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Abstract
Motivated by recent experimental measurements, the passive diffusion of the bacterium
Leptospira interrogans is investigated theoretically. By approximating the cell shape as a
straight helix and using the slender-body-theory approximation of Stokesian hydrodynamics, the
resistance matrix of Leptospira is first determined numerically. The passive diffusion of the
helical cell is then obtained computationally using a Langevin formulation which is sampled in
time in a manner consistent with the experimental procedure. Our results are in excellent
quantitative agreement with the experimental results with no adjustable parameters.
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1. Introduction

Small particles in a fluid undergo a continuous random dis-
placement called Brownian motion. This phenomenon was
first studied experimentally in the 19th century by Brown [1],
at the origin of its name, and first explained theoretically in
1905 by Einstein [2]. Einstein did this by considering the
equilibrium behaviour of a suspension of spheres under an
unidirectional force. He compared the equation from the
minimization of the thermodynamic free energy to the
advection–diffusion equation for the concentration of the
spheres. The common form of these equations enabled him to
determine the diffusion coefficient of a sphere in one
dimension. Shortly thereafter, Langevin showed that the same
result could be obtained using Newtonʼs second law if an
appropriate fluctuating force, FBr, is applied to the body [3].
In a typical micron-size system, and if very short time scales
are not of interest, inertial forces can be neglected and Lan-
gevinʼs equations for a rigid body simplify to the so-called
Brownian dynamics approach as

+ =F F 0˜ ˜ , (1)H Br

=F 0˜ , (2)Br

δ⊗ =t k T tF F R˜ (0) ˜ ( ) 2 ( ), (3)FUBr Br b ˜ ˜

where F̃H is a six-component vector containing the instanta-
neous hydrodynamic forces and torques on the body, F̃Br

denotes the forces and torques created by thermal fluctuations,
· represents ensemble averaging, and RFU˜ ˜ is the full

(6 × 6) hydrodynamic resistance matrix of the rigid body of
interest. Notation-wise, in the equations above, ⊗ denotes the
outer tensor product, t is time, kb is the Boltzmann constant, T
is the absolute temperature, and δ t( ) is the Dirac delta func-
tion. Einsteinʼs and Langevinʼs results have since been
extended to look at the diffusion of rods [4], helicoidal bodies
[5], helices [6] and arbitrarily shapes [7–10]. The influence of
fluid and particle inertia was also theoretically investigated
[11], predicting the short time Brownian ballistic regime.
Only recently, improvements in imaging techniques have
allowed for experimental investigations of the Brownian
ballistic regime [12–14] and the diffusion of shapes other than
spheres [15–18].

Recent work in the biophysics of swimming micro-
organisms has raised interest into the diffusion of active
particles which use internal processes to swim through the
fluid. Many bacteria are classic examples of active particles.
The diffusive behaviour of such bodies has recently been
explored experimentally [19, 20] and theoretically [21–24].
The active motion (typically self-propelled swimming)
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increases the effective diffusion of the particles by orders of
magnitude, even if said swimming motion would produce no
net displacement in the absence of thermal fluctuations [21].
These theoretical investigations typically simplify the shape
of the active particle to that of a sphere or an ellipsoid.
However, it is the dynamics of these more complicated shapes
which typically result in the motion of the active particle. For
example Leptospira interrogans (LI), a unique spirochaete
bacterium, is self-propelled by rotating the major helix of a
super-helicoidal body counter-clockwise and the minor helix
clockwise [25–27]. This super-helix shape only exists near
the leading pole, while the other pole takes the form of a
hook. These bacteria are able to swim forwards and back-
wards and rely on passive diffusion for their rotation. The
specific details of how such a shape passively diffuses is thus
of interest, let alone how the active swimming would affect
the results.

To investigate how a Leptospira cell passively diffuses,
Butenko et al employed confocal microscopy to observe its
Brownian motion [17]. A fixation process was used to stop all
chemical reactions in the body and its motion, reinforce the
body shape and prevent its decay. Only bacteria with small or
no hook ends were tracked (figure 1 inset) and the dimensions
of the LI were precisely characterized using scanning electron
microscopy (figure 1 and table 1). Butenko et al took three-

dimensional image stacks every 4.6 s from which the diffu-
sion of the helical cell parallel and perpendicular to its major
axis were inferred. They also measured the rotational diffu-
sion of the major axis. Comparison with a previously-existing
helical diffusion model [6, 28] showed that it severely
underestimated the diffusion coefficients. Attempts to com-
pare the results with the diffusion of a rod were also made
[29], with good apparent agreement. However, the rod model
used in [17] only applies in the exponentially slender limit

≪L a1 log ( ) 1, where L is the rod length and a its typical
thickness [30]. The rod to which the data was best fit had

∼L a 102 meaning ∼L a1 log ( ) 1 4. If the actual dimen-
sions of the helical cell are plugged into the exact diffusion
coefficient for a prolate spheroid [7, 31], the agreement with
the data turns out to disappear.

In this paper the Brownian motion of a simple helicoidal
model of LI is considered numerically. A slender-body-theory
approach is first employed to determine the hydrodynamics of
LI to greater accuracy than the previous approaches [6, 28].
The resulting hydrodynamic properties of the cell are then
used to carry out Brownian dynamics simulations of the
model cell. These results are finally run through a simulated
experiment to capture deviations caused by the experimental
sampling time before they are compared with the data of
Butenko et al [17]. As we detail below, we obtain excellent
quantitative agreement with no adjustable parameters.

