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Abstract. Among the few methods which have been proposed to create small-scale swimmers, those relying
on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required
to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient
to induce chemical gradients and swimming. We illustrate this idea using two different calculations. We
first calculate exactly the self-propulsion speed of a system composed of two spheres of unequal sizes but
identically chemically homogeneous. We then consider arbitrary, small-amplitude, shape deformations of a
chemically homogeneous sphere, and calculate asymptotically the self-propulsion velocity induced by the
shape asymmetries. Our results demonstrate how geometric asymmetries can be tuned to induce large
locomotion speeds without the need of chemical patterning.

1 Introduction

1.1 Background

Achieving self-propulsion at the micro-scale is essential to
many biological organisms and functions, including migra-
tion, feeding or escaping aggressions [1,2], and reproduc-
tive success of other larger species (e.g. mammals [3]).
From an engineering point of view, the design of self-
propelled systems or micro-/nano-robots may offer im-
portant opportunities in particular for biomedical appli-
cations, to perform controlled therapeutic or diagnostic
tasks [4,5].

Many efforts dedicated to the design of such microscale
artificial “swimmers” have been inspired by the biolog-
ical world, where viscous locomotion is achieved in the
absence of inertial forces [6], for example using rotation
or waving of rigid or flexible filaments. Experimentally,
three broad categories of synthetic swimmers have been
realized so far: i) rigid [7–9] or flexible helices [10–12] or
planar filaments [10], inspired by bacterial flagella, forced
by an external magnetic field in order to achieve propul-
sion (see also ref. [13] for a variation using nearby sur-
faces); ii) rigid bodies moving under the action of an exter-
nal standing-wave acoustic field [14,15]; and iii) so-called
phoretic swimmers [16]. The first two critically rely on the
existence of an outside forcing in order to move, which
may not only limit their applications but also disqualify
them from achieving force- and torque-free propulsion. In
contrast, phoretic (or fuel-based) locomotion, which is the
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focus of the present study, relies solely on the interaction
of a rigid body with the solute content in the surrounding
fluid.

The ability to generate an effective slip velocity along
a solid boundary outside a thin interaction layer in re-
sponse to a local tangential solute gradient is at the heart
of classical phoretic physics. It originates from local pres-
sure imbalance which are a consequence of short-range
solute-particle interactions [17]. Classically, this phoretic
mobility is responsible for the migration of inert parti-
cles in externally-applied chemical gradients. Specifically,
a particle with uniform local surface mobility M placed in
a far-field chemical gradient G of a neutral solute experi-
ences a distribution of slip velocity on its surface leading to
a global phoretic velocity U = −MG. For other phoretic
mechanisms such as diffusiophoresis of charged solutes or
thermophoresis, the slip and phoretic velocities depend
instead on the gradient of the logarithm of the concen-
tration/temperature, and this linear relationship is only
observed for sufficiently small gradients [17]. The basic
idea of autophoresis is to combine such phoretic mobility
with a chemical surface activity. Using chemical reactions
catalyzed at its surface, a chemically active particle be-
comes able to generate the tangential gradients necessary
to achieve its own propulsion [18].

The feasibility of self-diffusiophoresis was recently
demonstrated in several experimental studies using
the catalytic decomposition of hydrogen peroxide on
platinum-coated surfaces [19–21], although the exact
physico-chemical mechanism at play is still under de-
bate [22,23]. Note that this mechanism shares several im-
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portant similarities with self-thermophoresis [24] or the
self-propulsion of droplets through Marangoni effects, for
which the slip velocity is replaced with a surface shear
stress discontinuity [25–27].

In order to generate self-propulsion, breaking spatial
symmetries is required. Indeed, the diffusion of a solute
outside a homogeneous spherical particle leads to a spher-
ically symmetric concentration, and thus no slip velocity
and no self-propulsion. Two routes have been identified to
break symmetries and enable propulsion: i) the chemical
patterning on the surface of the particle, as used in most
experiments with “Janus” particles [19,20,28,21]; ii) an
instability mechanism resulting from the nonlinear advec-
tive coupling of the solute to the phoretic flows it cre-
ates, which spontaneously breaks symmetries and propel
isotropic particles or droplets [29,27].

An alternative route to symmetry-breaking originates
solely from geometry. Consider a particle with homo-
geneous surface properties (i.e. uniform surface activ-
ity and mobility). In the absence of inertia, an asym-
metry in the particle shape will in general create non-
homogeneous solute (or reactant) concentrations along its
boundary, which are then likely to have non-zero aver-
age and therefore lead to propulsion. This idea is at the
heart of experiments on collective phoretic dynamics [30]
and it was recently the focus of an article analyzing the
self-propulsion of a near-sphere with low-order azimuthal
perturbations [31] using the osmotic framework of Brady
and coworkers [32,33]. In this paper, we tackle the same
problem within the classical continuum framework of self-
diffusiophoresis [34–36], focusing on two classical geome-
tries amenable to analytical calculations.

1.2 Intuitive model

Before presenting detailed calculations in the following
sections, we illustrate here intuitively the idea of acquir-
ing locomotion from shape asymmetries by considering the
case of a swimmer composed of two rigid spheres which
share the same uniform chemical surface properties. The
spheres have radii R1 and R2, and their centers are sepa-
rated by a distance d. We are going to show that phoretic
locomotion is guaranteed provided R1 ̸= R2.

Each sphere emits a solute with a uniform and identi-
cal rate A which diffuses in the fluid domain with diffusion
constant κ. We denoted by ez the unit vector joining the
spheres’ centers (fig. 1). In the limit of large separation
between the spheres, d ≫ Ri, the leading order concen-
tration field can be obtained by superposition of the dis-
tribution generated by each sphere independently

c(r) =
A
κ

(
R2

1

|r − r1|
+

R2
2

|r − r2|

)
, (1)

with corrections arising at higher order in 1/d. Each
sphere is then exposed to two different phoretic contri-
butions: firstly its own concentration field but since this
is isotropic, it does not lead to any surface gradient or

slip velocity; secondly the concentration gradients gener-
ated by the other sphere. Assuming a constant phoretic
mobility M relating flow velocities to chemical gradients,
the propulsion velocities of each sphere Uf

1 and Uf
2 , which

would arise if they were individually force-free are given
by

Uf
1 =

AMR2
2

κd2
ez, Uf

2 = −AMR2
1

κd2
ez. (2)

A rigid two-sphere system (i.e. where d is kept constant)
moves thus at speed U in a Newtonian fluid of viscosity
η such that the total hydrodynamic force is zero. In the
far-field limit, the hydrodynamic resistance of sphere i is
6πµRi and the total hydrodynamic force acting on the
fluid is 6πηR2(U−Uf

2 ) + 6πηR1(U−Uf
1 ) = 0 leading to

locomotion at speed

U =
AMR1R2(R2 − R1)

κd2(R2 + R1)
ez. (3)

As long as R1 ̸= R2, a net phoretic velocity is therefore
induced. The origin of this velocity is purely in the chemi-
cal asymmetries resulting from geometric differences, since
both spheres are similarly chemically homogeneous. The
purpose of this paper is to illustrate and analyze these
ideas further using two exact calculations.

1.3 Outline of the paper

In this paper, we study in detail how shape asymmetries
can lead to autophoretic locomotion. In order to combine
physics with more practical considerations, we focus on
two specific geometries. The first one, studied in detail
in sect. 2, determines the exact solution for the homoge-
nous two-sphere system introduced above. This geome-
try allows us to address large shape asymmetries and can
provide the basis for further experimental investigations.
The second geometry is that of a near-sphere, addressed
in sect. 3, which allows us to quantify which asymmetric
surface modes play a role in the transition to locomotion
and to address the question of optimal self-propulsion.

