+ Ro‘lezx_(). _

resolution. The short-wave results for elliptic instability in ~ The scaling of the eigenvalugis as follows:

the center of both the cyclones and the anticyclones for the

case Re=7 are in complete agreement with the normal mode  s=o( ) — ﬁ, (A2)
analysis: typical elliptic normal modes with amplification K

rates converging towards the short-wave amplification rateﬁ/here,u is a constant to be determined. Hencekas». the

ask—ee .have been idenFified. . . ) . amplification rate of the constructed eigenmadmnverges
In brief, from a physical point of view, we have identi- 4 the predicted maximum value of the short-wave analysis

fied the three basic short-wave instabilities that affect rotat-a(wo)_ This convergence is achieved with a slope given by

ing vortice_s. Critical values of the Rossby number Ro havgy,, paramete, which can be called an eigenvalue conver-
been obtained: for example, the value=Rbmarks the de- gence parameter.

parture of centrifugal instability in anticyclones, the value Introducing this expansion in the linearized Euler equa-

Ro=2 corresponds to the maximum value of the amplifica-jons we are led to the quantum harmonic oscilldfc?
tion rate obtained with elliptic instability in anticyclones. ’

From a technical point of view, we have seen that the short- 427,

(A1)

wave asymptotics and the normal mode analysis are in agree- — + C('L; ) —?\27]2>U=0, with  U(*)=0,
ment for centrifugal instability, for elliptic instability occur- d7 0
ring in the center of the vortices and for hyperbolic (A3)
instability developing on closed streamlines. In each caseyhere
we have seen that normal modes could be associated to the
results given by the short-wave asymptotics. . " (o) (Ad)
2C(yo)’
APPENDIX A: CONSTRUCTION OF NORMAL MODES L o) q
0.
FOR SPANWISE PERTURBATIONS C o) = T )f (fI'V(ﬂ) U(¢o)+a (f,- Vp)dt.
In this section, we show how the short-wave asymptotics 070
(AS5)

can be used to construct normal modes in the specific case of

spanwise perturbations(6=0). We follow Bayly's In these equationd(x,y) is the adjoint vector field corre-

formalisnt® and extend it to the rotating case which is con-sponding tof;(x,y): fi’f(x,y).fj(x,y): 8ij -

sidered here. . . Provided that— " (i) and C(y,) are both positive
Normal modes are sought in the usual way by consider¢\2>0), then this equation will have an infinite number of

ing a vertical wavelengtk and a complex amplification rate |ocalized eigenfunctionsn=0,1,2 ...) whose amplifica-

s (u',p")=[Uu(x,y),p(x,y)]expikz+sf). The main idea is tion ratess,= o (o) — u,/k converge towardsr(i,) ask

to use a particular vector field badjsfor the representation — oe:
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\ 72
Un(1) =Hen(V2Amexg — —— |, (A6) A(mn,m’.n')=— ————1+mm —nn’
4(1+E?)
=(2n+1)ug, A7

Mn ( )MO ( ) me/nnr_mZ 83

/‘LO:)\C(wO)l (A8) + m2+ E2n2+ k2 ’ ( )
where Hg is the Hermite polynomial of degra®e Hence, for

. . E2
a given wavenumbe, as the branch numbaerincreases, the B(m.n,m’,n’)=—
amplification rates, weakens ifug>0. In the same time, the B 4(1+E?)
complexity of the eigenmode increases in they) direc-
tion. But the eigenmodes remain exponentially concentrated ., mn— m’m’'n’
in the neighborhood of the streamlig on a characteristic X|mn +2m2+ E2n2+ k2|’ (B4)
length scale Y\: the parametex is therefore a spatial con-
vergence parameter.

Ccimnm',n )=+ ———
4(1+E?)
APPENDIX B: THE MATRIX EIGENVALUE METHOD
—n2m’'n’

In this appendix, we first present the method of the ma- |l mn 4 ogz i MN_ (B5)
trix eigenvalue method. We then analyze the symmetry prop- m2+E2n?+k?|’
erties of the flow in order to reduce the linear dynamics into
four independent subsets. E

D(m,n,m’,n")=+ D — 1-mm' +nn’
1. General equations 4(1+E9)

The full incompressible viscous Navier—Stokes equa- mm nn’ —n2
tions, including the Coriolis force, are linearized around the +2E2m : (B6)
basic flow. Normal modes will be sought in the form m n
e%'e*?¢(x,y) wherek is the realOz wavenumber ands The definition of the Reynolds and Rossby numbers has

=o+iw is the complex amplification ratep(x,y) stands already been given and we recall that we tdoka and T

for the velocity {1,v,w) and pressur@ perturbations and is =1/ as the unit length and time scales.

complex. As the basic flow, the perturbations are assumed to The procedure is then as follows. We represent this lin-
be periodic in thex and y directions, so thatg(X,y) ear operator with a matrix, in which each component corre-
=3 n¢p(m,n)e™eE", By eliminating the pressure and sponds to a mode interaction. We truncate this matrix by
the vertical velocity perturbations(m,n) andw(m,n), we  representing only a finite number of modesN<m,n<N.

are led t&® We finally solve numerically the eigenvalue/eigenvector
problem by means of a standa@R algorithm.