The paper is organized as follows. Section 2 details the
four parts of the model: the slender body theory approxima-
tion of hydrodynamics in section 2.1, the Brownian dynamics
methodology in section 2.2, the experiment simulation and
sampling method in section 2.3 and the geometrical descrip-
tion for the LI helix used in section 2.4. Section 3 then pre-
sents the results of the paper: the LI helix hydrodynamics and
diffusion in section 3.1, detailed comparison with the
experimental results in section 3.2, we then revisit the prolate-
spheroid approximation in section 3.3, and finish by showing
how our results compare with other models in section 3.4.

2. Theoretical model and Numerics

The general motion of a rigid particle subject to thermal
fluctuations is described by the Langevin equation

∑= +
t

m
u

F F˜ ·
d ˜

d
˜ ˜ , (4)Br

where m̃ is the mass/moment of inertia matrix (a 6 × 6 matrix
with the mass or moment of inertia of the particle in the
relevant points along the diagonal), ũ is a six-component
vector containing the linear and angular velocities of the
particle, and ∑F̃ are the sum of all non-stochastic forces and
torques. The above equation assumes that the mass and the
moment of inertia of the particle do not change with time. If
the body is in a viscous fluid without external forces then ∑F̃
is the hydrodynamic force of the fluid on the body, F̃H.

For μm-size objects, such as LI bacteria, immersed in a
viscous fluid (water or more viscous), the ratio of inertial
forces (∼ tm u˜ · d ˜ d ) to hydrodynamic forces (F̃H) is typically

Figure 1. A scanning electron microscopy image of Leptospira
interrogans. The outer image is the standard shape seen. The inset is
an example of the straighter shaped bodies that Butenko et al tracked
experimentally. Adapted with permission from [17]. Copyright 2012
American Chemical Society.

Table 1. The dimensions of LI found by Butenko et al [17]: L is the
length of the helix measured along the major axis, rh the helix radius,
P the helix pitch, r2 b is the thickness of the helix cross section. Each
dimension is assumed to be normally distributed.

Value Mean (μm) Stand. dev. (μm)

L 9.10 4
rh 0.0850 0.03
P 0.392 0.07
rb 0.0695 0.02
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small. The equation to solve therefore reduces to that of
Brownian dynamics, (1), and the value of F̃H must be deter-
mined from the instantaneous hydrodynamic response of the
surrounding fluid.

The ratio of inertial stresses to viscous stresses in the
fluid, the Reynolds number, also tends to be small for μm-size
objects in a viscous fluid. At low Reynolds numbers, the
surrounding fluid is accurately described by the incompres-
sible Stokes equation [32]

μ = =  pu u, · 0, (5)2

with the no-slip boundary conditions satisfied on the particle
surface. In (5), u denotes the fluid velocity field, μ the
dynamic viscosity, and p is the pressure. As the equations in
(5) are linear and time independent, the instantaneous forces
and torques on any submerged body are linearly related to the
linear and angular velocity of the body as

=F R u˜ ˜ , (6)FUH ˜ ˜

where RFU˜ ˜ is the symmetric resistance matrix, proportional to
the viscosity of the fluid and function of the size and shape of
the particle. Substituting (6) into (1) gives

= −u R F˜ ˜ , (7)FU˜ ˜
1

Br

where the change of sign has been absorbed into F̃Br. In this
formulation F̃Br is assumed to be white noise with the sta-
tistical properties of (2) and (3).

Equations (2), (3), and (7) describe the velocity of a rigid
particle in a specific frame moving with the body called the
centre of mobility which is unique [7]. In this frame the sub-
matrix of RFU˜ ˜ that relates force and rotation, ΩRF , is sym-
metric. To solve for the rotational and translational motion of
that frame in the laboratory frame one needs to integrate in
time

Ω= ×
t

e
e

d

d
, (8)i

i

=
t

R
u

d

d
, (9)

where ei represents the direction of one of the body-frame
basis vectors (e1, e2 or e3), Ω is the angular velocity of the
body, R its position and u is the velocity vector. The location
of the centre of mobility frame, ′R , relative to another fixed
frame on the body, R, is given by

ϵ′− − =Ω Ω Ω⎡⎣ ⎤⎦( ) RR I R R R eTr · ( ) , (10)M M ijk F jk i;

where I is a 3 × 3 identity matrix, Tr ( · ) indicates the trace,
ϵijk is the Levi-Civita permutation tensor, and RFU˜ ˜ has been
divided into four 3 × 3 matrices such that

=
Ω

Ω Ω

⎛
⎝⎜

⎞
⎠⎟R

R R

R R
. (11)FU

FU F

F
T

M

˜ ˜

In the above equation repeated indices are summed over from
1 to 3 and all values are described in the R frame.

In summary, (2), (3), (7), (8), and (9) fully describe the
behaviour of one rigid particle subject to thermal fluctuations

and the desired statistics may then be obtained from multiple
realizations of these equations. The resistance matrix, RFU˜ ˜ , of
the particle must therefore be known in order to carry out
these calculations. Generally RFU˜ ˜ is not known exactly, and
approximations must be made. Below, we show how to obtain
an approximate value for RFU˜ ˜ using so-called slender body
theory. We then solve numerically (2), (3), (7), (8), and (9).
Finally, due of the long times between each experimental
measurement in Butenko et alʼs investigation, the experi-
mentally-determined diffusion coefficients deviate from their
exact values. We thus carry out a simulation of their experi-
mental procedure in order to enable an accurate comparison
of our numerical results with the experiment.