1.4 Phoretic continuum framework and scaling

Both problems in this paper are treated within the con-
tinuum framework of autophoretic propulsion [34–36], by
considering an isolated rigid system S (a two-sphere sys-
tem in sect. 2 or a near-sphere in sect. 3) in an unbounded
fluid domain of dynamic viscosity η and density ρ. The
rigid body interacts with a solute species of local concen-
tration C that diffuses in the fluid medium with diffusiv-
ity κ. The interaction layer thickness λ is assumed to be
small enough for the classical slip-velocity formulation to
be valid [37]. The particle’s surface chemical properties
are here characterized by a homogeneous surface activity
A and mobility M. At the surface of the particle, the so-
lute is thus released (A > 0) or absorbed (A < 0) with a
fixed flux, so that

κn ·∇c = −A on S, (4)
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and a slip velocity arises proportional to the local solute
concentration gradient along the surface, following

u = M(1 − nn) ·∇c on S. (5)

If advection of the solute by the phoretic flows can
be neglected (namely if the Péclet number, Pe = UR/κ,
is sufficiently small, with U the typical velocity magni-
tude and R the characteristic size of the solid system),
the solute has a purely diffusive behavior outside S, so
that the concentration relative to the far-field solute con-
tent c = C − C∞ satisfies

∇2c = 0. (6)

Because the typical particle size and phoretic flow mag-
nitude are small, inertial effects in the flow dynamics can
be neglected, i.e. the Reynolds number Re = ρUR/η is
small. The flow field resulting from the phoretic slip at the
boundary can then be solved for, in the reference frame
attached to the particle, using Stokes’ equations

η∇2u = ∇p, ∇ · u = 0, (7)

together with the mobility condition in eq. (5). At infinity,
we have

u(r → ∞) ∼ −(U + Ω ×x), (8)

where (U,Ω) are the self-propulsion velocity and rotation
of the solid system. As both the solid and fluid inertia are
negligible in the Stokes limit, the solid system must re-
main force-free, a condition that uniquely determines the
self-propulsion kinematics (U,Ω). Since we focus in the
following on axisymmetric systems, we have by symmetry
Ω = 0 and U is parallel to the axis of symmetry.

The problem is non-dimensionalized using R as char-
acteristic length scale (the radius of one sphere in the
two-sphere system or the mean radius of the near-sphere),
|AM|/κ as characteristic velocity, |A|R/κ as characteris-
tic concentration fluctuation and η|AM|/Rκ as character-
istic pressure. In the purely diffusive limit (Pe = 0), the
only non-dimensional parameters arise from geometry.

This fixed-flux approach can be generalized to a simple
one-step chemical reaction where the solute is consumed
(A < 0) at the surface at a rate proportional to its con-
centration [37]. In that case, A = −Kc where the reac-
tion rate K is now the uniform chemical property. The
typical activity is now KC∞. This introduces an addi-
tional non-dimensional parameter, the Damköhler number
Da = KR/κ, which quantifies the limitation of the reac-
tion rate by diffusion. For Da ≪ 1, diffusion is sufficiently
fast to replenish the solute content in the vicinity of the
sphere and the solute consumption occurs approximately
at a fixed rate, while for Da ≫ 1, the reaction is limited
by the depletion of the solute content which cannot be
compensated by the slow diffusion.

2 Autophoretic locomotion of a homogeneous
two-sphere system

2.1 Problem formulation

We consider a system consisting of two spheres, S1 and S2,
of respective radii R1 and R2, with a fixed distance d main-
tained between their respective centers (either through
long-range interactions or through a connecting rod with
negligible hydrodynamic influence). In contrast with exist-
ing studies focusing on a geometrically symmetric dimer
with chemical asymmetry [38,39], we specifically investi-
gate here the effect of the geometric asymmetry (i.e. differ-
ent radii) for a chemically symmetric system. Both spheres
have uniform surface properties (activity and mobility) so
that the axis joining their centers ez is an axis of sym-
metry for the problem. We first seek a solution of the
diffusion problem for the solute concentration (relative to
its far-field value)

∇2c = 0 outside the spheres, (9)

n ·∇c = −A on S1 and S2, (10)

c(r → ∞) → 0, (11)

with A = A/|A| = ± 1, the dimensionless activity. Concen-
tration gradients at the surface of the two spheres generate
surface slip velocities, and the following hydrodynamics
problem must then be solved

∇2u = ∇p outside the spheres, (12)

u = us = M(1 − nn) ·∇c on S1 and S2, (13)

u(r → ∞) ∼ −Uez, (14)

where the swimming velocity U is such that the total hy-
drodynamic force on the two-sphere system is zero and
M = M/|M| = ± 1 is the dimensionless mobility.

Alternatively, using the reciprocal theorem for Stokes
flows [40], the swimming velocity can be determined di-
rectly from the slip velocity distribution us on the two
spheres as

U = − 1
F ∗

∫

S1,S2

us · σ∗ · ndS, (15)

where (u∗,σ∗) is the solution of the dual hydrodynamic
problem obtained by imposing a steady velocity U∗ez to
the equivalent rigid (no-slip) two-sphere system

∇2u∗ = ∇p∗ outside the spheres, (16)

u = U∗ez on S1 and S2, (17)

u∗(r → ∞) → 0, (18)

corresponding thus to a total hydrodynamic force F ∗

F ∗ =
∫

S1,S2

ez · σ∗ · ndS, (19)

with σ∗ = −p∗1 +
(
∇u∗ + ∇u∗T

)
.
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Fig. 1. Left: notation for a two-sphere autophoretic system. The surface activity is uniform on both spheres, corresponding to
a rate of solute release/absorption equal to A. Right: bi-spherical coordinates: surfaces of constant τ (solid) and µ (dashed) are
shown; the surfaces τ = τ± correspond to the boundaries of the spheres.

2.2 Computing the swimming velocity

2.2.1 Bi-spherical geometry

Taking advantage of the geometry of the problem and
its symmetries, a bi-spherical polar coordinate system
(τ, µ,φ) is used. Noting (ρ,φ, z) the classical cylindrical
polar coordinates, the bi-spherical coordinates (−∞ <
τ < ∞,−1 ≤µ ≤1) are defined as

ρ =
a
√

1 − µ2

cosh τ − µ
, z =

a sinh τ

cosh τ − µ
· (20)

In this system of coordinates, τ = τ0 is a sphere centered
on the z-axis at z = a coth τ0 with radius a/| sinh τ0 |. The
origin of the system of coordinates as well as the constant
a > 0 are chosen such that τ = τ+ > 0 (respectively,
τ = τ− < 0) corresponds to the surface of S1 (respectively,
S2) located in the upper (respectively, lower) half-plane.
The physical parameters (d,R1, R2) can be expressed in
terms of (a, τ− , τ+) as

R2 = − a

sinh τ−
, R1 =

a

sinh τ+
, d = a(coth τ+ − coth τ− ),

(21)

and provided that d ≥R1 +R2, the solution of the inverse
system is unique. The unit vectors eτ and eµ, respectively
normal to surfaces of constant τ and µ, are defined by
∂x/∂τ = hτeτ and ∂x/∂µ = hµeµ with hτ and hµ the
metric coefficients

hτ =
a

cosh τ − µ
, hµ =

a

(cosh τ − µ)
√

1 − µ2
· (22)

Consequently we have

eτ =
1 − µ cosh τ

cosh τ − µ
ez −

√
1 − µ2 sinh τ

cosh τ − µ
eρ, (23)

eµ =
√

1 − µ2 sinh τ

cosh τ − µ
ez +

1 − µ cosh τ

cosh τ − µ
eρ, (24)

and (eτ , eµ, eφ) form a direct orthonormal basis.

