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Abstract – Swimming microorganisms often self-propel in fluids with complex rheology. While
past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent
experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion.
We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a
viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor’s two-dimensional swim-
ming sheet model, we solve for the shape of an active swimmer as a balance between the external
fluid stresses, the internal driving moments, and the passive elastic resistance. We show that this
dynamic balance leads to a generic transition from hindered rigid swimming to enhanced flexible
locomotion. The results are physically interpreted as due to a viscoelastic suction increasing the
swimming amplitude in a non-Newtonian fluid and overcoming viscoelastic damping.

editor’s  choice Copyright c© EPLA, 2014

Introduction. – Active locomotion allows many types
of motile cells to adapt to their environment and ensure
their survival [1]. One type of oft-studied locomotion is the
flagella- or cilia-based swimming of microorganisms [2]. In
many instances, their locomotion occurs through biologi-
cal or environmental fluids containing proteins and other
polymers which display elastic, and non-Newtonian, char-
acteristics. Important examples include mucus transport
by lung cilia [3], nematodes travelling though soil [4], bac-
teria in their host’s tissue [5], and spermatozoa swimming
though cervical mammalian mucus [6].

The majority of work on small-scale swimming has fo-
cused on swimmers self-propelling in Newtonian fluids.
Recently, a few experimental and theoretical studies have
addressed the role of non-Newtonian stresses in the fluid,
with conflicting conclusions as to their impact on locomo-
tion. On the one hand, measurements with Boger fluids
show enhanced propulsion of a flapping flexible swim-
mer [7] and of a cylindrical swimming sheet [8]. While a ro-
tating helix in a Boger fluid displayed decreased swimming
at small amplitude, it underwent a modest enhancement at
larger helical amplitudes [9]. In contrast, the locomotion
of the nematode C. elegans was shown to be systematically
hindered in a Boger fluid [10], and similarly locomotion
in shear-thinning fluids showed a systematic decrease [8].
Additionally recent computational studies on C. elegans
showed that both flexibility and back-front asymmetry in
stresses are required for enhanced propulsion [11].

In parallel to experiments, analytic studies of locomo-
tion using a prescribed, small-amplitude flagellar wave-
form predicted a systematic decrease in swimming speed in
viscoelastic fluids [12–14]. Enhanced swimming has been
predicted to occur as either due to end effects and stress
singularities [15] or for large-amplitude swimming [9].

In this work we propose a dynamic mechanism for swim-
ming enhancement in a viscoelastic fluid. Instead of pre-
scribing the shape of the flagellar deformation we solve for
the waveform of the swimmer as a balance between the
fluid stresses and the internal driving and resisting forces,
similarly to work on actuated finite-size filaments [13] and
synthetic swimmers [16]. We then show that this dynamic
balance leads to a generic transition from hindered rigid
swimming to enhanced flexible locomotion.

Waving motion in viscoelastic fluids. – In or-
der to model active swimming, we consider Taylor’s two-
dimensional waving model [17], which is suitable for the
physical description of beating eukaryotic flagella and
cilia [2,12]. The extension to the case of three-dimensional
filaments is presented in the appendix, with similar results.

Consider an infinite, two-dimensional sheet of negligible
thickness, as illustrated in fig. 1. It is embedded in a vis-
cous fluid, and due to internal actuation is made to deform
its shape as a traveling wave of frequency ω, amplitude a,
wave number k, and wave speed c = ω/k, and self-propels
as a result with speed U in the opposite direction. At low
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Fig. 1: (Colour on-line) A two-dimensional flexible sheet de-
forming as a traveling wave with amplitude a, wave number k,
wave speed c, and frequency ω = kc resulting in its swimming
at speed U .

Reynolds number, which is the relevant limit for microor-
ganisms, the flow around the sheet is described by the in-
compressible Cauchy equations, ∇·τ = ∇p, ∇·u = 0, with
p the pressure, u the velocity field, and τ the deviatoric
stress. We use a stream function ψ such that ux = ∂ψ/∂y
and uy = −∂ψ/∂x, in order to enforce incompressibility.

