
J. Fluid Mech. (2015), vol. 762, R3, doi:10.1017/jfm.2014.673

The other optimal Stokes drag profile
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The lowest drag shape of fixed volume in Stokes flow has been known for some
40 years. It is front–back symmetric and similar to an American football with ends
tangent to a cone of 60◦. The analogous convex axisymmetric shape of fixed surface
area, which may be of interest for particle design in chemistry and colloidal science,
is characterised in this paper. This ‘other’ optimal shape has a surface vorticity
proportional to the mean surface curvature, which is used with a local analysis of
the flow near the tip to show that the front and rear ends are tangent to a cone of
angle 30.8◦. Using the boundary element method, we numerically represent the shape
by expanding its tangent angle in terms decaying odd Legendre modes, and show
that it has 11.3 % lower drag than a sphere of equal surface area, significantly more
pronounced than for the fixed-volume optimal.
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1. Introduction

Design optimisation is observed throughout nature, and it has long been used in
the private sector for better and more efficient design. Many industries, particularly
aeronautics (Jameson, Martinelli & Pierce 1998; Alonso, LeGresley & Pereyra 2009)
and ship design (Campana et al. 2009), use fluid dynamical considerations when
optimising shapes (Mohammadi & Pironneau 2004), such as minimising drag or
maximising lift. These optimisations are usually subject to constraints; for instance,
a ship might need to have a fixed volume, or certain shapes might be too costly to
engineer. In nature, too, optimisation is subject to physical constraints; for example,
the beat patterns of spermatozoa (Pironneau & Katz 1974; Lauga & Eloy 2013)
and cilia (Osterman & Vilfan 2011; Eloy & Lauga 2012) are subject to energetic
constraints on the molecular motors responsible for the motion. Similarly, the
shapes of squirming microorganisms correspond closely to those minimising power
dissipation subject to a maximum curvature (Vilfan 2012). Inspired by nature, shape
optimisation can be used to improve the design of biomimetic artificial swimmers
(Keaveny, Walker & Shelley 2013).
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In a classical paper, Pironneau (1973) used a variational approach to show that, in
the absence of inertia, the lowest drag shape of fixed volume is front–back symmetric
with constant vorticity on its surface. Furthermore, the front and rear of the shape
taper into cones of semi-cone angle 60◦. This shape was then computed numerically
by Bourot (1974) by minimising the drag among a finite family of shapes. Pironneau’s
optimal profile has subsequently been observed in the explosively launched spores of
ascomycete fungi (Roper et al. 2008). The constraint of fixed volume is appropriate
in this biological case, as a certain amount of material is required in order to generate
a new organism.

Recently, mechanical optimisations have begun to be examined for more efficient
drug delivery, using material rather than chemical properties to achieve specific
effects (Champion, Katare & Mitragotri 2007; Mitragotri & Lahann 2009; Petros &
DeSimone 2010). Variations in the shape, size, mechanical and surface properties
of drugs can significantly impact drug-delivery processes such as phagocytosis
(Champion & Mitragotri 2006), whereby macrophages engulf solid particles. Gratton
et al. (2008) showed that microscopic slender rod-like particles with aspect ratio
three, corresponding to eccentricity e= 0.9428, were subsumed four times faster than
spherical particles of equal volume.

A potentially important constraint for designer drug delivery, and also biomimetic
microrobots, is fixed particle surface area. Indeed, surface area affects diffusion rates,
is associated with toxicity (Monteiller et al. 2007) and is important in setting the
rate of production of reactants for catalysis and chemical reaction. In this study,
we determine the analogous fixed-surface-area shape to Pironneau’s fixed-volume
optimal; that is, the convex axisymmetric shape that minimises drag subject to fixed
surface area. These constraints restrict us to a family of simply manufactured shapes
resembling Pironneau’s optimum, and specifically rule out fractal-like shapes of finite
surface area folded into a very small space. We derive the fixed-surface-area shape
numerically using a representation whereby its tangent angle is described by a very
small number of odd Legendre modes, together with a local analysis of the equations
of fluid motion. We show that this ‘other’ optimal shape is almost twice as slender
as the fixed-volume shape, has a surface vorticity square proportional to the mean
surface curvature (Pironneau 1973; Bourot 1974) and near either end is locally conical
about an angle of 30.8◦.