2.1. Slender body theory of hydrodynamics

For rigid bodies which are much longer than they are thick,
the resistance tensor RFU˜ ˜ can be approximated to good
accuracy by an asymptotic method called slender body the-
ory. This method approximates the flow around a slender
object at low Reynolds number by placing a series of force
and source dipole singularities along the body centreline
[33, 34]. The strengths of these singularities are expanded in
powers of the ratio between the body thickness and its length
and matched to the boundary conditions at the surface of the
body. The resulting equations form a set of integral equations
for the force distribution along the body in response to a given
motion [33–35]. Historically, there has been two major for-
mulations of slender body theory, Lighthillʼs [33] and John-
sonʼs [34]. In Lighthillʼs slender body theory, the cross
sectional shape of the body is held constant and end effects
are ignored. Alternatively Johnsonʼs more accurate slender
body theory included end effects and the possibility for
changing cross sectional thickness provided the cross sec-
tional thickness behaved like a prolate spheroid near the ends.
In this paper we use of Johnsonʼs slender body theory, which
describes the hydrodynamics with relative accuracy of ϵ ϵln2

when ϵ is the typical aspect ratio of the slender body.
The integral equation in Johnsonʼs slender body theory is

given by

πμ λ∂
∂

= + +s t

t
K K

x
f f f8

( , )
[ ] [ ] [ ], (12)a b

where s tx( , ) is the location of the bodyʼs centreline para-
metrized by arc length, s, and sf( ) is the force distribution
along the centreline of the body. The operators in (12) are
given by

λ = + ⊗ + − ⊗⎡⎣ ⎤⎦( ) ( )d sf I t t I t t f[ ] ˆ ˆ 2 ˆ ˆ · ( ), (13)

∫= + ⊗ ′ −
′ −

′
−

( )K
s s

s s
sf I t t

f f
[ ] ˆ ˆ ·

( ) ( )
d , (14)a

l

l

∫= + ⊗ − + ⊗
′ −

′ ′
−

⎡
⎣⎢

⎤
⎦⎥K

s s
s sf

I R R
R

I t t
f[ ]

ˆ ˆ ˆ ˆ
· ( ) d , (15)b

l

l

where ϵ= −d elog ( )2 , t̂ is the tangent vector to the centre-
line at s, = − ′s sR x x( ) ( ), =R R Rˆ | |, ϵ = r l2b is the
slenderness parameter, r2 b is the thickness of the body cross

3
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section, l2 is the centreline length of the body and e is exp (1).
These equations assume the cross sectional radius of the

object is −r s1b
2 . In what follows we use a dimensionless

framework with μ= =l 1 unless otherwise stated.
Equation (12) provides the link between the motion of a

slender body and the force distributed along its centreline. If
this force distribution can be determined, the total force
required to create a given motion, and by extension the
resistance coefficient, can then be determined. Solving for the
force distribution is done numerically using a Galerkin
method [36] and writing the force density as a finite sum

∑=
=

s P sf a( ) ( ), (16)
n

N

n n

0

where Pn(s) are Legendre polynomials of order n, an are
vectors representing the Legendre polynomial coefficients in
the three Cartesian directions and N is the summation order.
In the limit of → ∞N the numerical approximation becomes
exact due to the orthogonality of the Legendre polynomials.
The specific expansion in Legendre polynomials is used here
because Pn(s) are eigenfunctions of the integral in K []a (14),
with eigenvalues −Ln [35],

= − +( )[ ]K P L PA I tt Aˆˆ · , (17)a n n n

where =L 00 , = ∑ =L i2 1n i
n

0 for >n 0, and A is an
arbitrary matrix.

Using the decomposition (16) allows to reduce (12) into a
series of linear equations for the an vectors. These equations
are found by multiplying (12) by Pm(s) and integrating s over
[−1, 1], leading to

∫

∫∑

π

λ

∂
∂

= + +

−

=

∞

−

⎧⎨⎩
⎫⎬⎭[ ] [ ] [ ]

P s
s t

t
s

P s P K P K P s

x

I I I a

8 ( )
( , )

d

( )( ) d · .

(18)

m

n

m n a n b n n

1

1

0
1

1

The integrals on the left-hand side (lhs) and right-hand side of
(18) only depend on the shape and motion of the body and its
centreline. Therefore these integrals can be determined for a
given set of Legendre polynomials. The lhs integral and the
integrals of λP s PI( ) [ ]m n and P s K PI( ) [ ]m a n can be simply
evaluated using MATLAB [37]. The integral of P s K PI( ) [ ]m b n

is not as simple to evaluate. Analytically K []b , (15), is non-
singular at = ′s s but the individual terms in K []b are. This
can be checked by performing the Taylor series of K []b

around = ′s s . The singular nature of the individual terms
causes the direct numerical sampling of = ′s s to give non-
numerical values. Therefore simple numerical integration
schemes will not work. The quadrature integration methods in
MATLAB [37] were used to overcome this. Quadrature
methods handle the sampling issue by using the points around

= ′s s to determine the limiting behaviour of the integral at
= ′s s . The MATLAB quadrature methods work best when

the singular points are at the boundaries. Therefore the inte-
gral is divided into two regions ∈ − ′ ∈ −s s s[ 1, 1], [ 1, ] and

∈ − ′ ∈s s s[ 1, 1], [ , 1] to assist with the calculation.