Viscoelastic effects in the fluid are modelled using the
classical Oldroyd-B evolution equation for τ . That model,
which can be rigorously derived from a dilute solution
of infinitely-extensible elastic dumbbells in a Newtonian
solvent [18], captures many features of Boger (elastic, con-
stant viscosity) fluids such as those used in experiments
on propulsion [7,8,10,19]. In the Oldroyd-B model, the
deviatoric stress τ is written as a sum, τ = τs + τp, of a
Newtonian solvent, τs, with viscosity ηs, and a polymeric
stress, τp, satisfying a Maxwell model with relaxation time
λ and viscosity ηp (and thus elastic modulus G ≡ ηp/λ).
The total deviatoric stress, τ , satisfies the Oldroyd-B con-
stitutive equation,

τ + λ
!

τ = ηγ̇ + ηsλ
!

γ̇, (1)

where the total viscosity is η = ηs + ηp and where γ̇ is
the shear rate tensor, γ̇ = ∇u + ∇uT . In eq. (1), we used
!

A= ∂A/∂t+ u · ∇A − (∇uT · A +A · ∇u), to denote the
upper convected derivative for any tensor A. An impor-
tant factor in the derivations below will be β = ηs/η < 1,
ratio of solvent to total viscosity. The relative importance
of viscoelasticity is quantified by the Deborah number,
De = λω, ratio of the relaxation time of the polymers to
the relevant time-scale of the waving motion, ω−1.

Swimming speed. – Assuming that the waveform
of the sheet is known, we first solve for the external
fluid dynamics. The height of the sheet is written as
y(x, t) = εy1(x, t) + ε2y2(x, t) + . . . , where ε $ 1 denotes
the dimensionless waving amplitude. The leading-order
shape, y1, is decomposed as

y1(x, t) = Re





∑

n≥1

a(n)ein(kx−ωt)



 , (2)

where Re denotes the real part, and a(n) is the amplitude
of the n-th Fourier mode. Using the Fourier notation W =

Re
[

∑

n≥1 W̃ (n)e−inωt
]

to describe the n-th mode W̃ (n) of

a time-periodic function W , we thus have ỹ(n)
1 = a(n)einkx.

Denoting by a(n)
NN the sheet amplitude in a non-

Newtonian (Oldroyd-B) fluid and by a(n)
N the Newtonian

one, we can solve for the external fluid dynamics asymp-
totically in powers of ε following the work in refs. [12,20].
Swimming is obtained at order ε2, at dimensional speeds
in the non-Newtonian (NN) case given by

UNN =
1

2

∞
∑

n=1

n2ωk
∣

∣a(n)
NN

∣

∣

2
(

1 + βn2De2

1 + n2De2

)

, (3)

while in the Newtonian (N) limit we obtain

UN =
1

2

∞
∑

n=1

n2ωk
∣

∣a(n)
N

∣

∣

2
. (4)

If the swimmer has identical shape in both fluids, i.e.

a(n)
NN = a(n)

N , comparing eqs. (3) and (4) shows that we
always have UNN < UN since β < 1. In order to obtain
an enhancement of the swimming speed in a viscoelastic
fluid, a physical mechanism must thus exist to increase
∣

∣a(n)
NN

∣

∣ beyond
∣

∣a(n)
N

∣

∣. As we show below, solving for the
swimmer amplitude by enforcing the correct dynamic bal-

ance allows us to obtain a nontrivial dependence of a(n)
NN on

the Deborah number, and enhancement. As both eqs. (3)
and (4) are quadratic in the amplitudes a(n), we note that
we only need derive the first-order shape dynamics.

Dynamic balance of active swimmer. – Within
a beating eukaryotic flagellum there are three forces to
consider. Firstly, the internal driving due to the spatio-
temporal actuation from molecular motors [21]. We model
this internal forcing, classically, as due to a time-varying
distribution of active bending moments per unit length,
F (x, t) [22]. Balancing this actuation are two resisting
forces, the external hydrodynamics stresses (pressure and
viscous stresses) and the internal solid mechanics resis-
tance (elastic cost to be bent away from a preferred, flat
state) [23]. Note that any potential internal dissipation
is neglected compared to dissipation in the outside fluid.
Denoting the bending stiffness of the sheet κ, normal force
balance at leading order in the amplitude of the sheet
deformation is written as

−κ∇4y + n̂ · σ · n̂|S = ∇2F, (5)

where n̂ is the unit normal to the sheet at leading order
and σ the hydrodynamic stress tensor.