2.2.2 Solving the solute diffusion equation

Within this system of coordinates, the Laplace equation
for the concentration field becomes

∂

∂τ

(
1

cosh τ − µ

∂c

∂τ

)
+

∂

∂µ

(
1 − µ2

cosh τ − µ

∂c

∂µ

)
= 0, (25)

whose general solution vanishing at infinity is [41]

c(τ, µ) =
√

cosh τ − µ
∞∑

n=0

cn(τ)Ln(µ), (26)

with Ln the Legendre polynomial of degree n, and

cn(τ) = anexp
[(

n +
1
2

)
(τ − τ+)

]

+bnexp
[
−

(
n +

1
2

)
(τ − τ− )

]
. (27)

The constants, an and bn are determined by imposing the
flux boundary condition on each sphere (noting that for
τ = τ± , n(τ± ) = ∓eτ )

eτ ·∇c =
1
hτ

∂c

∂τ
= ±A at τ = τ± . (28)
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Substituting eqs. (22) and (26), and projecting the pre-
vious equation along the Legendre polynomial Lp(µ), and
using formulae summarized in appendix A we obtain

cosh τ± c′p(τ± ) − p

2p − 1
c′p− 1(τ± ) − p + 1

2p + 3
c′p+1(τ± )

+
sinh τ±

2
cp(τ± ) = ± aA

√
2e− (p+1/2)|τ±|. (29)

Together with eq. (27), the previous equation form a lin-
ear system for the coefficients an, bn which can be solved
numerically after truncating the sum in eq. (26).

Once these constants have been determined, the slip
velocity us can be computed on the surface of each sphere
as

us
µ(τ± , µ) =

M

a

√
1 − µ2(cosh τ± − µ)

∂c

∂µ

=
M

√
1 − µ2

a

∞∑

n=0

cn(τ± )

×
[
(cosh τ± −µ)3/2L′

n(µ) −Ln(µ)
2

√
cosh τ± −µ

]
.

(30)

2.2.3 Solving the dual rigid-body problem

The solution of the general Stokes flow problem for an
axisymmetric problem in bi-spherical coordinates can be
expressed in terms of the streamfunction ψ(τ, µ),

uτ = (cosh τ − µ)2
∂ψ

∂µ
, uµ = − (cosh τ − µ)2√

1 − µ2

∂ψ

∂τ
.

(31)
The solution of the dual problem required to solve eq. (15),
i.e. Stokes flow vanishing at infinity with imposed velocity
U∗ez on the spheres, is given by [41]

ψ∗(τ, µ)
U∗ = (cosh τ−µ)− 3/2

∞∑

n=1

(1−µ2)L′
n(µ)Un(τ), (32)

with

Un(τ) = αn cosh
(

n +
3
2

)
τ + βn sinh

(
n +

3
2

)
τ

+γn cosh
(

n − 1
2

)
τ + δn sinh

(
n − 1

2

)
τ. (33)

In the previous equation, the four sets of constants αn,
βn, γn and δn are determined by imposing the no-slip
boundary condition on both spheres u∗ = U∗ez in the
dual problem or equivalently

∂ψ∗

∂µ
(τ± , µ) =

U∗(1 − µ cosh τ± )
(cosh τ± − µ)3

, (34a)

∂ψ∗

∂τ
(τ± , µ) = −U∗(1 − µ2) sinh τ±

(cosh τ± − µ)3
. (34b)

These equations can be rewritten using eq. (32) as

(1 − µ cosh τ± )√
cosh τ± − µ

=
∞∑

n=1

Un(τ± )

×
[
−n(n+1)Ln(µ)(cosh τ± −µ)+

3
2
(1−µ2)L′

n(µ)
]
, (35a)

− (1 − µ2) sinh τ±√
cosh τ± − µ

=
∞∑

n=1

(1 − µ2)L′
n(µ)

×
[
U ′

n(τ± )(cosh τ± − µ) − 3 sinh τ±
2

Un(τ± )
]

. (35b)

Projecting the two previous equations onto Lp(µ) and
L′

p(µ) respectively, and using the relations given in ap-
pendix A, we finally obtain

− p(p + 1) cosh τ± Up(τ± ) +
p(p − 1)(2p − 3)

2(2p − 1)
Up− 1(τ± )

+
(p + 1)(p + 2)(2p + 5)

2(2p + 3)
Up+1(τ± ) = fp(µ), (36)

cosh τ± U ′
p(τ± ) − p − 1

2p − 1
U ′

p− 1(τ± ) − p + 2
2p + 3

U ′
p+1(τ± )

−3
2

sinh τ± Up(τ± ) = f̃p(µ), (37)

with

fp(µ) =
√

2
(

e− (p+1/2)|τ±| − (p + 1) cosh τ±
2p + 3

e− (p+3/2)|τ±|

−p cosh τ±
2p − 1

e− (p− 1/2)|τ±|
)

, (38)

f̃p(µ) =
√

2 sinh(τ± )
[
e− (p+3/2)|τ±|

2p + 3
− e− (p− 1/2)|τ±|

2p − 1

]
.

(39)

Using eqs. (32), (36) and (37) applied at τ± provides
independent sets of four linear equations for the integra-
tion constants αn, βn, γn and δn, which can be obtained
numerically.

2.2.4 Swimming velocity

From the previous two sections, the solute concentra-
tion distribution and the dual problem streamfunction are
completely determined. The swimming velocity can now
be computed using the reciprocal theorem, eq. (15). Be-
cause the phoretic slip us is purely along eµ and the nor-
mal unit vector to the sphere’s surface is ± eτ , we only need
to compute F ∗ and σ∗

τµ = eτ ·∇u∗ · eµ + eµ ·∇u∗ · eτ .
Using eq. (34), on the boundaries of the spheres, we

obtain

aσ∗
τµ(τ± , µ)

√
1 − µ2

=
∞∑

n=1

L′
n(µ)Sn − cosh τ +

sinh2 τ

2(cosh τ − µ)
,

(40)
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with

Sn = −(cosh τ± − µ)3/2U ′′
n (τ± )

+
√

cosh τ± − µ

2
[sinh τ± U ′

n(τ± ) + 3 cosh τ± Un(τ± )] .
(41)

The total hydrodynamic force on the two-sphere sys-
tem in the dual problem was computed in ref. [41] as

F ∗ = −4π
√

2
a

∞∑

n=1

n(n + 1)(αn + γn), (42)

so that the swimming velocity of the two-sphere system is
obtained as

U =
2πa2

F ∗

(∫ 1

− 1

us
µ(τ+, µ)σ∗

τµ(τ+, µ)dµ

(cosh τ+ − µ)2

−
∫ 1

− 1

us
µ(τ− , µ)σ∗

τµ(τ− , µ)dµ

(cosh τ− − µ)2

)
. (43)

In the previous equation, the integrals in µ are per-
formed numerically (knowledge of the values of an, bn,
αn, βn, γn and δn completely determines us

µ and σ∗
τµ on

the boundary of the spheres).

2.3 Results: self-propulsion of a two-sphere system

The radius of the largest sphere is chosen as reference
length scale, so that with no loss of generality we set
R1 = 1 and R2 < 1. In the following, the self-propulsion
properties and their dependence on d and R2 are exam-
ined. When R2 = 1, the system is up/down-symmetric
and there is no net motion. Similarly, when R2 ≪ 1, the
concentration distribution is only marginally impacted by
the presence of the second sphere, and any net propulsion
velocity is infinitesimal. We thus expect the presence of
an optimal ratio of sphere sizes.

2.3.1 Far field

This is the result from the introduction, which we quote
in dimensionless terms

U =
AMR2(R2 − 1)

d2(R2 + 1)
ez. (44)

When AM > 0 (particle with positive mobility releas-
ing solute), in the far-field limit, the self-propulsion veloc-
ity is always oriented toward the smaller sphere. In this
limit a maximum amplitude of the velocity is obtained for
the optimal radius R2 =

√
2 − 1 ≈ 0.41 and is equal to

Umax = (
√

2 − 1)2AM/d2 ≈ 0.17AM/d2.