We note that slender body theory does not include the
local torque due to surface rotation along the centreline of the
elongated body. This was added to the system by adding a
series of rotlet singularities [31] to the bodyʼs centreline.
Expanding the rotlet singularities in powers of the slenderness
parameter, the local contribution of the rotlets to the flow is

Ωγ πϵ= −s s t t( ) 16 (1 )( · ˆ)ˆ2 2 , where γ s( ) is the rotlet
strength at s. The total additional torque from surface rotation
was then obtained by integrating γ over s using MATLAB.

With the method outlined above, the coefficients for an

and γ s( ) were obtained numerically, and thus the matrix RFU˜ ˜

was constructed by calculating the total force and torque
created from translation or rotation in a single direction. The
value of the truncation order N was chosen such that the
change in the values of RFU˜ ˜ between the −N 2 and N cases
is less than three decimal places.

The accuracy of our implementation of slender body
theory was tested by comparing the results from (18) to the
exact resistance coefficients for a prolate spheroid [31].
Figure 2 shows the ratio between our numerical results and
the exact solutions for different values of the slenderness
parameter, ϵ. All ratios are seen to converge to 1 as the
slenderness decreases (ϵ goes to 0). The slowest term to
converge is the coefficient that relates torque parallel to the
major axis to the rotation in the same direction, ∥k , which is
calculated from the added rotlets. As rotlets create flows
which decay as r−2, the error could indicate that the rotlets are
reaching a strength where interactions not taken into account
in the value of γ s( ) begin to influence for larger values of ϵ.
The results of the slender body theory programme were also
tested against all the cases in Johnsonʼs original article on his
slender body theory [34] with excellent agreement (not
shown).

2.2. Brownian dynamics

With all coefficients in RFU˜ ˜ found, (2), (3), (7), (8), and (9)
can be solved. This is done by first transforming RFU˜ ˜ into the
centre of mobility frame [7] and then solving the equations
with an Euler–Maruyama method. The Euler–Maruyama
method approximates the trajectories that the particles take (a
strong integrator) and converges to the exact solution with the
properties Δ− ⩽X t Y t C t( ( ) ( ))2 (an order 0.5 accurate
method), where X(t) is the exact solution, Y(t) is the
approximation, C is a constant and Δt is the time between two
consecutive time steps [38]. In the Euler–Maruyama method
(2), (3), (7), (8), and (9) become

Δ Δ= −t tu R F˜ ˜ , (19)FU˜ ˜
1

Br

Δ =tF̃ 0, (20)Br

Δ Δ Δ⊗ =t t k T tF F R˜ ˜ 2 , (21)FUBr Br b ˜ ˜

Ω Δ= + ×+t t t t te e e( ) ( ) ( ) ( ), (22)n n n ni i i1

Δ= ++t t t tR R u( ) ( ) ( ) , (23)n n n1

where tn denotes the nth time step. Computationally, ΔtF̃Br is
taken to be Gaussian and is generated by the MATLAB

4
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function mvnrnd. Care is needed with (22), as it may not
conserve vector length or the orthogonality of the three body
basis vectors e1, e2 and e3. This is overcome by determining
only +te ( )n1 1 and +te ( )n2 1 using (22); +te ( )n1 1 is renormalized
and any projection of +te ( )n2 1 on the renormalized +te ( )n1 1 is
removed from +te ( )n2 1 before it too is renormalized. Finally the
third vector +te ( )n3 1 is determined by taking the cross product
of +te ( )n1 1 and +te ( )n2 1 . The statistical behaviour of the dif-
fusing particle is determined by solving the above equations q
times from t = 0 to an end time, tfin, with a set value of Δt.

Our numerical implementation of the Brownian
dynamics method was tested by investigating the statistical
behaviour of a diffusing sphere and of a prolate spheroid. In

both cases the mean squared displacement Δri
2 along

separate directions in the lab frame and the rotational

diffusion of ei in the form of −te e( ( ) (0))i i
2 was con-

sidered. A diffusing sphere follows Δ =r Dt2i
2 along the

ith direction and − = − − θt D te e( ( ) (0)) 2[1 exp ( 2 )]ii
2 ,

where πμ=D k T a6b and πμ=θD k T a8b
3. The percentage

difference between the analytic formula above and the
numerics was determined at time =t 30fin scaled units for
various q and Δt. Figure 3 shows the results of these tests for

both Δr1
2 and −te e( ( ) (0))1 1

2 . The erratic behaviour seen

is due to the stochastic nature of the integration programme.
The error is seen to decrease with increasing q and decreasing
Δt. For q = 10 000 and Δ =t 0.03 (scaled units) the error at

=t 30fin (scaled units) is less than 1%, and these are the
values used for the diffusion calculation of LI in section 3.

For a prolate spheroid with major axis e1 initially aligned
with the direction (1, 0, 0), diffusion along and against (1, 0,
0) starts like Δ =∥ ∥r D t22 and Δ =⊥ ⊥r D t22 , respectively,
where =∥ ∥D k T Cb , =⊥ ⊥D k T Cb , and ∥C (respectively ⊥C )
is the coefficient that relates the drag force parallel
(respectively perpendicular) to the prolate spheroidʼs major
axis from motion in the same direction. As time progresses
orientation is lost and the mean squared displacement
along these directions become Δ = +∥ ⊥r D D t2( 2 ) 3i

2 .