In order to determine the hydrodynamic stress, we con-
sider the constitutive equation, eq. (1), at leading order

(

1 + λ
∂

∂t

)

τ1 = η

(

1 + βλ
∂

∂t

)

γ̇1, (6)

where we have expanded each quantity in powers of ε $ 1,
τ = ετ1 + . . . ; γ̇ = εγ̇1 + . . . , etc. Writing eq. (6) using
Fourier notation we have

τ̃
(n)
1 =

η − inλωηs

1 − inλω
˜̇γ(n)
1 =

1 − inDeβ

1 − inDe
η ˜̇γ(n)

1 . (7)
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The first-order Stokes equation similarly reduces to

η∇ · ˜̇γ(n)
1 =

1 − inDe

1 − inDeβ
∇p̃(n)

1 , (8)

at leading order in ε. The pressure is eliminated from the
above by taking its curl, leaving the biharmonic equation

for the stream function, ∇4ψ̃(n)
1 = 0. This is solved in

Fourier space to obtain the first-order stream function as

ψ1 = Re

[

∞
∑

n=1

ω

k
a(n)
NN(1 + nky)e−nkyein(kx−ωt)

]

. (9)

Notably, the flow described by eq. (9) is the same as the
Newtonian solution, hence viscoelasticity does not modify
the flow induced by the swimmer at leading order. How-
ever, as we see below, it does impact the stress distri-
bution. In order to determine the pressure, we have to
integrate eq. (8) using eq. (9) leading to

p̃(n)
1 = −2ηωk

(

1 − inDeβ

1 − inDe

)

in2a(n)
NNe−nkyeinkx. (10)

The hydrodynamic stress tensor, σ, is given by σ = −pI+
τ , which, at leading order, reduces in Fourier space to

σ̃
(n)
1 = −p̃(n)

1 I +
1 − inDeβ

1 − inDe
η ˜̇γ(n)

1 , (11)

for each Fourier mode n.
With the determination of the fluid stress, eq. (5) can

be written in Fourier components as

−κ
∂4ỹ(n)

1

∂x4
−

∂2F̃ (n)
1

∂x2
= p̃(n)

1 +2η

(

1−inDeβ

1−inDe

)

∂2ψ̃(n)
1

∂y∂x

∣

∣

∣

∣

∣

S

.

(12)

Writing F1 = Re
[

∑

n≥1 f (n)ein(kx−ωt)
]

to describe the

first-order contribution to the active bending moment, we
can determine the leading-order dynamic response of the
sheet amplitude and obtain

a(n)
NN =

−k2f (n)

−κn2k4 + 2ηωik

(

1 − inDeβ

1 − inDe

) . (13)

As can be seen in eq. (13), the value of the Deborah num-
ber impacts the sheet amplitude, and thus the swimmer
waveform is modified by a change in the surrounding fluid.

Inputting the linear waveform amplitude, eq. (13), into
the quadratic swimming speed, eq. (3), we finally obtain
the non-Newtonian swimming speed as

UNN =
ω

2k

∞
∑

n=1

[

n2|f (n)|2

κ2k2

(

1 + n2βDe2

1 + n2De2

)

×
1

n4+ 4Sp6
(

1+n2β2De2

1+n2De2

)

+ 4n3Sp3
(

De(1−β)
1+n2De2

)

]

,

(14)

where we have defined the (two-dimensional) Sperm num-
ber, Sp = (ηω/κk3)1/3, which quantifies the dimensionless
ratio of fluid to bending stresses [24]. If Sp $ 1, the dom-
inant balance is between activity and elasticity, and the
flagellum waveform is not affected by fluid stresses – this
is the stiff (s) limit. In contrast, when Sp & 1, fluid effects
balance the active bending and the waveform changes with
the properties of the fluid – this is the floppy (f) limit.