2. Mathematical analysis

Two aspects of the optimisation problem are amenable to an analytical approach,
namely the optimality condition and a local shape analysis near either end of the body.

2.1. Optimality condition
We begin by deriving the shape’s optimality condition, following Pironneau (1973).
In Newtonian flows at microscopic scales, the fluid flow velocity u driven by a body
force per unit volume F is governed by the Stokes flow equations,

∇p=µ∇2u+ F, ∇ · u= 0, (2.1a,b)

with pressure p and viscosity µ. Consider a shape S described by x translating in this
fluid at a fixed speed U in the absence of fluid body forces (F= 0). In the reference
frame of the body the velocity satisfies the no-slip boundary condition as u(x)= 0 and
u=−U at infinity. We seek the shape that minimises the drag. The rate of working
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of the drag is equal to the rate of viscous dissipation in the fluid, and so we wish to
minimise

D= 2µ
∫

V
eijeijdV, (2.2)

where V refers to the volume outside of the shape and eij = (∂ui/∂xj + ∂uj/∂xi)/2.
Perturbing S into a new shape described by x + αn, where n is the normal to the

surface and α is assumed to be a small length everywhere, we denote the resulting
change in the velocity field around the shape by δu. The change in the dissipation is
given by

δD=µ
∫

V

(
∂ui

∂xj
+ ∂uj

∂xi

)(
∂δui

∂xj
+ ∂δuj

∂xi

)
dV. (2.3)

Using integration by parts and symmetries in the indices we obtain

δD=−2µ
∫

V
δui

(
∂2ui

∂xj∂xj
+ ∂2uj

∂xi∂xj

)
dV + 2µ

∫
S
δuj

(
∂ui

∂xj
+ ∂uj

∂xi

)
nidS. (2.4)

Since ∇ · u = 0, we have identically ∂j∂iuj = 0. The first term in the first integral
in (2.4) is the Laplacian of the velocity field, which we know from (2.1a,b) in the
absence of body forces is given by µ∂j∂jui = ∂ip. Furthermore, a Taylor expansion of
the no-slip boundary condition (u+ δu)(x+ αn)= 0 allows us to obtain

δu(x)=−α∂u
∂n
· (2.5)

With these two results, (2.4) simplifies to

δD=−2
∫

V
δui
∂p
∂xi

dV − 2µ
∫

S
α
∂uj

∂n

(
∂ui

∂xj
+ ∂uj

∂xi

)
nidS. (2.6)

Using integration by parts, the first integral in (2.6) becomes∫
V
−p
∂δui

∂xi
dV +

∫
S

pδuinidS. (2.7)

The first term in (2.7) is zero because the perturbation flow is divergence free, while
the second term is zero because of (2.5) and the divergence-free condition. Because
of the no-slip boundary condition for u and the fact that it is divergence free, the last
integral in (2.6) can be further simplified to

δD=−2µ
∫

S
α
∂uj

∂n
∂uj

∂n
dS=−2µ

∫
S
α

∣∣∣∣∂u
∂n

∣∣∣∣2dS. (2.8)

In the fixed-surface-area case, we consider a cost function of the form

J =D+ λ
(∫

S
dS− S0

)
, (2.9)

where λ is the Lagrange multiplier enforcing the constraint of fixed surface area, S=
S0. Variations in S arising from the perturbation to the shape are given by 2

∫
καdS,

where κ is the mean surface curvature, and thus the perturbation to J is given by

δJ= δD+λδS=−2µ
∫

S
α

∣∣∣∣∂u
∂n

∣∣∣∣2dS+ 2λ
∫

S
καdS= 2

∫
S
α

(
−µ
∣∣∣∣∂u
∂n

∣∣∣∣2 + λκ
)

dS. (2.10)
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FIGURE 1. (a) Flow over the vertex of a cone illustrating the streamfunction for the
minimal-drag fixed-volume case of θ0 = 120◦. (b) The function H(ν) in (2.17) for a
selection of cone angles, highlighting the minimal-drag fixed-surface-area case of θ0 =
149.179◦.