Fig. 2. Top: dependence of the self-propulsion velocity with
the contact distance between the two spheres, dc, for R2/R1=
0.75 (light red) and R2/R1 = 0.5 (dark blue). Bottom: Same
quantities plotted in log-log scale to show the scaling and
compare with the far-field predictions (dashed lines). Here
AM = +1.

2.3.2 Velocity for arbitrary distances

When the size of the spheres is no longer small compared
to d, higher order corrections in both the distribution of
solute and the hydrodynamic field can become significant,
and even dominant in the limit where the contact distance,
dc = d − (R1 + R2) becomes small.

In fig. 2 we plot the dependence of the swimming
speed, U , with dc when R2/R1 = 0.5 and R2/R1 = 0.75.
Strikingly, the variation is non-monotonous and the veloc-
ity even changes sign. Specifically, at a small contact dis-
tance, the self-propulsion velocity is positive (larger sphere
in front) while at larger distances (and in the far field)
the self-propulsion velocity is negative (smaller sphere in
front). As a consequence there is a finite contact distance
dc for which U = 0 despite the asymmetry in the geometry
of the system.

At large distance, the self-propulsion decreases as d− 2,
a direct result of the decay of the concentration gradient
created by each sphere on the other. This scaling is con-
sistent with the far-field analysis, and the numerical re-
sult obtained from the complete calculation shows a good
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Fig. 3. Dependence of the swimming velocity with the size
ratio, R2/R1, and the closest distance, dc = d −(R1+ R2),
between the two spheres. The dashed line indicates the config-
urations leading to no self-propulsion (U = 0).

quantitative agreement with the far-field asymptotic so-
lution obtained in the previous section, eq. (44) (fig. 2,
bottom).

When the spheres are nearly in contact, dc → 0, the
self-propulsion velocity converges to a finite and well-
defined value, emphasizing that the concentration distri-
bution and flow field within the narrowing gap only has
marginal influence on the dynamics of the entire system.
In that limit, the two-sphere system behaves like a single
solid with asymmetric (snowman) shape. We note that
obviously our results are only applicable while the thin-
layer approximation at the core of the classical continuum
framework remains valid (i.e. sufficiently large values of
dc). However, because of the limited extent of the contact
region and its orientation relative to the direction of mo-
tion, we expect the results to be only marginally modified
by a correction taking into account the finite size of the
interaction layer.

These results can easily be generalized to arbitrary size
ratio, R2/R1, as plotted in fig. 3. Regardless of the rela-
tive radius of the two spheres, self-propulsion occurs in
different directions in the limit of near-contact and larger
distances, and thus there always exists a finite contact dis-
tance dc ≈ 0.1–0.2 for which no propulsion is observed. As
expected, an optimal propulsion velocity is obtained for in-
termediate values of the size ratio (typically R2/R1 ≈ 0.3–
0.4), whose dependence with dc is weak.

Within the (dc, R2/R1)-plane, two optimal configura-
tions can be identified. The first one, which is the global
maximum, corresponds to two spheres in contact with
R2/R1 = 0.35 resulting in a velocity of U = 0.011. The
second corresponds to a finite distance dc = 1.15 and a
size ratio R2/R1 = 0.31, resulting in U = −0.0098.

2.3.3 Solute distribution

The results above show that the distance between the two
spheres critically impacts the propulsion velocity, particu-

larly in determining its sign. To gain a better understand-
ing of this effect, we show in fig. 4 the solute concentra-
tion distribution for R2/R1 = 0.35 (maximum velocity)
and increasing distance. When A > 0 (solute release at
the surface of the spheres), the solute concentration is al-
ways greater between the spheres than on the outside due
to confinement: there, the diffusive flux of solute can only
take place on a reduced set of spatial directions, leading
to an increase in the solute concentration and in the gra-
dient. This effect is even more pronounced when the two
spheres are in contact, leading to singular, but integrable,
solute concentration gradients near the contact point.

Because of this solute distribution, the slip velocity is
always oriented in opposite directions on the two spheres,
regardless of their distance: when AM > 0 (respectively,
AM < 0), the slip velocity on each sphere is oriented
toward (respectively, away from) the other sphere. The
contributions of each sphere to the propulsion are there-
fore always of opposite sign. In other words, if the spheres
were independent they would move in opposite directions,
or, perhaps more quantitatively, the contribution of both
particles to eq. (43) have opposite signs.

In order to quantify this more precisely, we define U†
j

with j = 1 or j = 2, the velocity of the two-sphere system
obtained when only sphere j has non-zero mobility (the
other sphere’s mobility is set to zero). By linearity, the
real self-propulsion velocity is obtained as U = U†

1 + U†
2 ,

and U†
j can be seen as a measure of the contribution to

the total self-propulsion. We plot in fig. 5 the dependence
of the magnitude of U†

1 and U†
2 with dc (note that we

always have U†
2 < 0 < U†

1 ). It shows, indeed, that rather
than a fundamental change in the contribution of each
sphere to the propulsion, the relative variations (and the
slower decay of the contribution of the smaller sphere) is
responsible for the change of sign in propulsion velocity.

More specifically, for small dc, the contribution of the
largest sphere dominates, a consequence from the large
concentration gradients generated on that sphere near
the contact point by the presence of the smaller one (see
fig. 4, left). This effect, mainly due to confinement, reduces
rapidly as dc increases, and the surface concentration dis-
tribution on the larger sphere loses its strong asymmetry.
In contrast, the asymmetry of the concentration distribu-
tion on the smaller sphere is maintained at larger distance
(fig. 4, right).

2.3.4 Reactive vs. diffusive effects

The chemical reaction at the surface of the spheres ad-
dressed so far is a simple fixed-flux release/absorption of
solute. A more general one-step reaction can be considered
by assuming that the solute is consumed with a uniform
reaction rate, so that the dimensionless boundary condi-
tion on each sphere is replaced by [37]

n ·∇c = 1 + Da c. (45)

Here the Damköhler number Da = Ka/κ is a measure
of the relative magnitude of reaction and diffusion. Note
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Fig. 4. Solute concentration around a two-sphere system for a sized ratio R2/R1 = 0.35 and three contact distances: dc = 0
(left), dc = 0.24 (center), and dc = 1.15 (right).

Fig. 5. Dependence of the magnitude of the contribution of
sphere 1 (solid) and 2 (dashed) to the self-propulsion velocity
(defined as the velocity of the two-sphere system if the mobility
of the other sphere is zero) with dc.

that Da = 0 corresponds to the previous situation (with
A = −1). A generalization of this one-step fixed-rate ap-
proach to chemical release (Da < 0) would not be phys-
ically relevant as the release rate would be proportional
to the local concentration, leading to a local exponential
increase of the concentration and thus no steady solution
to the diffusive problem. We exclusively focus on Da > 0
in the following.

In fig. 6 we plot the evolution with Da of the swim-
ming velocity for the two optimal configurations identified
previously. In both cases, reactive effects are observed to
significantly reduce the magnitude of the propulsion veloc-
ity and U ∼ Da − 2 for Da ≫ 1. As discussed in ref. [37],
for finite Da , the solute consumption is limited by the re-

Fig. 6. Dependence of the self-propulsion velocity of the two-
sphere system with Da for the two optimal configurations for
Da = 0: R2/R1 = 0.35 and dc = 0 (dark blue), and R2/R1 =
0.31 and dc = 1.15 (light red). The results of the previous
section are recovered when Da = 0 provided that the velocity
sign is reversed (A = −1 and M = 1 here).

duction of its local concentration, which tends to reduce
concentration gradient and slip velocities.