Simplifying the analysis to focus on the single n = 1
mode (reducing notation to f (n) ≡ f), we have non-
Newtonian swimming at speed

UNN =
|f |2

2κ2k2

ω

k

×
(

1 + βDe2
)

1+De2+ 4Sp6
(

1+β2De2
)

+ 4Sp3[De(1 − β)]
,

(15)

while the Newtonian limit is found by setting De = 0
in eq. (15). The non-Newtonian to Newtonian swimming
speed ratio, R = UNN/UN, is thus given by

R =
(1 + 4Sp6)(1 + βDe2)

1 + De2 + 4Sp3De(1 − β) + 4Sp6(1 + β2De2)
, (16)

which is the main result of this paper.

Enhanced locomotion. – In order to derive the con-
ditions under which swimming enhancement is possible,
we need to understand when the function R(β, De, Sp) can
be above one. Let us first consider some relevant physical
limits. In the stiff limit, Sp $ 1, eq. (16) simplifies to the
fixed-amplitude result [12]

R =
1 + βDe2

1 + De2 . (17)

In that limit, the swimming speed ratio decreases mono-
tonically with increasing Deborah number to the asymp-
totic value UNN = (ηs/η)UN for De & 1.

In the opposite floppy limit, Sp & 1, the flagellum shape
is highly sensitive to changes in the hydrodynamic stress
and the speed ratio, eq. (16), reduces to

R =
1 + βDe2

1 + β2De2 . (18)

Here, we obtain a systematic monotonic increase of the
swimming speed with Deborah numbers, up to an asymp-
totic value R = 1/β obtained when De & 1.

Our model points therefore to a transition from hin-
dered to enhanced swimming when the flagellum is suf-
ficiently flexible. To get further insight, let us look at
small deviations from the Newtonian limit (De = 0).
Computing the derivate of R with respect to De we get
∂R/∂De|De=0 = 4(β − 1)Sp3/(1 + 4Sp6), which is always
negative. Consequently, a small amount of viscoelasticity
(De $ 1) will always start by decreasing the swimming
speed. In contrast, in the infinite Deborah number limit,
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Fig. 2: (Colour on-line) Ratio of non-Newtonian to Newtonian swimming speed, UNN/UN, as a function of the Deborah number,
De, for four different values of the Sperm numbers (β = 0.1 corresponding to a critical value of Sp ! 1.16 for enhanced swimming,
eq. (20)).

the swimming speed ratio becomes

R(De & 1) =
β + 4βSp6

1 + 4β2Sp6 . (19)

A transition from hindered (R < 1) to enhanced propul-
sion (R > 1) in a non-Newtonian fluid occurs thus when

Sp3 >
1

2
√

β
. (20)

The result in eq. (20) indicates therefore a transition in
swimmer flexibility allowing enhancement of the swim-
ming speed. Indeed, the Sperm number scales inversely
proportional to the flagellum bending modulus, and thus
for a given fluid, the criterion in eq. (20) is equivalent to
a requirement for κ to be small enough.

Our results are illustrated numerically in fig. 2 for
β = 0.1. We plot the ratio of the non-Newtonian to
Newtonian swimmer speed, UNN/UN, as a function of the
Deborah number for four different values of the Sperm
number. The data are shown in fig. 2(a) for small values
of De and ranging from 0 to 100 in fig. 2(b). In all cases,
the swimming speed initially decreases with the Deborah
number (fig. 2(a)) but when the swimmer is sufficiently
flexible, the swimming speed subsequently increases and
crosses the threshold UNN/UN = 1 (fig. 2(b)). The crite-
rion from eq. (20) corresponds to enhancement predicted
to occur as soon as Sp ! 1.16, consistent with the nu-
merical results. Note that our model also allows us to
compute the value of the transition Deborah number be-
yond which enhancement occurs. In eq. (16), one can solve
the quadratic equation for De and R > 1 is equivalent to
De > 4Sp3/(4βSp6 − 1), which, as expected, is defined
only if the criterion in eq. (20) is satisfied.

Beyond swimming kinematics, our model also allows
us to compute swimming energetics and efficiency. Fol-
lowing ref. [12] and the derivations above, we can cal-
culate the power expanded by the swimmer against the
fluid, ẆNN. Defining the swimming efficiency, classically,
as E = ηU2/Ẇ , the ratio between the non-Newtonian

efficiency and that in a Newtonian fluid with the same
viscosity (η) is exactly given by the swimming speed ratio
R from eq. (16). The conditions for enhanced swimming
correspond thus to those required for enhanced efficiency.