By setting δJ = 0, the optimality condition is then

|∂u/∂n|2 ∝ κ, (2.11)

where the first term can also be seen as the norm squared of the surface vorticity. It
should be noted that in the fixed-volume case, the cost function is J=D+ λ(V −V0),
and since δV = ∫ αdS, the optimal shape has constant surface vorticity (Pironneau
1973).

2.2. Local analysis
As shown by Pironneau (1973) and Bourot (1974), optimal shapes have pointy
American-football-like ends. The second aspect of the optimisation problem that can
be treated analytically is a derivation of the optimal angle at either end of the locally
conical shape.

We consider a conical shape and describe the axisymmetric flow around it using
spherical coordinates (r, θ), with r measured from the tip and θ from the axis of
symmetry in the fluid (figure 1a). The cone is assumed to be located at θ = θ0, where
θ0 may be 90◦ in the case of a blunt body, and the goal of the analysis is to derive
the value of θ0 consistent with the optimality condition. Locally around the cone,
the streamfunction ψ(r, θ) is expected to take the asymptotic form ψ = rnf (θ). The
equations and boundary conditions satisfied by the streamfunction are

E2(E2ψ)= 0, E2 = ∂2

∂r2
+ sin θ

r2

∂

∂θ

[
1

sin θ
∂

∂θ

]
,

∂ψ

∂θ

∣∣∣∣
θ0

= 0, ψ(θ0)=ψ(0)= 0.

(2.12a−d)

In the case of fixed volume, the optimality condition of constant surface vorticity
yields

|∂u/∂n| = |E2ψ/r sin θ | = const.⇒ n= 3. (2.13)
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The solution for f (θ) given in Pironneau (1973) does not, however, satisfy the
condition that ψ(θ0) = 0 (2.12a−d), and we rederive it here. Plugging the ansatz
ψ = r3f (θ) into (2.12a−d) leads to the ordinary differential equation

f ′′ − cot θ f ′ + 6f = A cos θ + B. (2.14)

Together with the particular solution, the full solution is then ψ = cr3(at + bt3 + 1)
for t= cos θ . In order to enforce the boundary conditions, the constants must be a=
−3/2t0, b= 1/2t3

0. Finally, since the streamline along θ = 0 (or t= 1) is split by the
cone, we require f (0)= 0, i.e.

1
2t3

0
− 3

2t0
+ 1= 0⇒ (t0 + 1/2)(t0 − 1)2 = 0, (2.15)

and therefore t0=−1/2 or θ0= 120◦. The optimal fixed-volume body thus has locally
conical ends with a semi-angle θsc= 60◦, agreeing with the result of Pironneau (1973).
The streamlines associated with this flow are displayed in figure 1(a).

For the fixed-surface-area shape, the optimality condition depends on the mean
curvature κ of the surface (2.11). It should be noted that this means that we expect
the vorticity on the surface of our optimal shape to diverge towards its front and
rear ends. At the conical tip, κ ∝ 1/r, and following the same local analysis, this
condition may be written as

r|∂u/∂n|2 = r|E2ψ/r sin θ |2 = const.⇒ n= 5/2. (2.16)

In order to derive the cone angle corresponding this value n= 5/2, we turn to Wakiya
(1976), who considered Stokes flows near the tips of rigid bodies. In particular,
Wakiya showed that, for a given cone angle θ0, the exponent n of the streamfunction
satisfying (2.12a−d) is given by the first non-trivial root (i.e. ν 6= 0, 1) of

H(ν)= Pν(t0)
[
t0P′′ν(t0)+ P′ν(t0)

]− t0
[
P′ν(t0)

]2
, (2.17)

where ν + 2 = n and Pν is the Legendre function of the first kind of, possibly
fractional, degree ν. The function H(ν) is plotted for cone angles in figure 1(b). The
fixed-volume shape is the special case where ν = 1 is a double root of (2.17). In
the case of a fixed-surface constraint, we have ν = 1/2, and we can numerically
invert (2.17) to obtain the corresponding value of t0. This is illustrated in figure 1(b),
and we obtain θ0 = 149.179◦ in our coordinate system, corresponding to a semi-cone
angle of

θsc ≈ 30.8◦. (2.18)

We thus expect to obtain a more slender optimal shape than in the fixed-volume case.