Similarly to above, we expect − =te e( ( ) (0))1 1
2

− − θD t2[1 exp ( 2 )],,1 where =θ ⊥D k T k,1 b and ⊥k is the
coefficient that relates the torque perpendicular to the major
axis from rotation in the same direction. The rotational dif-
fusion of e2 and e3 is very rapid for a prolate spheroid, and is
not relevant on the time scales considered. Therefore we only
consider the rotational diffusion caused by rotations around
the minor axes. In figure 4 we display the directional mean
square displacement and −te e( ( ) (0))i i

2 for a prolate
spheroid. The black dashed lines are theoretical predictions
while the solid lines are the numerical predictions, and we
obtain excellent quantitative agreement.

2.3. Numerical simulation of the experiment

Modern three-dimensional real-space microscopy techniques
have trouble determining the three dimensional diffusion of

Figure 2. Ratio of resistance coefficients calculated using slender body theory to their exact values [31] for a prolate spheroid; (a): coefficient
that relates the drag force parallel to the prolate spheroidʼs major axis from motion in the same direction, ∥C ; (b): coefficient that relates the
drag perpendicular to the major axis from motion in the same direction, ⊥C ; (c): coefficient that relates the torque parallel from rotation in the
same direction, ∥k ; (d): coefficient that relates the torque perpendicular from rotation in the same direction, ⊥k . Results are shown for N = 4
while higher values of N show no discernible changes.
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micron-sized objects in water with sufficient speed to get the
full detail of Brownian dynamics simulations. Though fast
CCD and CMOS cameras are available, confocal laser scan-
ning (at sufficient digital resolution, such as 512 × 512 pixels)
is typically limited to 30 frames per second; moreover, many
images at different focal planes are needed to obtain the
orientation of the body and its location in a three-body

environment. Hence a three-dimensional image can take
seconds to obtain. The determination of the diffusion char-
acteristics therefore must be inferred from the limited mea-
surements available. Butenko et alʼs experimental setup made
a three-dimensional measurement of 50 focal planes every
4.6 s with a 30 fps resonant laser scanning system. The dif-
fusive behaviour was estimated from the results. In each

Figure 3. Brownian dynamics for the diffusion of a sphere. Percentage error from the numerical calculation of −te e( ( ) (0))1 1
2 , (a)–(b), and

the mean squared displacement, Δr1
2 , (c)–(d), at =t 30fin (scaled units); (a) and (c) show the error due to changing number of runs (q) when

Δ =t 0.03, while (b) and (d) show the error for different time steps Δt with q = 10 000.

Figure 4. Brownian dynamics for the diffusion of a prolate spheroid. Directional mean squared displacements divided by time and non-
dimensionalized (a) and −te e( ( ) (0))i i

2 (b). In (a): the solid blue line is mean squared displacement along the (1, 0, 0) direction, the solid
green is for (0, 1, 0), the solid red is (0, 0, 1). The black straight lines correspond to diffusion purely along the major axis (dashed), minor axis
(dotted) and the long-time diffusion constant obtained when orientations are lost (dash–dotted). In (b) the black dashed line is the theoretical
prediction of how e1 (so i = 1) should change, the solid blue line is the calculated change in e1, the solid green is e2 and the solid red is e3. The
results were obtained with q = 10 000, tfin = 25, and Δt = 0.03 scaled units. The prolate spheroid had an aspect ratio of 55.6. All lengths are
scaled by half the length of the major axis, a, and times by μa k T3

b .
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measurement, the authors determined the direction of the
major axis, e1, and the position of the cell; the value of

−te e( ( ) (0))1 1
2 was then obtained directly from the mea-

surements for e1. The displacement parallel and perpendicular
to the major axis was approximated from the change in the
position between two measurements, at times tn and −tn 1, by
dividing the change into motion parallel and perpendicular to

te ( )n1 . The steps parallel (perpendicular) to e1 were
than summed over a time period, tperiod, starting at different
time steps, τ, where τ ∈ −t t(0, )fin period and tfin is
the length of the experiment. This gives a list of the dis-
placement parallel (perpendicular) in the time periods
τ τ→ + tperiod, for different starting time steps τ. The mean
squared displacement parallel (perpendicular) after a time
tperiod is then given by averaging over the squared values of
the list.

The presence of long times between measurements
prompts us to apply the same procedure to the Brownian
dynamics data in order to capture any sampling effects this
may have on the results. We thus determined the orientation
and centre of mobility of the body every 4.6 s from our
numerical simulations. The value of −te e( ( ) (0))1 1

2 ,
the mean squared displacement parallel to the major axis,
Δ ∥r

2 , and the mean squared displacement perpendicular to
the major axis, Δ ⊥r

2 , were then calculated as described
above. To estimate the diffusion coefficients, the behaviour of
Δ ∥r

2 and Δ ⊥r
2 was assumed to be of the form +Dt c2

while that of −te e( ( ) (0))1 1
2 was assumed to be of the form

− − Dt2[1 exp ( 2 )]. We then used least-square regressions
to find the optimal ‘diffusion coefficients’,D, and intercepts, c,
for the processed numerical Brownian dynamics data.

