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A note on the stability of slip channel flows
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We consider the influence of slip boundary conditions on the modal and nonmodal stability of
pressure-driven channel flows. In accordance with previous results by Gersting �“Hydrodynamic
stability of plane porous slip flow,” Phys. Fluids 17, 2126 �1974�� but in contradiction with the
recent investigation of Chu �“Instability of Navier slip flow of liquids,” C. R. Mec. 332, 895
�2004��, we show that the slip increases significantly the value of the critical Reynolds number for
linear instability. The nonmodal stability analysis, however, reveals that slip has a very weak
influence on the maximum transient energy growth of perturbations at subcritical Reynolds
numbers. Slip boundary conditions are therefore not likely to have a significant effect on the
transition to turbulence in channel flows. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2032267�
The advances in microfabrication techniques using poly-
meric or silicon-based materials has allowed us to gain a
significant understanding on the behavior of fluids at small
scales.1–3 One topic of current interest concerns the validity
of the no-slip boundary condition for Newtonian liquids near
solid surfaces.4–8 A large number of recent experiments on
small scales with flow driven by pressure gradients, drain-
age, shear, or electric field have reported an apparent break-
down of the no-slip condition, with slip lengths possibly as
large as microns. The slip length � is defined as the ratio of
the surface velocity to the surface shear rate; �=0 corre-
sponds to a no-slip condition, and �=� to a perfectly slip-
ping surface.

Since the transition to turbulence in wall-bounded flows
occurs at large values of the Reynolds number, studies in
shear-flow instabilities have usually been outside the realm
of microfluidics. However, a set of recent investigations of
the linear modal stability of pressure-driven flows in two-
dimensional channels9–11 has reported that slip boundary
conditions decrease the critical Reynolds number, from Re
=5772 �its classical no-slip value obtained for Poiseuille
flow� to Re�100, in strong disagreement with early calcu-
lations of Gersting.12 Such results would potentially have a
major impact on both turbulence and microfluidic studies.

The goal of this Brief Communication is twofold. First,
we resolve the disagreement between the above cited results.
A careful analysis of the derivation of the equations used in
Refs. 9–11 reveals that incorrect slip boundary conditions on
the perturbations were used in the modal stability analysis.
The use of the appropriate boundary conditions on the per-
turbations reveals the strongly stabilizing effect of slip on the
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eigenvalues of the linear stability operator, confirming earlier
results.12 Recent advances in the domain of shear-flow insta-
bilities have, however, revealed the usual lack of relevance
of the modal stability analysis, contrasted to the nonmodal
stability analysis, in the subcritical transition in channel
flows �for a review see, e.g., Refs. 13 and 14�. The second
goal of this Brief Communication is therefore to quantify the
effect of slip on the nonmodal stability of viscous channel
flows. To this end, we compute the maximum transient en-
ergy growth15 in the presence of slip at subcritical Reynolds
numbers. We find that, for all the considered combinations of
streamwise and spanwise wavenumbers, the effect of slip on
the maximum energy growth and on the associated optimal
perturbations is weak.

We consider the flow between two parallel plates located
at y*= ±h of a Newtonian fluid with viscosity � driven by a
constant pressure gradient dp* /dx* in the x* direction. If we
nondimensionalize lengths by h, velocities by Uref

=h2�−dp* /dx*� /2�, time by h /Uref, and pressure by �Uref
2 ,

the dimensionless incompressible Navier-Stokes equations
for the velocity and pressure fields, �u , p�, read as

� �

�t
+ u · ��u = − �p +

1

Re
�2u, � · u = 0, �1�

where we have defined the Reynolds number for this flow as
Re=�hUref /�. We assume in this paper that the flow satisfies
slip boundary conditions on both surfaces, with slip lengths
�1 and �2 at y*=h and y*=−h, respectively. If we define the
Knudsen numbers Kn1=�1 /h and Kn2=�2 /h, and denote by
�u ,� ,w� the streamwise, wall normal, and spanwise compo-
nents of u, the boundary conditions for Eq. �1� are �=0 at
y= ±1 and

u + Kn1
�u

= w + Kn1
�w

= 0, y = 1, �2a�

�y �y
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u − Kn2
�u

�y
= w − Kn2

�w

�y
= 0, y = − 1. �2b�

We are interested in the stability of the steady unidirec-
tional base flow U=U�y�ex satisfying Eqs. �1� and �2�,