3. Numerical shape optimisation

We now proceed with a computational approach in order to derive the optimal shape
and confirm the validity of our local analysis. The fundamental solution to the Stokes
flow (2.1a,b) driven by a point force f δ(x− y) located at y is given by the Stokeslet
tensor Sij(x, y),

ui(x)= Sij(x, y)fj, Sij(x, y)= 1
8π

(
δij

r
+ rirj

r3

)
, (3.1a,b)
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where ri = xi − yi and r2 = r2
1 + r2

2 + r2
3. For axisymmetric flow, the Green’s function

corresponding to a ring of point forces Mαβ(x − x0) can then be obtained by
integrating the Stokeslet in the azimuthal direction (Pozrikidis 1992),

Mxx = 2k
(σ0

σ

)1/2
(

F+ x̂2

r̂2
E
)
, Mxσ =−k

x̂
σ0σ 1/2

[
F− (σ 2 − σ 2

0 + x̂2)
E
r̂2

]
,

Mσx = k
x̂
σ

(σ0

σ

)1/2
[

F+ (σ 2 − σ 2
0 − x̂2)

E
r̂2

]
,

Mσσ = k
σ0σ

(σ0

σ

)1/2
{
(σ 2

0 + σ 2 + 2x̂2)F− [2x̂4 + 3x̂2(σ 2
0 + σ 2)+ (σ 2 − σ 2

0 )
2
] E

r̂2

}
.

(3.2a−d)

Here, F and E are complete elliptic integrals of the first kind of argument k,

F(k)=
∫ π/2

0

dω
(1− k2 cos2 ω)1/2

, E(k)=
∫ π/2

0
(1− k2 cos2 ω)1/2dω, (3.3a,b)

where k2 = 4σσ0/[x̂2 + (σ + σ0)
2], while x̂= x− x0 and r2 = x̂2 + (σ − σ0)

2 are axial
and radial coordinates (x, σ ).

The Newtonian fluid flow around our axisymmetric body can then be reduced to a
boundary integral of ring forces taken over the meridional plane,

uα(y)= 1
8π

∫
C

Mαβ(x, y)fβ(y)dl, (3.4)

where the double layer potential has been eliminated (rigid-body motion). The
meridional plane of the rigid body is discretised into straight-line segments of
constant force per unit length; i.e. the components fx, fσ in (3.4) are constant over
each element si. The velocity of the body is specified at the midpoint of each element.
Numerical evaluation of each non-singular line integral is performed with four-point
Gaussian quadrature, while singular integrals have the Stokeslet singularity removed
and are integrated analytically. The axisymmetric Green’s function is evaluated using
BEMLIB (Pozrikidis 2002). The drag on the body is then calculated by summing the
products of the area of each element by the calculated traction.

By computing the drag, we can create a series of profiles with decreasing drag
relative to the equivalent sphere. For this, we adopt the approach of Bourot (1974)
whereby the drag is minimised within a family of parametrised shapes, a method also
used by Zabarankin (2013) to determine optimal profiles in elastic media. By the
symmetry of the underlying equations, we restrict our attention to axisymmetric shapes
with front–back symmetry (Pironneau 1973). An efficient description of such shapes
may be obtained by expanding their tangent angle, φ(s), in odd Legendre polynomials,
P2n−1,

φ(s)=
N∑

n=1

AnP2n−1(s), (3.5)

for s arclength along the meridional plane. The (x, σ ) positions of the shape are then

x=
∫

C
cos[φ(s)]ds, σ =

∫
C

sin[φ(s)]ds. (3.6a,b)
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Integration of (3.6a,b) is performed numerically by Simpson’s rule over an ultrafine
mesh, prior to the discretisation of the boundary into straight-line elements. The
volume and surface area of the resultant shape are calculated by summing conical
frustra defined by the ultrafine mesh. Optimisation is performed for n = 1 → N
sequentially, and the converged optimal coefficients for the n=N − 1 shape are used
as an initial guess for the n = N shape, with AN initially set to zero. Optimisation
is carried out using the fmincon function in Matlab, employing a sequential quadratic
programming (SQP) algorithm. In constrained optimisations, the sum of the Legendre
coefficients is forced to equal the analytically calculated tip angle at every iterative
step. Hessians for each step are computed numerically via finite differences.