Figure 5 shows the effect of the experimental metho-
dology on the predicted diffusion coefficients and intercepts
obtained from the mean squared displacement data in the
case of a prolate spheroid. The results show, as could have
been intuitively guessed, that the processing has a quanti-
tative effect on the predicted behaviour and should thus be
included to the Brownian dynamics simulation in order to
best replicate the behaviour observed. As the time between
measurements gets larger, the predicted value for ∥D further
underestimates the exact solution while that of ⊥D over-
estimates it. Similarly, the intercept of the least squared
regression tends to increase with the time between the
measurements. This is caused by the rotation of the body.
Indeed, in the time between observations the body has
rotated by a finite amount. Therefore not all of the motion
assumed to be parallel to the major axis was actually parallel
to it. Since motion perpendicular to the major axis has a
greater resistance than in the parallel direction, the observed
net displacement parallel (respectively perpendicular)
decreases (respectively increases) compared to the actual
displacement and the diffusion coefficient parallel (respec-
tively perpendicular) to the major axis is underestimated
(respectively overestimated).

Figure 5. Diffusion coefficients (D) and intercepts (c) predicted by the experimental sampling simulation for the diffusion parallel ((a): ∥D ;
(b): ∥c ) and perpendicular ((c): ⊥D ; ⊥c ) to the major axis of a prolate spheroid with semi-major and semi-minor axis lengths of μ4.55 m and

μ0.0695 m, respectively (dimensions similar to those of LI; μ μ= −k T 3.70 m sb
3 1). The circles and the dashed lines are the results of

experimental processing (least squared regression) of the Brownian dynamics data while the solid lines are the theoretical diffusion
coefficients with c = 0.
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2.4. Geometrical description of LI

With the method outlined above, a numerical simulation of
the experiment can be performed for any slender shape. In
order to accurately simulate Butenko et alʼs experiment, a
suitable geometric form is needed to describe LI. The typical
form of a cell tracked in the experiments is shown in figure 1.
Assuming all the bodies tracked were like the case in figure 1,
it is safe to ignore the hook ends of LI and treat the cell as a
straight helix with a centreline described as

θ θ θ= ⎜ ⎟⎛
⎝

⎞
⎠k

r rx s( ) , cos , sin , (24)h h

where rh is the helix radius, π=k P2 , θ α=k s ,
α = + r k12

h
2 2, P is the helix pitch. The dimensions of this

helix were taken to be the mean dimensions of LI listed in
table 1. We further assume that the cross sectional radius of the

body behaves like an ellipse, and is thus given by −r s1b
2 .

Johnson showed [34] that the choice of cross section has little
effect on the total force and torque felt by a helical body and so
justifies this assumption. We show in figure 6 half the body of
the LI helix and illustrates each of the parameters.

3. Results and discussion

3.1. Resistance matrix and diffusion of LI

Using the geometric model of LI from section 2.4 in the
slender body programme summarized in section 2.1, we can
determine the resistance matrix of LI in the centre of the
centreline of the cell as

μ

=

− −
− − −

− − −
− −

− − − − −
− − −

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

R

15.170 0.007 0.008 0.041 0.169 0.211
0.007 23.274 0.005 0.009 0.019 0.036
0.008 0.005 23.271 0.012 0.036 0.002
0.041 0.009 0.012 0.275 0.058 0.072
0.169 0.019 0.036 0.058 205.969 0.234
0.211 0.036 0.002 0.072 0.234 206.073

.(25)

FU˜ ˜

The above matrix is obtained with N = 34, is accurate to three
decimal places, and all lengths are in μm. We note that it is

dominated by the diagonal terms and only has weak couplings
off the diagonal. As the top-right and bottom-left sub matrices
in (25) are not symmetric, the matrix is obviously not
expressed in the centre of mobility frame. Using (10) we
obtain that the centre of mobility is offset from (0, 0, 0) in
(24) by (0, 0.001, 0.001). Rewriting (25) in this frame pro-
duces no discernible changes to the numerical results pre-
sented below.

With the value of RFU˜ ˜ known, we can use it in our
Brownian dynamics computation (section 2.2) to determine
the diffusion coefficients of LI. From this computation, we
predict the true diffusion coefficients parallel, perpendicular
and the rotational diffusion coefficient against the major axis
of the LI helix to be

μ=∥
−D 0.244 m s , (26)2 1

μ=⊥
−D 0.160 m s , (27)2 1

=θ
−D 0.0180 rad s , (28)2 1

where μ μ= −k T 3.70 m sb
3 1 (as in Butenko et alʼs experi-

ment [17]), q = 10 000, =t 100 sfin , and Δ =t 0.1 s. The
values show relatively fast diffusion along the bodies major
axis and slow rotational diffusion against the helixʼs major
axis (diffusion from rotations around the minor axes) as
would be expected.