U�y� = 1 +
2�Kn1 + Kn2 + 2Kn1Kn2�

2 + Kn1 + Kn2

+ � 2�Kn1 − Kn2�
2 + Kn1 + Kn2

	y − y2. �3�

In the absence of slip, Kn1=Kn2=0 and Eq. �3� is reduced to
the standard Poiseuille solution, U�y�=1−y2. In order to
characterize the stability of Eq. �3�, we write the total veloc-
ity field as the sum of the base flow plus small perturbations,
u=U+u� and p= P+ p�, and linearize the Navier-Stokes
equations around �U , P�. This procedure is classic and we
refer, e.g., to Refs. 14 and 16 for the details. The same stan-
dard procedure is applied to the boundary conditions �Eq.
�2��. These linear boundary conditions are satisfied by both
the total flow 
u=U+u�, �=��, w=w�� and the base flow
itself 
U ,0 ,0�. Consequently, a simple subtraction shows
that the boundary conditions for the perturbations are also of
the form of Eq. �2�. These boundary conditions are the same
as those used by Gersting in his stability analysis12 and differ
from the incorrect boundary conditions used in Refs. 9–11
that implicitly assume u�=0 at y= ±1. Therefore, in Refs.
9–11, slip boundary conditions are assumed for the basic
flow, but no-slip boundary conditions are used for the pertur-
bations, leading to incorrect results.

Following a standard procedure �see, e.g., Ref. 14 for
details�, the linearized Navier-Stokes equations are recast in
a set of two differential equations for the wall-normal veloc-
ity �� and the wall-normal vorticity ��=�u� /�z−�w� /�x. Ex-
ploiting the homogeneous nature of the streamwise and span-
wise directions, perturbations are Fourier transformed in the
form

u��x,y,z,t� = û��,y,�,t�ei��x+�z�, �4�

and therefore ���x ,y ,z , t�= �̂�� ,y ,� , t�ei��x+�z�, with �̂
= i�û− i�ŵ. The standard evolution equation for ��̂ , �̂� is fi-
nally obtained to be14

�

�t
�	�̂

�̂
� = �L 0

C S � · � �̂

�̂
� , �5�

where the operators are defined as

L � − i�U	 + i�D2U + 	�	/Re� , �6�

C � − i�DU , �7�

S � − i�U + 	/Re, �8�

with 	�D2−�2−�2 and where D denotes derivatives with
respect to y. The fourth-order system of equations �Eq. �5��
requires boundary conditions for both �̂ and �̂. Using the
continuity equation, i �û+D�̂+ i �ŵ=0, together with the
boundary conditions in Eq. �2�, it is straightforward to show

ˆ ˆ
that the boundary conditions for �� ,�� are
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�̂ = D�̂ + Kn1D2�̂ = 0, y = 1, �9a�

�̂ = D�̂ − Kn2D2�̂ = 0, y = − 1, �9b�

�̂ + Kn1D�̂ = 0, y = 1, �9c�

�̂ − Kn2D�̂ = 0, y = − 1, �9d�

and for simplicity, we restrict the analysis in this Brief Com-
munication to symmetric slip �Kn1=Kn2=Kn� and asymmet-
ric slip cases �Kn1=Kn, Kn2=0�. We emphasize again that
these boundary conditions are different from those used in
Refs. 9–11, where, instead, Kn1 and Kn2 were set to zero in
Eq. �9�.

A Chebyshev collocation method is used to discretize the
system �Eq. �5��, and standard methods �described in Ref. 14
and references therein� are then employed to compute ein-
genvalues, eigenmodes, and maximum transient energy
growth. The standard implementation of these methods is
modified by changing the standard homogeneous no-slip
boundary conditions into the more general slip boundary
conditions �Eq. �9��. All the results presented below have
been obtained with 97 collocation points. Convergence of the
results has been verified, and the code has been thoroughly
tested by comparing both the modal and the nonmodal re-
sults in the case of no-slip boundary conditions,14 as well as
with the modal symmetric slip results reported in Ref. 12.

The modal stability analysis assumes solutions in the
form of normal modes, 
�̂ , �̂��� ,y ,� , t�= 
�̃ , �̃�
�� ,y ,� ,
�e−i
t, where the complex frequency 
 is the solu-
tion to an eigenvalue problem �Eq. �5��, which is solved
numerically. The flow is found to be linearly unstable if there
exists at least one eigenvalue with a positive imaginary part,

i�0. The Squire theorem16 applies to this flow, and the
critical modes are two dimensional �i.e., with �=0�. The
neutral curve 
i�� ,�=0,Re�=0 in the symmetric slip case is
displayed in Fig. 1�a�. The boundary slip is found to signifi-
cantly shift the neutral curve towards larger values of the
Reynolds number, indicating a strongly stabilizing influence
of slip on linear stability. Results for the asymmetric slip
case, displayed in Fig. 1�b�, are similar although less pro-
nounced. The dependence of the critical Reynolds number
for linear stability, Rec, with the Knudsen number Kn is
diplayed in Fig. 2 and confirms the stabilizing effect of the
slip on shear-flow instabilities. Our results, which use the
correct boundary conditions �Eq. �9�� agree with the symmet-
ric slip calculations of Ref. 12 but, as expected, are in strong
contradiction with the conclusions reported in Refs. 9–11.