In order to validate the numerical procedure, we compare the drag on ellipsoids
of varying eccentricity and fixed volume as calculated by our boundary element code
with the analytical result of Chwang & Wu (1975),

Drag= 6πµaUCf 1, Cf 1 = 8
3

e3

[
−2e+ (1+ e2) log

1+ e
1− e

]−1

. (3.7a,b)

The percentage relative errors in the drag between our work and Chwang & Wu (1975)
for 100, 200, 400 and 800 mesh elements are, respectively, 0.0102 %, 0.00256 %,
0.000641 % and 0.000160 %. The drag of successive optima for increasing numbers
of modes converges very quickly. As a very high degree of accuracy is required
to fully resolve the optimisation for higher numbers of modes, we discretise the
shape into 800 elements. As a further validation to ensure that forces are sufficiently
resolved around the conical ends of spindle-like bodies, the drag force on a spindle
of 120◦ is found to be in agreement with that provided by Wakiya (1976).

As a second numerical check, we verify that expansion of the tangent angle in terms
of Legendre modes provides an efficient description of the lowest drag shape of fixed
volume. We consider both an optimisation scheme whereby the front and rear semi-
cone angles are constrained to 60◦ (see above), and a fully unconstrained optimisation.
Figure 2(a) shows our constrained and unconstrained optima for six Legendre modes
in comparison with the shape given by Bourot (1974), described by 10 coefficients of
the equation

r(θ)
λ
= 2− 2√

3
sin θ +

10∑
n=1

Bn sinn+1 θ. (3.8)

The values for the coefficients given by Bourot (1974) are truncated to 4 s.f.,
and their shape does not quite have the same volume as a sphere of unit radius.
Nonetheless, it is clear that our description of the tangent angle by odd Legendre
modes yields the optimal shape quickly, see e.g. the convergence of the relative drag
in figure 2(b). This rapid convergence is why a large number of elements (N = 800)
are required in the unconstrained optimisation for the angle at the tip to converge
to 60◦. It should be noted that the optimal shape for only three Legendre modes is
almost indiscernible from our final optimal. After six modes in the unconstrained
optimisation, the calculated tip angle converges with 2 % relative error. The relative
drag of the optimal shape (ratio of the drag to that of a sphere of equivalent volume)
is Dr = 0.9542549, in agreement with the result of Bourot, Dr = 0.95425. Pironneau’s
optimality condition of a constant surface vorticity is also confirmed to be valid in
figure 2(c).

In order to provide a baseline comparison for the numerical shapes, the drag was
first minimised among the family of prolate spheroids of varying eccentricity for
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FIGURE 2. (a) The lowest drag shape of fixed volume as calculated by constrained
(fixed front/rear angle) and unconstrained optimisation, together with the shape originally
given by Bourot (1974). (b) The drag relative to a sphere of unit volume of successive
optima as found by our constrained optimisation. (c) Pironneau’s optimality condition over
the surface of Bourot’s optimum, the optimal prolate spheroid of fixed volume and our
constrained optimum.

both fixed volume and fixed surface area using the analytical result in (3.7a,b) and
our boundary element code. The computational code achieves results identical to
within 10−8 of the analytical ones and the optimal spheroids have eccentricities of
e = 0.8588 (aspect ratio 1.952) in the fixed-volume case and 0.9688 (aspect ratio
4.037) in the fixed-surface-area case. We show these results in figure 3, and they
allow us to anticipate two key facts of drag minimisation for fixed surface areas.
First, we can predict that the lowest drag shape of fixed surface area is likely to be
more slender than its fixed-volume counterpart (this was already anticipated in the
local analysis above). Furthermore, we can expect that the reduction in drag of the
fixed-surface-area optimum relative to its equivalent sphere will be greater than that
for the fixed-volume counterpart. Indeed, for spheroids, the reduction in drag is 11 %
for fixed surface area but only 4.45 % for fixed volume.