~ 1| EPn?+k* |-
S Ro| g™
1 Emn m2+ E2n?+ k2] 2. Symmetries of the flow
RO M2+ E2n2+ k2 Re u(m,n) In this section, we will prove that the eigenmodes can be
decomposed into 4 independent subsets. These will be re-
L~ ) ) ferred by 2 parameters and 8, each of which can be set to
o Z_ﬂ A(m,n,m",n")u(m-m’,n—n") —1 or +1. The meaning of each parameter will be clarified
e below.
+B(m,n,m’,n")v(m—m’,n—n’) (B1) First, the problem is invariant under the transfor-
s mation x——Xx, y—-—y and z—z. An eigenvector
~ _ i m°+k ~ (ﬂ(m,n),\N/(m,n)) therefore necessarily bears the following
sv(m,n)= ——————|u(m,n) )
RO| m?+ E?n?+Kk? symmetries:
1 Emn m2+ E2n2-+ K2 u(—m,—n)=au(m,n) andv(—m,—n)=av(mn),
" ROmMZ+E2n2+ K2 Re (B7)
wherea==*1.
xvmm+ S c(mnm’,n’) Secondly, as pointed out by Baylythe eigenmodes can
mon =1 be decomposed into two independent subsets: the even
~ ) , modes wherem+n is even and the odd modes where
Xu(m—m’,n—n’) +n is odd. This comes from the fact that each morter()
PN, is only coupled with the four neighboring modes+{ 1,
+D(m,n,m’,n")v(m=m’,n=n"), (B2) n-1), (m—1n+1), m+1n-1), (m+1n+1). The pa-
where rameter dedicated to this parity g=(—1)™"".
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vortex (= —1). This is why the matrix eigenvalue method
is led with ¢f=—1: the eigenmodesa=—1, B=+1) are
both odd with respect to the origin and the center of the
vortices; the eigenmodds=+1, B=—1) are even with re-

Bayly n=0

0.121

0.1 spect to the origin but odd with respect to the center of the
m I vortices. Figure 8 sketches the amplification rate$ some
I particular nonoscillating instabilities versus the inverse of the
0.081 wavenumberk. The symbols(filled triangles and empty
circles refer to the results obtained by the matrix eigenvalue
0.06L . \® method and the solid, long-dashed and dashed lines refer to

\ the first 3 f=0,1,2) eigenmodes obtained in Sec. IV A,
S N — ; R ~
0 0.05 01 whose amplification rates converge toward$y) as k

! —o0: 5,= 0 (P) — /K.
FIG. 8. A comparison between the results given by the short-wave asymp- It has first to be noticed that the filled triangles and the
totics (lines) and those given by a matrix eigenvalue metiiggmbolg for - empty circles coincide. In fact, the two corresponding eigen-
the centrifugal instability in the case R@. The solid, long-dashed and ;60015 have exactly the same structure except that the first
dashed lines represent the first 850,1,2) asymptotic relations, . . .. .
—0.1283-0.4913(2 + 1)/k. These amplification rates are associated to ©N€ 1S odd W'_th respect to the origin and the second one Is
eigenmodes which are more and more localized in the vicinity of the streameven. Now, since the normal modes are concentrated in the
line J=—0.3558 ask—. The matrix eigenvalue results, i.e., the filled anticyclonic vortices, by linear superposition, one is able to
triangles and the empty circles, converge towards these first ordefgcalize the eigenmode either in the celt f<x<0,0<y
asymptotic results. <m/E) or in the cell (0<x<,— m/E<y<0). This is im-
portant since a localized instability on one vortex is indepen-