3.2. Comparison between experiment and numerics

The trajectories from the Brownian dynamics computations
were then sampled every 4.6 s and processed similarly to
the experiments, as detailed in section 2.3. This provides
an estimated value for −te e( ( ) (0))1 1

2 , Δ ∥r
2 and Δ ⊥r

2

every 4.6 s. This data is plotted in the right column
of figure 7 (grey circles) with the standard deviation
of the data set added as error bars. Assuming that
we have Δ = +∥ ∥ ∥r D t c22 , Δ = +⊥ ⊥ ⊥r D t c22 , and

− = − − θt D te e( ( ) (0)) 2[1 exp ( 2 )]1 1
2 and performing

the least squared regression on the numerical data, the
apparent experimental ‘diffusion coefficients’ for LI are

Figure 6. A visual representation of half the LI helix used by the slender body programme. L is the length measure along the helix axis, P is
the helix pitch, rh is the helix radius and r2 b is the thickness of the body cross section at the centre.
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predicted to be

μ=∥
−D 0.230 m s , (29)2 1

μ=∥c 2.16 m , (30)2

μ=⊥
−D 0.164 m s , (31)2 1

μ=⊥c 1.52 m , (32)2

=θ
−D 0.0178 rad s . (33)2 1

We then compare on the left column of figure 7 the
experimental data (black circles) with the least squared
regression lines predicted from our simulations (grey
lines). Note the excellent agreement between experiments
and theory in figure 7. Remarkably, this agreement, which
is the most important result of the present work, is

achieved with no adjustable parameters. Our model cap-
tures therefore accurately all the relevant physics.

The error bars in figure 7 are the standard deviation on
the functions for both the experiment and the numerical
simulations. Specifically, they are the square root of the
variances of −te e( ( ) (0))1 1

2, Δ ∥r
2, and Δ ⊥r

2. No additional
component was added to the error bars to indicate error in the
numerical calculation. Roughly speaking the variance on the
mean squared displacement should be proportional to t2 so
that the standard deviation should increase linearly in t. The
continuous growing spreads in figures 7(b) and (d) look lin-
ear, supporting the idea that the error bars are the actual
standard deviation and not a representation of the numerical
error.

The error bars on the experimental data points are noted
to be much smaller than those on the numerical data. We

Figure 7. The mean-squared displacement parallel to the major axis, Δ ∥r
2 , (a)–(b), perpendicular to the major axis, Δ ⊥r

2 , (c)–(d), and the
rotational diffusion against the helixʼs major axis, −te e( ( ) (0))1 1

2 , (e)–(f), of a diffusing LI cell. The black circles (left column) are the
experimental data produced by Butenko et al, the grey circles are the data points created through the numerical simulation of the experiment
and the solid grey lines are the ‘optimal’ diffusion lines found from the least squared regression of the numerical data using the same
sampling method as in the experiments.
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believe that this is due to sampling limitations within the
experiment where only a relatively small number of particles
would have been tracked while the numerics has effectively
tracked 10 000 particles. This effect could have been com-
pounded by the variation in shape between different LI in the
experiment. To handle the shape variation a larger number of
particles must be tracked to obtain the full statistical
ensemble.

We note that our model does not include the spiral or
hook ends which is needed for LI mobility [27]. In their
experiment, Butenko et al typically chose to track specific LI
cells without hooks. Our results further suggest that the spiral
ends do not significantly affect the passive diffusion of LI.

Finally, the data in figure 7 is replotted in figure 8 where,
this time, the mean square displacements have been divided
by time to display explicitly the value of the diffusion con-
stants. In addition we have also added the diffusion of (26)–
(28) to the figure (dashed lines). The rotational diffusion is
not replotted as the sampling has no effect. However the
diffusion parallel and perpendicular do show a difference.
Both dashed lines tend to underestimate the experimental
results at early times. This is due to the experimental sampling
creating an effective non-zero intercept. At later times, both
the unsampled diffusion behaviours (dashed lines) seem to
match the experimental behaviour well and lie very close to
the sampled behaviour at these latter times. The experimental
diffusion rate parallel does tend to be slower than the pre-
dicted rates however. The slower parallel diffusion rate and
the need for a non-zero intercept are both results of the
sampling and processing of the experimental data. This con-
firms that the simulation of the sampling is necessary to match
the experimental behaviour.

3.3. Approximation by a prolate spheroid

The dominance of the diagonal terms in (25) suggests that the
LI helix is hydrodynamically similar to a prolate spheroid.
This similarity is also seen in the laboratory frame diffusion
of LI where the dynamics of a prolate spheroid shown in

figure 4 is replotted in figure 9 for the case of the LI helix.
The results are close to those for a prolate spheroid because
the helix radius, rh, helix pitch, P, and body radius, rb are all
much smaller than the helix length, L. As a result, we obtain
very little velocity variation between adjacent loops in the
helix thereby ‘blurring’ the helical shape from the background
flow. The prolate spheroid that best replicates the resistance
matrix in (25) has a semi-major and semi-minor axes of 4.60
μm and 0.108 μm, respectively. This is obtained by mini-
mizing the squared difference between the diagonal terms in
(25) and the exact values of prolate spheroid [31] for the
semi-major and semi-minor axis lengths of the prolate
spheroid. The results were very close with a residual squared
error of 0.698, two order of magnitude smaller than most of
the diagonal terms. The close agreement indicates that it may
be possible to model such a helix as an appropriately shaped
prolate spheroid. The calculation further suggests that the
prolate spheroid should have a semi-major axis of roughly
half the body length, L 2, and a minor axis of about three
times the body thickness, r3 b. In this specific case ≈r rb h and
so r3 b is roughly the average of the diameter of the circle the
helix body makes perpendicular to its major axis,

+ ≈r r r2 2 4h b b, and the diameter of the body itself, r2 b.