Illustration of the waveform. – We further illus-
trate the impact of non-Newtonian stresses by displaying
the swimming waveform in the case of an internal sinu-
soidal forcing. We thus prescribe f (1) = fi and f (n) = 0
for n > 1, and compute the leading-order waveform. Un-
der the assumption of linear response, the shape remains
sinusoidal with a different phase and amplitude. The re-
sults are illustrated in fig. 3 for three Sperm numbers (1, 2
and 10) and four Deborah numbers (0, 1, 2, and ∞). Su-
perimposed on the shapes are the values of R, ratio of the
non-Newtonian to Newtonian swimming speeds.

The results in fig. 3 show the expected decrease in wav-
ing amplitude that accompanies an increase in Sperm
number but, more importantly, the systematic increase
in amplitude with an increase of viscoelasticity De. The
waving amplitudes can be computed analytically and we
obtain the Newtonian result as A2

N = 1/(1 + 4Sp6), which
explains the decrease of waving amplitude with Sperm
number. In the non-Newtonian case we have a waving
amplitude given by

A2
NN =

1 + De2

1 + De2 + 4Sp3De(1 − β) + 4Sp6(1 + β2De2)
.

(21)
The critical Deborah number for which ANN > AN is then
found to be De > 1/Sp3(1 + β), which is always satisfied.
Hence the presence of viscoelastic stresses leads to a sys-
tematic increase of the waving amplitude of the swimmer.
This provides a physical interpretation for the swimming
enhancement seen in fig. 2: if the viscoelastic amplitude in-
crease is large enough, it is able to compensate for the non-
Newtonian damping term from eq. (3), leading to faster
swimming, UNN > UN.

Discussion. – In this paper, we have proposed a phys-
ical mechanism for enhanced locomotion in a viscoelas-
tic fluid. It does not require transient or end effects but
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Fig. 3: (Colour on-line) Swimming waveforms under a linear response for Sp = 1, 2, and 10, as a function of the Deborah
number, De. In each plot, the value of the swimming ratio, R = UNN/UN, is indicated. As in fig. 2 β = 0.1 and Sp ! 1.16 is
required for enhancement. An increase in De leads to an increase in waving amplitude which, when sufficiently large, leads to
enhanced swimming.

instead arises naturally due to the equations of active elas-
tohydrodynamics applied to locomotion.

Our results can be rationalised by focusing on the two
different stiff (s) and floppy (f) limits, and comparing the
non-Newtonian swimming speed for De & 1 to the New-
tonian one (De = 0). In the stiff regime fluid forces are
negligible, and the dynamic balance in eq. (12) reduces to
one between bending resistance and active stresses. Con-
sidering only the typical magnitudes of a and f , we then
get a(s) ∼ f/κk2 for both Newtonian and non-Newtonian.

The swimming speeds scale then as U (s)
N ∼ ωf2/κ2k3 and,

for large De, U (s)
NN ∼ βωf2/κ2k3, leading to R(s) = β < 1.

In contrast, in the floppy regime, elastic forces are negli-
gible compared to fluid stresses, and the dynamic balance
in eq. (12) reduces to one between the fluid resistance of

the filament and the active stresses, with a(f)
N ∼ kf/ηω

and a(f)
NN ∼ kf/ηωβ. The swimming speeds in this case

are given by U (f)
N ∼ k3f2/η2ω and U (f)

NN ∼ k3f2/βη2ω,
leading to R(f) = 1/β > 1, and enhanced swimming.

Physically, we have shown that the transition from
hindered to enhanced swimming takes its origin in the
systematic increase of the waving amplitude for active
swimming in a viscoelastic fluid, which can overcome vis-
coelastic fluid damping [12]. How can this increase in am-
plitude be intuitively rationalised? We would like to argue
that it is a consequence of the change in fluid pressure, and
results from a “viscoelastic suction”. Indeed, we consider
the leading-order pressure in eq. (10), and compute its typ-
ical value on the sheet for a fixed amplitude a, allowing us
to isolate the change in pressure due to the fluid dynamics
and not due to the amplitude increase. The ratio between

the typical non-Newtonian and Newtonian pressure is then

[

pNN(a)

pN(a)

]2

=
1 + β2De2

1 + De2 , (22)

which shows a large pressure reduction (since β < 1) in
a viscoelastic fluid. For sufficiently large Sperm numbers,
where fluid stresses have a relatively larger impact on the
waveform, the wave amplitude increase due to this suc-
tion effect is able to overcome the non-Newtonian fluid
damping in locomotion and increase the swimming speed.