For the optimal configuration where both spheres are
in contact, a surprising change in the sign of the velocity
is observed at finite values of Da . While the two-sphere
system self-propels in the direction of the smaller sphere
at small Da (fixed-flux absorption, remembering that this
is equivalent to the results of fig. 3 when correcting for the
change of sign of the activity), finite-Da effects lead to a
propulsion velocity in the direction of the larger sphere.

This modification of the propulsion properties of the
system for near-contact configuration is confirmed in fig. 7
where we plot similar results to those from fig. 3 for
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Fig. 7. Same as fig. 3 for Da = 1 (left) and Da = 10 (right). Since A = −1, the swimming direction is reversed.

Da = 1 (left) and Da = 10 (right). When dc = O(1),
the effect of Da is a global reduction in the propulsion
velocity (note the change of scales between figs. 3 and 7).
However, when the spheres are close to each other, or even
touching, the direction of propulsion is reversed in com-
parison to the case Da = 0. This effect occurs for smaller
Da when the contrast between the sizes of the spheres
is smaller. As a result, the existence of a non-propelling
configuration for each size ratio is lost at finite and large
Da , and most of the two-sphere swimmers self-propel in
the same direction (namely with the larger sphere at the
front), the direction being dictated by the slip velocity
on the smaller sphere when A < 0: when reactive effects
are significant, i.e. for Da = O(1), they limit the role of
confinement in setting the concentration level and concen-
tration gradients between the two spheres, thereby signif-
icantly reducing the contribution of the slip velocity on
the larger sphere to the global motion.

3 Autophoretic locomotion of a homogeneous
near-sphere

The previous section focused on a specific geometry, a
system made of two spheres, which could be solved exactly
even for large geometric asymmetries. We now turn to a
different limit in which we address arbitrary perturbations
in the shape of a spherical colloidal particle. In order to
be able to compute the influence of each surface mode on
the locomotion, we have to assume that the amplitudes of
the shape perturbations are small compared to the typical
length scale of the particle. This problem is similar to that
presented by ref. [31], but using a different calculation
framework.

3.1 Geometry definition

We consider here an axisymmetric particle of uniform sur-
face properties, whose surface can be described in spheri-
cal polar coordinates as R(µ) = 1 + εξ(µ), with µ = cos θ

where θ is the polar angle. We investigate the near-sphere
limit, namely ε ≪ 1, and consider the general case of a
one-step kinetic reaction at the surface so that the activity
and mobility of the particle are described by

n ·∇c = 1 + Da c, u = (1 − nn) ·∇c, (46)

at r = 1 + εξ, and n is the normal unit vector pointing
into the fluid domain

n =
(1 + εξ) er + εξ′

√
1 − µ2eθ√

(1 + εξ)2 + ε2(1 − µ2)ξ′2
. (47)

We seek a solution of the autophoretic propulsion prob-
lem as a regular series expansions in ε ≪ 1 of the solute
concentration and velocity fields, and aim to compute the
leading-order contribution to the propulsion velocity

c = c0 + εc1 + ε2c2 + ..., (48a)

u = u0 + εu1 + ε2u2 + ..., (48b)

U = U0 + εU1 + ε2U2 + ... . (48c)

Using eq. (47), the expansion can also be applied to the
unit vector normal to the surface of the particle

n = n0 + εn1 + ε2n2 + ..., (49)

with

n0 = er, (50a)

n1 = ξ′(µ)
√

1 − µ2eθ, (50b)

n2 = −ξ′(µ)2(1 − µ2)
2

er − ξ(µ)ξ′(µ)
√

1 − µ2eθ. (50c)

The deformation of the particle radius, ξ(µ), is pro-
jected onto orthogonal Legendre polynomials, so we write
ξ(µ) =

∑
ξpLp(µ). Note that by definition of the mean

particle’s radius, ξ0 must be zero. Also, at leading order
ξ1 only corresponds to a translation of the particle, its
shape remaining symmetric. Hence, we do not expect any
contribution from that mode to self-propulsion, at least at
leading order.
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3.2 Solute concentration problem

At all orders in ε, the solute concentration cj(r, µ) satisfies
Laplace’s equation so that, enforcing the far-field decay of
c we obtain

cj(r, µ) =
∞∑

p=0

cj
pLp(µ)
rp+1

, (51)

where cj
p are constants obtained from the boundary condi-

tion at the surface of the particle, n ·∇c = 1+Da c, which
can be rewritten at r = 1 using domain perturbations as

∂c0

∂r
− Da c0 = 1, (52a)

∂c1

∂r
− Da c1 = −ξ

∂2c0

∂r2
+ξ′(1−µ2)

∂c0

∂µ
+Da ξ

∂c0

∂r
, (52b)

∂c2

∂r
− Da c2 = ξ′(1 − µ2)

∂c1

∂µ
+

ξ
′2(1 − µ2)

2
∂c0

∂r
− ξ

∂2c1

∂r2

−ξξ′(1 − µ2)
∂c0

∂µ
+ ξξ′(1 − µ2)

∂2c0

∂r∂µ

−ξ2

2
∂3 c0

∂r3
+Da

(
ξ
∂c1

∂r
+

ξ2

2
∂2c0

∂r2

)
, (52c)

where all quantities are evaluated at r = 1.
At leading order, the solution to the spherical problem

is trivially obtained for c0 as the isotropic solution

c0 = − 1
(1 + Da )r

· (53)

After substitution of this result into eq. (52b), the first-
order correction to the isotropic solution concentration is
obtained as c1

p = 2Aξp/(p + 1) or equivalently

c1(r, µ) = −2 + Da
1 + Da

∞∑

p=0

ξpLp(µ)
(p + 1 + Da )rp+1

· (54)

Finally, eq. (52c) leads to the following solution for the
second-order correction c2

c2(r, µ) = − 1
1 + Da

∞∑

m,n,p=0

EmnpξmξnLp(µ)
(p + 1 + Da )rp+1

, (55)

where the third-order tensor Emnp is defined as

Emnp =
2p + 1

2

∫ 1

− 1
LpQmndµ, (56)

Qmn =
[
(2n + 1)(n + 1) + n(n + 4)Da + nDa 2

n + 1 + Da

]
LmLn

+
(n − 3 − Da )
2(n + 1 + Da )

(1 − µ2)L′
mL′

n, (57)

where we note Lp ≡ Lp(µ).

3.3 Stokes flow and swimming problems

The mobility of the particle, eq. (46), imposes a tangen-
tial forcing on the fluid outside the particle resulting in a
global flow field in the Stokes regime. Using eqs. (48), this
boundary condition expressed at r = 1 + εξ can be con-
verted, at each order, into a condition on the flow velocity
on the spherical boundary at r = 1

u0 = −M
√

1 − µ2
∂c0

∂µ
eθ, (58a)

u1 = −ξ
∂u0

∂r
− M

√
1 − µ2

(
∂c1

∂µ
+ ξ

∂2c0

∂r∂µ

)
eθ

+M(1 − µ2)ξ′
∂c0

∂µ
er − Mξ′

√
1 − µ2

∂c0

∂r
eθ, (58b)

u2 = −ξ
∂u1

∂r
− ξ2

2
∂2u0

∂r2

−M
√

1 − µ2

(
∂c2

∂µ
+ ξ

∂2c1

∂r∂µ
+

ξ2

2
∂3 c0

∂r2∂µ

)
eθ

+M(1 − µ2)ξ′
(

∂c1

∂µ
+ ξ

∂2c0

∂r∂µ

)
er

−Mξ′
√

1 − µ2

(
∂c1

∂r
+ ξ

∂2c0

∂r2

)
eθ

+Mξ
′2(1 − µ2)

(
∂c0

∂r
er +

√
1 − µ2

∂c0

∂µ
eθ

)

+Mξξ′
√

1 − µ2

(
∂c0

∂r
eθ −

√
1 − µ2

∂c0

∂µ
er

)
, (58c)

where all quantities are again to be computed at r = 1.
We now have to solve for the flow outside the unit

sphere subject, at each order, to the boundary conditions
at r = 1 and to the constraint that the total force on
the unit sphere is exactly zero. This is strictly equivalent
to solving for the flow outside the force-free non-spherical
particle since the flow is also force-free (∇ · σ = 0) and
∫

r=1
σ ·ndS−

∫

r=1+ξ
σ ·ndS =

∫

V1

∇·σdV −
∫

V2

∇·σdV = 0, (59)

where V1 (respectively, V2) is the domain located inside
(respectively, outside) the unit sphere and outside (respec-
tively, inside) the actual particle.