These symmetries in the spectral space correspond @¢nt of the dynamics of the other vortices.
symmetries in the physical space. #{x,y) stands for the The amplification rates of the 3 eigenmodes that we are

velocity perturbationsi(x,y) or v(x,y), then it can be veri- foIIO\_/ving converge towards the corrgsponding asymptotic
fied that relations of Sec. IVA ak—c. The discrepancy that we

observe for finitek comes from the fact that the asymptotic

(i) ¢(=x,—y)=a¢(x,y) which means that the eigen- relations fors, are only first order in K. As suggested by
mode is everja=+1) or odd(a=—1) with respectto  Bayly,?® one could refine the asymptotic analysis to higher

_ the origin; orders: s,= o (9) + uP/k+ u®/k?+- -+ Hence, 2nd order

(i) i xy+xp==m andy;+y,=*a/E then ¢(X2,¥2)  corrections could be found which would explain this discrep-
=aB¢(x1,y1). The eigenmode is eveiB=+1) of  gncy But the overall results are very good: for the first three
odd (aB=—1) with respect to the center of each vor- gjgenmodes, both the slope and the extrapolated asymptotic

tex (x==*m/2y=*n/2E). amplification rate fok= oo are retrieved.
APPENDIX C: CONVERGENCE PROPERTIES AS k 2. Elliptic instabilities
INCREASES '

The elliptic instabilities are investigated with R@. All
these eigenmodes are even with respect to the center of the
Centrifugal instabilities are investigated in the particularvortices. This is why the matrix eigenvalue methods are led
case Re-2. As indicated in Sec. IV A, the centrifugal eigen- with a8=+1. Furthermore, all the results that will be shown
modes are odd with respect to the center of the anticyclonibelow are relative to the set of parameters—1, f=—1. It

1. Centrifugal instabilities

TABLE |. Comparison between amplification rates of elliptic eigenmodes given by the matrix eigenvalue
method(columns 2—%and the maximum amplification rate oveégiven by the short-wave asymptotics in the
center of the vorticeg= = 1 (column 6. Column 7 estimates the discrepancy between the two linear methods.
CaseE=2, Ro=7, Re=», a=—1, B=—1, N=50.

Localization/ Normal modes Lifschitz and Hameiri

Branch number o(k=10) o(k=20) o(k=%)® Slopé a(g==+1) Discrepancy %
Cyclonic 0 0.1293 0.1340 0.1387 0.094 0.1387 0
Cyclonic 1 0.1105 0.1246 0.1387 0.282 0.1387 0
Cyclonic 2 0.0917 0.1153 0.1389 0.472 0.1387 0.2
Cyclonic 3 0.0723 0.1059 0.1395 0.672 0.1387 0.5
Anticyclonic 0 0.1647 0.1700 0.1753 0.106 0.1755 0.1
Anticyclonic 1 0.1446 0.1595 0.1744 0.298 0.1755 0.6
Anticyclonic 2 0.1244 0.1493 0.1742 0.498 0.1755 0.7

40, as extrapolated from the results lof 10 andk= 20 assuming a relation of the form= oy— u/k.
bu as extrapolated from the resultslof 10 andk=20 assuming a relation of the form=oq— u/k.
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k=20 andk=30, we easily notice that the localizing stream-
line (=0.515 fork=20 andy=0.413 fork=30) is mov-

ing outward towards the bounding streamlige=0. This
phenomenon is actually observed for all eigenmodes which
are localized on closed cyclonic streamlines.

In brief, for a given vertical wavenumbéds, a whole
family of localized eigenmodes in the neighborhood of
closed streamlines do exist. The amplification rate of each
i eigenmode is in accordance with the results of the short-
0 ‘0‘_0'25‘ : 01'?'? : ‘0‘.67‘5‘ : ‘0f1 wave asymptgtics. Ak?ncrea.ses, th(.a.eigfanmodes .move out-

ward towardsyy=0 while their amplification rates increase.
FIG. 9. Amplification rates of unstable cyclonic normal modes localized inAt the same time, new unstable eigenmodes appear in the

the vicinity of closed streamlines in the case=Rbas given by the matrix  central part of the vortex neé}: 0.55 and begin moving
e'ginva':fhmem?d' Ak '”‘;reases’ ”i‘z ugsttab'f e'genmc’des appear in th, \vard. The emergence of new unstable eigenmodes can be
center of the cyclones and move outward towafas0. seen in Fig. 9 where the amplification rates of some cyclonic
normal modes which are concentrated in the neighborhood

can be verified that in each case a calculation with+1, Of closed streamlines have been sketched versus the inverse

B=+1 gives approximately the same eigenvalues, so tha@f the wavenumbek.
one can construct localized eigenmodes on only one vortex.
_We ha\_/e _SketChed in Table | t_he amplification ratee_f E. J. Hopfinger, F. K. Browand, and Y. Gagne, “Turbulence and waves in
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