In the absence of slip at the walls, the Poiseuille flow is
known to undergo a transition to turbulence at Reynolds
numbers well below the critical Reynolds number corre-
sponding to the onset of linear modal instability. This sub-
critical transition scenario has been related to the strongly
non-normal nature of the linearized operator �Eq. �5��, ex-
plaining the potential of the flow to sustain large transient
energy growth, possibly triggering the transition to turbu-
lence for values of the Reynolds number much smaller than
Rec.

13,14 The standard modal stability analysis is therefore
17
extended to the nonmodal �or generalized � stability analy-
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sis where, for instance, the maximum transient energy
growth is computed. Let us define, for a given Fourier mode,
the instantaneous kinetic energy of the flow perturbations as

E�t,�,�,û0� � �
−1

1

û��,y,�,t�2dy , �10�

which is a function of time and the initial condition,
û0� û�� ,y ,� ,0�. If we denote by G�t� the energy growth at
time t, maximized over all nonzero initial conditions,

FIG. 1. Neutral curve 
i�� ,�=0,Re�=0 for the symmetric slip case �a� and
asymmetric slip case �b� and values of Kn=0 �no-slip�, 0.01, 0.02, and 0.03.

FIG. 2. Critical Reynolds number for linear stability Re�Kn� for the sym-
metric and asymmetric slip cases. In the case of no-slip �Kn=0�, the critical

Reynolds number is 5772.
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G�t,�,�� = max
û0�0

� E�t,�,�,û0�
E�0,�,�,û0�

	 , �11�

then the maximum transient energy growth possible over all
times, Gmax�� ,��, is defined as

Gmax��,�� = max
t�0

G�t,�,�� . �12�

In Fig. 3 we report the isovalues of Gmax�� ,�� computed
for Re=1500 for both the no-slip �solid line� and the sym-
metric slip cases �dashed line�. Although the maximum en-
ergy growth with slip is always larger than in the case of
no-slip, the increase is small and therefore slip hardly affects
the transient energy growth. The optimal maximum transient
energy growth �largest value over all wavenumbers� is ob-
tained for �=0 and �=2 for both slip and no-slip boundary
conditions. Figure 4 displays the maximum energy growth as
a function of time, G�t ,�=0,�=2�, at Re=1500 and in the
symmetric slip case for different values of the Knudsen num-
ber. The small increase of the optimal growth with Kn ap-
pears in all cases. Furthermore, the time where the maximum
growth is attained is also slightly increased by the slip. As
both the square root of the maximum growth and the time at
which it is attained depend linearly on the Reynolds num-

FIG. 3. Map of the isovalues of the maximum transient energy growth
Gmax�� ,�� for Re=1500 in two cases: No-slip �solid line� and symmetric
slip boundary conditions with Kn=0.03 �dashed line�. The values of Gmax

are 10, 100, 200, 300, and 400 from the outer to the inner curve.

FIG. 4. Maximum energy growth G�t ,�=0,�=2� at Re=1500 and in the

symmetric slip case with Kn=0 �no-slip�, 0.01, 0.02, and 0.03.
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bers, these effects suggest that the effect of slip induces an
increase of an effective Reynolds number, which is consis-
tent with the observation that slip flows have, for the same
pressure forcing, a larger flow rate than do no-slip flows.

In the case of no-slip channel flows it is known that the
initial perturbations inducing the largest energy growth are
streamise vortices, while the most amplified response con-
sists of streamwise streaks. Translated in terms of the �� and
�� variables, this means that the optimal initial perturbations
are � type, with � negligible, while, on the contrary, the most
amplified response is � type, with � negligible. This is also
the case with slip boundary conditions. In Fig. 5 we repro-
duce, for Re=1500, the optimal initial condition �̂opt�y , t
=0� �left� and the optimal response �̂opt�y , t= tmax� �right�
corresponding to the largest transient energy growth
Gmax��=0,�=2�. The shape of the optimal initial perturba-
tion differ slightly from the no-slip case, while the optimal
responses are nearly undistiguishable, except near the wall,
where the effect of the slip boundary conditions is apparent.

FIG. 5. Optimal initial condition �̂opt�t=0� and optimal response �̂opt�t
= tmax� leading to largest transient energy growth at Re=1500 and for
�� ,��= �0,2�, for both no-slip �solid line� and symmmetric slip �dashed
line� cases with Kn=0.03.
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The lift-up mechanism, by which low-amplitude vortices are
converted into large amplitude streaks, seems therefore to be
only slightly sensitive to slip boundary conditions at the
wall. Similar results are obtained for other values of Kn and
Re and for asymmetric slip boundary conditions.
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