Replacing the flow problem on the unit sphere is par-
ticularly convenient as it gives access to two major analyt-
ical tools of low-Re swimming problems: i) the reciprocal
theorem to determine the swimming velocity U from the
flow velocity on the unit sphere us, eqs. (58), and ii) the
squirmer framework that provides an analytic solution for
the flow velocity everywhere by projecting boundary con-
ditions onto orthogonal squirming modes [42]. In particu-
lar, the reciprocal theorem applied to a unit sphere pro-
vides the swimming velocity at each order from the surface
velocity distribution as [40]

Uj = −⟨uj
s⟩ =

ez

2

∫ 1

− 1

(
uj

θ

√
1 − µ2 − uj

rµ
)

dµ. (60)
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In sect. 3.2, we obtained that c0 was isotropic. Con-
sequently, it does not create any flow at leading order, as
expected, so that u0 = 0. At O(ε), the boundary condition
on u1 simplifies into

u1 = −M
√

1 − µ2
∂c1

∂µ
eθ − Mξ′

√
1 − µ2

∂c0

∂r
eθ (61)

=
M

1 + Da

√
1 − µ2

[ ∞∑

p=0

(
1 − p

p + 1 + Da

)
ξpL

′
p(µ)

]
eθ.

From eq. (60) and using eqs. (53), (54) and eq. (58b),
we obtain U1 = 0; hence, there is no net motion of the
particle at O(ε). However, a non-zero O(ε) flow field is
created through phoretic effects, and u1 should be com-
puted everywhere in order to obtain u2 from eq. (58c). At
order O(ε) the surface velocity is purely tangential. Using
the squirmer model framework [42,43], the flow field u1

satisfying Stokes’ equations and the force-free condition
can be written as

u1(r, µ) =
∞∑

n=1

(2n + 1)α1
n

[
ψn(r)

r2
Ln(µ)er

− 1
n(n + 1)

ψ′
n(r)
r

√
1 − µ2L′

n(µ)eθ

]
, (62)

with ψn(r) the radial streamfunction for the n-th squirm-
ing mode

ψ1(r) =
1 − r3

3r
, ψn(r) =

1
2

(
1
rn

− 1
rn− 2

)
n ≥2, (63)

and α1
n, the amplitude of that mode, obtained from the

surface velocity as

α1
n =

1
2

∫ 1

− 1

√
1 − µ2L′

n(µ)(u1 · eθ)dµ

= − M

1 + Da
ξnn(n − 1)(n + 1)

(2n + 1)(n + 1 + Da )
· (64)

The squirming modes intensities characterize, among
other things, the swimming properties and the far-field
velocity created by the particle; α1 = U is the parti-
cle’s swimming velocity, and the first mode also include
a potential source dipole contribution. The second mode
is related to the slowest-decaying singularity in the far
field of a force-free and torque-free particle, namely a
stresslet [44]. The result in eq. (64) confirms that there
is no net swimming motion at first order (α1

1 = 0), but
it however shows that the dominant stresslet is O(ε) and
dictated by the second Legendre mode in ξ(µ). A pure
mode-2 shape change would then lead to no net propul-
sion, by symmetry, but to a non-zero force dipole which
will impact the bulk stress [44] and hydrodynamic inter-
actions in a suspension.

The sign of α1
2 dictates the type of stresslet. When

α1
2 > 0 this corresponds to puller systems where the thrust

center is located in front of the drag center, similarly to
the flagellated alga Chlamydomonas; in contrast α1

2 < 0

correspond to pushers where the position of drag and force
centers are reversed, as is the case for most flagellated bac-
teria. For M > 0 (respectively, M < 0), prolate particles
(ξ2 > 0) will act as pushers (respectively, pullers) while
oblate particles (ξ2 < 0) will act as pullers (respectively,
pushers). As the solute consumption is enhanced near the
poles of the prolate spheroid, when M > 0 the slip veloc-
ity is oriented away from the pole and toward the equator
(puller), while for M < 0, the slip velocity is oriented
from the equator to the poles (pusher). Interestingly, this
dominant flow field decays rapidly with Da , a direct con-
sequence of the slower diffusion: the reaction kinetics are
slowed near the surface due to the depleted solute concen-
tration resulting in smaller concentration gradients and
slip velocities.

From eqs. (62) and (64), the velocity gradient ∂u1/∂r
at the surface of the sphere is now obtained as

∂u1

∂r
(r = 1) =

M

1 + Da

∞∑

n=0

ξn
n(n − 1)(n + 1)

n + 1 + Da

×
[
Ln(µ)er +

2
√

1 − µ2

n + 1
L′

n(µ)eθ

]
. (65)

Substitution into eq. (58) leads, for the velocity on the
boundary, to

u2 =
M

1 + Da

∞∑

m,n=0

ξmξn

(
Ymner + Zmn

√
1 − µ2eθ

)
,

(66)
with

Ymn = −n(n − 1)(n + 1)
n + 1 + Da

Lm(µ)Ln(µ)

+
n − 1

n + 1 + Da
(1 − µ2)L′

m(µ)L′
n(µ), (67a)

Zmn = − (n − 1)(2n − 1 + Da )
n + 1 + Da

Lm(µ)L′
n(µ)

− (n + 1)(2 + Da )
n + 1 + Da

L′
m(µ)Ln(µ)

+
∞∑

p=0

Emnp
L′

p(µ)
p + 1 + Da

· (67b)

From the previous equation, the reciprocal theorem,
eq. (60), can be used to compute U2 (see appendix B)
and at leading order we finally obtain O(ε2) locomotion
as

U = ε2ez

∞∑

n=0

an(Da )ξnξn+1 + O(ε3 ), (68)

with

an(Da ) =
[(n − 2)(n + 2) − (n + 7)Da − 3Da 2]Γn

(1 + Da )(2 + Da )(n + 1 + Da )(n + 2 + Da )
,

(69)

Γn =
2Mn(n + 1)(n − 1)
(2n + 1)(2n + 3)

. (70)
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After having accounted for the difference in dimensional
reference velocity, eq. (68) is exactly equivalent to the re-
sult recently derived in ref. [31] using a different, colloidal
calculation framework.

This final result shows that it is indeed possible to cre-
ate self-propulsion through shape asymmetries. In the case
of infinitesimal perturbations of a spherically homogenous
autophoretic particle, the resulting swimming velocity is
quadratic in the perturbation amplitude. The form of the
result, eq. (68), is consistent with the fact that U2 is zero
for front-back symmetric particles (i.e. those with only
even Legendre modes in their shape function ξ). One may
also notice that as expected ξ0 and ξ1 do not contribute at
this order as they merely change the radius or the center
position of the sphere, not modifying its isotropy. More
surprising is the role played by the second mode of de-
formation ξ2 that dictates the dominant stresslet at O(ε):
when Da = 0 (fixed-flux emission/absorption), such a de-
formation does not contribute to the leading-order propul-
sion, while it does as soon as Da ̸= 0.