3.4. Comparisons with other models

The value of the diffusion coefficient parallel to the major
axis, (26), is significantly larger than the predicted value of
0.1337 μ −m s2 1 by the old helix model by Hoshikawa [6, 28].
Hoshikawaʼs model treated the body as a series of spheres
with radius rb which interact hydrodynamically through the
stokeslet flow of each sphereʼs individual movement [28].
The model assumes that there are many spheres in one helix
pitch so that the force distribution can be approximated by a
continuous distribution, and ignores any end effects. For a
tightly coiled helix, like that of LI cells, there are around five
spheres in one helix pitch breaking the many-spheres
assumption. Furthermore, and as expected, by only interact-
ing the spheres through stokeslet interactions the local

Figure 8. The mean-squared displacement parallel to the major axis divided by time, Δ ∥r t2 , (a), and perpendicular to the major axis
divided by time, Δ ⊥r t2 , (b) of a diffusing LI cell. The black circles are the experimental data produced by Butenko et al, the solid grey
lines are the ‘optimal’ diffusion lines found from the least squared regression of the numerical data using the same sampling method as in the
experiments and the dashed grey lines are the diffusion behaviour without the experimental sampling.
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behaviour of the helix is incorrectly represented. To estimate
the significance of these local contributions, the resistance
matrix of the LI helix was computed using resistive-force-
theory [39, 40], an approximation of slender body theory
which considers only the local contributions to the motion of
a slender body. For the shape described by(24), the resistance
matrix given by resistive force theory is

μ =

− −
− − − −

− −
− −

− − −
− − − − −

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
R

10.78 0.031 0.026 0.39 0.18 0.14
0.031 11.04 0.020 0.0045 0.19 0.019
0.026 0.020 11.05 0.0036 0.019 0.20

0.39 0.0045 0.0036 0.057 0.026 0.020
0.18 0.19 0.019 0.026 76.33 0.43
0.14 0.019 0.20 0.020 0.43 76.14

,(34)FU
RF
˜ ˜

where, as in (25), all lengths are in μm. Comparing (34) with
(25) one sees that about two thirds of the resistance coefficient
for force parallel to the major axis due to motion in the same
direction is coming from local contributions. The inability of
the old helical model to represent the local contribution
accurately would thus, expectedly, create a large deviation.
The values in (34) also display three other important differ-
ences when compared with those in (25): the off-diagonal
terms are typically larger, the resistance coefficient for force
perpendicular to the major axis due to motion in the same
direction is half the size of the slender body prediction, and
the resistance coefficient for torque perpendicular to the major
axis from rotation in the same direction is much smaller in the
resistive force case. These differences are due to a combina-
tion of end effects and long-range interactions which are
properly included in slender body theory. In particular, long
range interactions will be the leading cause of the prolate
spheroid-like behaviour from (25). Therefore the addition of
long-range interactions would reduce the size of the coupling
terms. Similarly, long-range interactions would increase the
resistance coefficients for both the perpendicular motion and
rotation as it reduces flow through the adjacent loops of the
helix. End effects could be very important for the rotation
perpendicular to the cell axis because the ends produce higher
torque then central points and so could seriously affect the

results. In order to accurately describe and predict the three-
dimensional diffusion of LI cells, both long-range hydro-
dynamics interactions and end effects are thus important.

4. Conclusions

In this paper the behaviour of a tightly wound helix under-
going Brownian motion was numerically investigated. The
dimensions of the helix were chosen to closely reflect the
shape of LI cells. The resistance matrix of the helix was
determined numerically using a validated implementation of
slender body theory, and was then exploited in Brownian
dynamics to describe the thermal diffusion. The statistical
results are in excellent quantitative agreement with the
experimental results of Butenko et al [17] (figures 7 and 8),
showing that the model accurately describes the needed
physics with no adjustable parameters. The diffusion of the
tightly wound helix is seen to closely reflect the diffusion of a
prolate spheroid. This similarity can be seen in the helixʼs
resistance matrix whose diagonal terms are very similar to
those of a prolate spheroid with a semi-major and semi-minor
axis of 4.60 μm and 0.108 μm. The misrepresentation of the
local and long-range contributions was also found to be the
probable failure of the old helix model.

The method employed for the diffusion of Leptospira
could be used to investigate the diffusion of any arbitrarily-
thin rigid body. Substituting the centreline description into the
slender body theory equations will give a resistance matrix
which, when written in the centre of mobility frame, can be
used to determine the diffusion from the Langevin equations.
Similarly, the method to simulate the experimental sampling
can be extended to compensate for arbitrary experimental
sampling times and diffusion calculation procedures. The
diffusion model could also be adapted to look at the diffusion
of actively swimming particles of realistic shapes, which will
be the subject of future work.

Figure 9. Directional mean-squared displacement divided by time (a) and −te e( ( ) (0))i i
2 (b) for our model of LI cell in the laboratory

frame. The cellʼs major axis, e1, is initially aligned with (1, 0, 0) and we have μ μ= −k T 3.70 m sb
3 1. (a): the solid blue line represents the

mean squared displacement in (1, 0, 0), the solid green in (0, 1, 0), the solid red in (0, 0, 1), while the black lines are the behaviours around
the major axis (dashed), minor axis (dotted) and the long-time diffusion constant (dot–dashed); (b) the black dashed line is the least squared
regression line for how e1 should change, the solid blue line is the calculated change in e1, while the solid green and red lines show the
dynamics of e2 and e3, respectively.
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