To conclude, we note that although the mechanism out-
lined in this paper was derived in the context of flagellar
locomotion, the same physical principle would be at play
for higher swimmers exploiting muscular contractions, and
thus could also be relevant to the dynamics of small mul-
ticellular organisms in complex environments.
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Appendix: infinite filament. – Having studied a
two-dimensional waving sheet, we outline how to carry
out the calculation of a three-dimensional infinite fila-
ment, following ref. [25]. Consider an infinite periodic
filament in an Oldroyd-B fluid waving with small ampli-
tude. The filament is modelled geometrically as a cylinder,
which when straight is parametrised by s along its axis,
φ around this axis, and radius b. When small-amplitude
waves propagate along ex, the surface of the cylinder is de-
scribed by r̂ = [h(s, t)+b cosφ]ey +b sinφez +sex and the
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Table 1: Pressure and velocity field for a travelling wave in
the ex direction on a cylinder to first order in ln(kb), with
α = (1 − iDe)/(1 − iβDe) [14].

p̃ −ηωh̃i cos θAK1(kr)
ũr −h̃ωi cos θ[αArkK1(kr) + BK2(kr) + CK0(kr)]
ũθ −h̃ωi sin θ[BK2(kr) − CK0(kr)]
ũx −h̃ω cos θ[αArkK0(kr) + (B + C − αA)K1(kr)]

αA
{

K0(kb) + bkK1(kb)
[

1
2 + K0(kb)

2K2(kb) − K0(kb)2

K1(kb)2

]}−1

B −αAbkK1(kb)/[2K2(kb)]
C [1 − bkK1(kb)αA/2]/K0(kb)

height of the filament away from its centreline position is

h(s, t) = εRe
[

aNNei(ks−ωt)
]

, (A.1)

where a is the amplitude, and h(s, t) is analogous to y(x, t)
in the above when n = 1. Using the first-order Oldroyd-B
equation, in Fourier notation, we recover eq. (7). We can
then consider the Stokes equation at first order,

∇2ũ1 = η

(

1 − iβDe

1 − iDe

)

∇p̃1, (A.2)

where the first-order boundary conditions for each mode
are given by ũ1 = −iωh̃ey. The solutions are best de-
rived using cylindrical polar co-ordinates, where the basis
vectors are ex, r̂ = sin φez + cosφey and θ̂ = − sinφey +
cosφez . The first-order solutions are shown in table 1 [14]
for each mode. These can then be used to compute the
second-order swimming speed, leading to the same result
as eq. (3). The force per unit length acting of the fluid is
found by integrating the stress around the circumference
and keeping only lowest-order terms in ln(kb) the force per
unit length perpendicular to the filament is

Fvis = Re

[

−iωaNN
4π

ln(kb)

1 − iβDe

1 − iDe
ηei(ks−ωt)

]

. (A.3)

This viscoelastic force is then balanced by the passive elas-
tic forces of the filament and the internal forcing,

F̃vis = −2b
∂2F̃1

∂s2
− κ

∂4h̃

∂s4
, (A.4)

where F1 is the first-order bending moment per unit
length, as above. The non-Newtonian swimming velocity
is then finally given by

UNN =
2b2|f |2

κ2k2

ω

k

×
(

1 + βDe2
)

1+De2 + 2Sp4De(1 − β) + Sp8
(

1 + β2De2
) , (A.5)

where we have defined the perpendicular drag coefficient
ξ⊥ = 4πη/ ln(kb), and the three-dimensional Sperm num-
ber, Sp = (ξ⊥ω/κk4)1/4. The three-dimensional result,
eq. (15), is thus very similar to the two-dimensional case,
and the physical mechanism identified in this paper ex-
tends naturally to three dimensions.
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