When n ≫ 1, we notice that an = O(n), and therefore,
the infinite sum in eq. (68) only converges if ξn = o(1/n)
when n ≫ 1, a condition which is satisfied for regular
shapes. If γ denotes the angle between n and er, then by
definition of n we have

tan γ = R′(µ)
√

1 − µ2. (71)

It can be shown that a condition for divergence of the sum
in eq. (68) is the existence of a non-integrable singularity
in tan γ. This, however, only includes marginal cases where
the perturbative framework fails in the development of n
as a regular perturbation series.

A final interesting observation arises regarding the sign
of the propulsion speed at different values of Da . From
eq. (68), we observe that for all n, the product an(Da ≪
1) · an(Da ≫ 1) is always negative. In other words, for
any shape (i.e. any coefficients ξn), the particle will swim
in opposite direction in the diffusion-dominated regime
(Da ≫ 1) and reaction-dominated regime (Da ≪ 1).

3.4 Optimal autophoretic near-sphere

We now use our asymptotic result, eq. (68), in order to
compute the optimal way to distribute the surface pertur-
bation modes maximizing the magnitude of the swimming
velocity.

3.4.1 Optimization framework

Formally, the leading-order swimming velocity, eq. (68),
can be expressed in terms of the vector ξ = ε(ξn)n as a
bilinear form

U = ξ · K(Da ) · ξ, (72)

with the upper-diagonal linear operator K defined as

Kmn(Da ) = an(Da )δm,n+1. (73)

Since the swimming velocity is quadratic in the amplitude
of the perturbation, optimization requires to impose some
kind of fixed norm to guarantee that we remain within the
perturbative framework in which this result was obtained.
Hence, we define an objective function J

J = ξ · K · ξ − λ

(
1
2
ξ · H · ξ − 1

)
, (74)

with λ a Lagrangian multiplier and H a bilinear, symmet-
ric positive definite operator corresponding to the partic-
ular norm chosen for ξ. Maximizing or minimizing U is
therefore equivalent to seeking solutions of

(
K + KT

)
· ξ = H · ξ, with

1
2
ξ · H · ξ = 1, (75)

The previous equation is effectively an eigenvalue problem
for (ξ,λ) with a constraint on the norm of the eigenvectors
ξ. In practice, for a given norm operator H, we seek the
solutions of eq. (74) for a finite number N of modes in ξn.
This leads to a set of N numerical solutions, from which
the shape with maximum velocity is extracted.

The choice of the norm used to define H significantly
impacts, as expected, the convergence of the optimal so-
lution when N → ∞. For example, a simple L2-norm of
the perturbation amplitude ξ (denoted H(1)) or of local
slope perturbation (i.e. angle between n and er, denoted
H(2)), which led, respectively, to the following tensors

H(1)
mn =

∫

− 1
Lm(µ)Ln(µ)dµ =

2
2n + 1

δmn, (76)

H(2)
mn =

∫ 1

− 1
(1 − µ2)L′

m(µ)L′
n(µ)dµ =

2n(n + 1)
2n + 1

δmn, (77)

do not guarantee the convergence of the result as N → ∞.
In fact, in both cases, for finite values of N , the optimal
shape is obtained as a sharp cusp near the pole leading to
a dominance of the higher-order modes in ξ over the more
regular ones. This can be understood as follows. Bounds
on the r.m.s. perturbation amplitude or r.m.s. perturba-
tion angle do not rule out the presence of a spike of in-
finitesimal thickness and unbounded height on the sur-
face, that would lead to a diverging of U2 (the regular
perturbation expansion of the propulsion velocity would
be invalid).

In order to guarantee well-posedness, and consistency
with the perturbation approach, we choose a norm based
on the r.m.s. curvature perturbation κ̃ = κ + 1, where κ
is the local curvature defined as

∂t
∂s

= κn, (78)

with t the tangential unit vector in the (er, eθ)-plane and
s the curvilinear coordinate along the surface. At leading
order in ε, the curvature perturbation is obtained as

κ̃ = ε[(1 − µ2)ξ′′ − µξ′ + ξ], (79)
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Fig. 8. Small-amplitude perturbations of a sphere leading to
maximum swimming velocity (ε = 0.3 was chosen for plotting
purposes). There are two solutions, one convex (solid line) and
one concave (dash-dotted line), leading to the same propulsion
velocity U ≈0.01ε2M . The unit sphere is shown for reference
(dotted line).

and the corresponding H is obtained as

Hmn =
∫ 1

− 1
hn(µ)hm(µ)dµ, (80a)

hj = µL′
j + [1 − j(j + 1)]Ln, ∀j.

Hmn is now a full matrix whose coefficients can be com-
puted analytically (see appendix B).

Note that because the propulsion velocity is a
quadratic form of the shape perturbation, the transfor-
mation ξ → −ξ leaves the propulsion velocity unchanged.
Each optimal swimming velocity therefore corresponds to
two different shapes obtained for ε and −ε. Also, the
change ξn → (−1)nξn simply performs a symmetry of the
particle shape, changing the sign of the swimming velocity
but not its magnitude.

3.4.2 Optimal swimming shape for fixed flux (Da = 0)

We plot in fig. 8 the two optimal shapes leading to max-
imum propulsion velocity at Da = 0 (fixed-flux absorp-
tion). For positive mobility (M = 1), both shapes swim
to the right (U > 0) with a small speed, U ≈ 0.01ε2. Both
shapes are characterized by a sharp corner with a finite
angle γ at the pole, defined in eq. (71). This angle is pro-
portional to ε, a consequence of effectively imposing the
curvature change to be O(ε).

The optimal shapes appear to be cusped. It is a well
known fact that, for example, in electrostatics, cusps can
lead to divergence of electric fields, a result true in general
to solutions of Laplace equation near tips or wedges in the
geometry [45]. We believe that the same effect is observed
in our simulations where the maximum velocity, resulting
from surface gradients of the solution to Laplace’s equa-
tion, corresponds to a kinked geometry. As for the two-
sphere system, we note that the framework used here is
valid provide that the typical radius of curvature near the

Fig. 9. Dependence of the swimming velocity on Da for the
optimal shapes shown in fig. 8 (i.e. optimal shape at Da = 0).

regularized cusp remains large compared to the thickness
of the interaction layer.

In fig. 9 we show the dependence of the swimming ve-
locity associated with this optimal shape on the value of
Da . In general, reactive effects are observed to reduce the
swimming velocity, a property that was also observed for
spherical Janus particles [37] and remain valid here: re-
active effects tend to reduce concentration contrasts as
the chemical reaction is slowed down in regions already
strongly impacted by the depletion in solute resulting from
the reaction. More quantitatively, at large Da , one ob-
serves that for a fixed particle shape U ∼ Da − 2. However,
this decrease is not monotonous: in fact, a reversal is ob-
served in the swimming direction as already predicted in
the previous section. As a consequence, for a finite value
of Da (Da ≈ 0.94 in this particular case), the asymmetry-
driven self-propulsion vanishes.

3.4.3 Optimal swimming shape for arbitrary Da

The previous result clearly suggests that the optimal
swimming shape can not be independent of Da since any
shape will perform poorly for some range of Da = O(1).
Our optimization analysis can hence be extended to finite
values of the Damköhler number and the results are pre-
sented in fig. 10, where we plot the overall shape (top)
and the angles at both poles (bottom). For large Da , one
recovers the general decay of self-propulsion velocities due
to reactive effects and Uopt ∼ Da − 2. The optimal shape
is rather insensitive to fluctuations in Da when Da ≤0.4
and Da ≥0.7. Within a narrow range of Da , a sharp tran-
sition takes place. While at lower Da , the optimal shape
presents a protrusion located at its front, for greater Da
the protrusion is in its back. This change in the optimal
configuration is related to the change in self-propulsion
direction for a particle shape with a protrusion observed
in fig. 9. For small Da , it is advantageous to have a pro-
trusion in the front, while at larger Da , the protrusion
should be located in the back of the particle.
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Fig. 10. Top: dependence of the optimal swimming velocity
and optimal shape with Da. A front-back reversal in the opti-
mal shapes occurs near Da ≈0.5. The direction of the swim-
ming velocity is indicated for each displayed shape by a green
arrow. Bottom: variation with Da of the summit angles on
the optimal shape. γ+ (solid) refers to the right pole and γ−
(dashed) refers to the left pole.