We now compute the fixed-surface-area analogue of Pironneau’s shape using both
unconstrained and constrained (i.e. fixed-tip-angle) optimisation. After six modes in
the unconstrained optimisation, the calculated tip angle converges to the analytically
calculated optimal of 30.8◦ (2.18) with a 1 % relative error. The optimal shapes found
with both optimisation approaches are displayed in figure 4(a). The unconstrained
and constrained results are indistinguishable. We also included in figure 4(a) the
fixed-volume optimal, with all shape volumes normalised to one in order to facilitate
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FIGURE 3. (a) The drag on prolate spheroids of fixed volume (dark blue) and surface
area (light yellow) relative to their equivalent spheres as a function of eccentricity. The
minimum-drag prolate spheroids are marked with pluses. (b) The shapes of the minimum-
drag prolate spheroids of fixed volume and surface area, normalised to unit volume.

comparison. As anticipated, the fixed-area optimal is much more slender than the best
shape of fixed volume (aspect ratio of 4.162 against 2.109, which are both slightly
above the aspect ratios of the optimal spheroids). As with the volume constraint, the
drag converges here to its optimal value with very few modes, which is illustrated
in figure 4(b). The first six unconstrained coefficients describing the tangent angle
in (3.5) are

A1 = −0.47956, A2 = −0.035208, A3 = −0.0096958,
A4 = −0.0042400, A5 = −0.0022198, A6 = −0.0012228.

}
(3.9)

How much better than the equivalent sphere is the optimal shape? The drag ratio
we obtain is equal to Dr= 0.8871581, meaning a drag reduction of about 11.3 %. This
is significantly greater than the 4.57 % reduction for the case of fixed volume. Finally,
we are able to test numerically the optimality criterion derived in (2.11). We plot
in figure 4(c) both the value of the flow vorticity on the surface and the mean surface
curvature, κ . As can be seen, our computational results show a perfect proportionality
between both, confirming the validity of the local analytical criterion discussed in
§ 2.1.

4. Conclusion

Shape optimisation at small scales is of potential significance for problems in
chemistry and colloidal science. In this work, we used the boundary element method
together with a mathematical analysis to determine computationally the convex
axisymmetric shape that minimises drag in Stokes flow subject to the constraint of a
fixed surface area. The shape is about twice as slender as the fixed-volume case, and
the front and rear ends of the shape are tangent to a cone of semi-angle ≈30.8◦. This
was borne out by minimisation of the drag with respect to coefficients of an efficient
representation of the shape’s tangent angle in terms of Legendre modes. Although
we did not mathematically prove that the shape we obtained is globally optimal, or
in fact unique, among all axisymmetric convex ones, since it quickly converges to it
from all initial conditions, we conjecture that it is.
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FIGURE 4. (a) The lowest drag shape of fixed surface as calculated by unconstrained
(+) and constrained optimisation (i.e. fixed tip angles, light yellow line), in comparison
with the fixed-volume case (dark blue line). Both shapes are normalised to have unit
volume. (b) The drag relative to a sphere of unit surface area for successive optima using
constrained optimisation. (c) Vorticity (+) along the surface of the optimal shape of fixed
surface area shown with its mean curvature, scaled by the ratio of vorticity to curvature
at θ = 90◦ (solid purple line).

From a practical standpoint, while the optimality conditions for the fixed-volume
and fixed-surface-area shapes entail the vorticity on the surfaces of these shapes,
the drag turns out to be somewhat insensitive to details of the surface vorticity. In
fact, the optimal prolate spheroids of fixed volume and surface area both have zero
vorticity at the front and rear ends, but only exhibit 0.1 % and 0.3 % more drag than
their respective full optima. This insensitivity engenders the notion of ‘nearly optimal
design’ in Stokes flow; optimisation of simple shapes can be effective and helpful to
experimental design.
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