4 Conclusion

The results presented in this paper for two idealized setups
demonstrate that geometric asymmetries are sufficient to
enable self-propulsion of a chemically homogeneous sys-
tem. As in the work of ref. [31], this identifies an alterna-
tive route to self-propulsion without exploiting chemical
patterning of the particle which might otherwise be prac-
tically difficult to achieve and control. We note however
that the propulsion velocities are in general smaller than
what would be achieved for an equivalent Janus system
exploiting chemical asymmetry.

The origin of this geometric self-propulsion mechanism
stems from a combination of enhanced concentration gra-
dients and change in the particle surface exposed to these
gradients. The former corresponds to an enhancement of
the concentration level and gradients, and hence slip ve-
locities, near a protrusion from a surface of constant cur-
vature, and is a generic feature of computing local solu-
tions to laplacian on wedge or tip singularities [45]. The
latter can be best illustrated in the near-sphere case: the
extension of the solid particle away from its mean radius,
exposes its surface to a larger range of the concentration
distribution created by the particle, which modifies sur-
face velocities. The dependence of the final results for the
swimming velocity on the various surface modes, on the
deformation amplitude, and on the relative importance
of reactive effects show however that it is a non-trivial

nonlinear interplay between enhanced gradients and shape
changes which results in swimming.

Most of our results were obtained with a minimal ki-
netic model for the reaction at the surface of the parti-
cle, namely a fixed-flux release or absorption, but we also
showed that introducing a more complex one-step reac-
tion kinetics does not fundamentally change the results,
in particular the main idea of self-propulsion using shape
asymmetries. Our work emphasizes however that the pre-
cise kinetics and the relative importance of reactive and
diffusive effects may significantly influence the sign of the
propulsion velocity, and additional work will be needed on
more complex, and realistic, surface chemical conditions
(see for example ref. [21]). Furthermore, while we focused
on the idea of self-propulsion in this work, the same idea
will be useful as a method to apply forces on stationary
bodies, leading therefore to potentially new microfluidic
applications in pumping and mixing [46].

This research was funded in part by the European Union
through a Marie Curie grant to EL and by the French Min-
istry of Defense through a DGA (Délégation Générale pour
l’Armement) to SM.

Appendix A. Useful properties of the
Legendre polynomials

We make use of the following in the main text of the paper

2p + 1
2

∫ 1

− 1
LnLpdµ = δnp, (A.1)

2p + 1
2p(p + 1)

∫ 1

− 1
(1 − µ2)L′

nL′
pdµ = δnp, (A.2)

2p + 1
2

∫ 1

− 1
µLnLpdµ =

p + 1
2p + 3

δn,p+1 +
p

2p − 1
δn,p− 1,

(A.3)

2p + 1
2

∫ 1

− 1
(1 − µ2)L′

nLpdµ =
(p + 2)(p + 1)

2p + 3
δn,p+1

− p(p − 1)
2p − 1

δn,p− 1, (A.4)

2p + 1
2p(p + 1)

∫ 1

− 1
µ(1 − µ2)L′

nL′
pdµ =

p + 2
2p + 3

δn,p+1

+
p − 1
2p − 1

δn,p− 1, (A.5)

2p + 1
2

∫ 1

− 1

Lpdµ√
cosh τ± − µ

=
√

2e− (p+1/2)|τ±|, (A.6)

2p + 1
2

∫ 1

− 1

µLpdµ√
cosh τ± − µ

=
√

2
(

p + 1
2p + 3

e− (p+3/2)|τ±|

+
p

2p − 1
e− (p− 1/2)|τ±|

)
,

(A.7)
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2p + 1
2p(p + 1)

∫ 1

− 1

(1 − µ2)L′
pdµ

√
cosh τ± − µ

=
√

2
(

e− (p− 1/2)|τ±|

2p − 1

−e− (p+3/2)|τ±|

2p + 3

)
. (A.8)

Appendix B. Computing the second-order
swimming velocity

Applying the reciprocal theorem, eq. (60), to the second-
order surface velocity, eq. (67), one obtains

U =
Mez

2(1 + Da )

∞∑

m,n=0

ξmξn

[
n(n − 1)(n + 1)

n + 1 + Da
I1
mn

−
(

n − 1
n + 1 + Da

)
I2
mn − (n − 1)(2n − 1 + Da )

n + 1 + Da
I3
mn

− (n + 1)(2 + Da )
n + 1 + Da

I4
mn +

∞∑

p=0

Emnp

p + 1 + Da
I5
p

]
,

(B.1)

where Emnp was defined in eq. (56) and I1
mn, I2

mn, I3
mn,

I4
mn and I5

p are integrals of the Legendre polynomials that
can be computed using classical properties of such poly-
nomials and those listed in appendix A

I1
mn =

∫ 1

− 1
µLm(µ)Ln(µ)dµ, (B.2)

I2
mn =

∫ 1

− 1
(1 − µ2)µL′

m(µ)L′
n(µ)dµ, (B.3)

I3
mn =

∫ 1

− 1
(1 − µ2)Lm(µ)L′

n(µ)dµ, (B.4)

I4
mn =

∫ 1

− 1
(1 − µ2)L′

m(µ)Ln(µ)dµ, (B.5)

I5
p =

∫ 1

− 1
(1 − µ2)L′

p(µ)dµ. (B.6)

Also, using the definition of Emn1 and the properties
of Legendre polynomials, we obtain

Emn1 =
3(fnδm,n+1 + gnδm,n− 1)

2(2m + 1)(2n + 1)(n + 1 + Da )
, (B.7)

with

fn =(n + 1)
(
2nDa 2 + 2n(n + 4)Da + 2(n + 1)(2n + 1)

)

+ n(n + 1)(n + 2)(n − 3 − Da ), (B.8)

gn =n
(
2nDa 2 + 2n(n + 4)Da + 2(n + 1)(2n + 1)

)

+ n(n − 1)(n + 1)(n − 3 − Da ). (B.9)

Substituting these results into eq. (B.1), we obtain U2

in the form

U2 =
M

(1 + Da )(2 + Da )

∞∑

m,n=0

ξmξn

× (qnδm,n+1 + rnδm,n− 1)
(n + 1 + Da )(2n + 1)(2m + 1)

, (B.10)

with

qn = − (n + 1)
[
2(n + 1)Da 2 + (−2n3 + 5n2 + 6n + 8)Da

− 5n3 + 9n2 + 8n + 6
]
, (B.11)

rn =n
[
2nDa 2 − (2n + 3)(n2 − 4n + 1)Da

− 3(n + 1)(n2 − 4n + 1)
]
. (B.12)

Finally,

U2 =
∞∑

n=0

an(Da )ξnξn+1, (B.13)

with an(Da ) defined in eq. (68).

Appendix C. Curvature norm tensor

Choosing the r.m.s. curvature perturbation to define the
H operator in eq. (74), the symmetric tensor Hmn is
defined in eq. (80) and is symmetric. In particular, us-
ing classical properties of Legendre polynomials (see Ap-
pendix A), it can be computed exactly , when m ≤ n,
as

Hmn =
[
n4 − 4n2 − n + 1

2n + 1
+ 2bn

]
δmn

+ 2
2q≤ n− 2∑

q=0

(1 − m(m + 1) + bm) δm,n− 2q− 2,

(C.1)

with

bn = 2
2p≤ n− 1∑

p=0

(2n − 4p − 1). (C.2)
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