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re and escape of a microswimmer
colliding with an obstacle

Saverio E. Spagnolie,*a Gregorio R. Moreno-Flores,ab Denis Bartoloc and Eric Laugad

Motivated by recent experiments, we consider the hydrodynamic capture of a microswimmer near a

stationary spherical obstacle. Simulations of model equations show that a swimmer approaching a small

spherical colloid is simply scattered. In contrast, when the colloid is larger than a critical size it acts as a

passive trap: the swimmer is hydrodynamically captured along closed trajectories and endlessly orbits

around the colloidal sphere. In order to gain physical insight into this hydrodynamic scattering problem,

we address it analytically. We provide expressions for the critical trapping radius, the depth of the “basin

of attraction,” and the scattering angle, which show excellent agreement with our numerical findings. We

also demonstrate and rationalize the strong impact of swimming-flow symmetries on the trapping

efficiency. Finally, we give the swimmer an opportunity to escape the colloidal traps by considering the

effects of Brownian, or active, diffusion. We show that in some cases the trapping time is governed by an

Ornstein–Uhlenbeck process, which results in a trapping time distribution that is well-approximated as

inverse-Gaussian. The predictions again compare very favorably with the numerical simulations. We

envision applications of the theory to bioremediation, microorganism sorting techniques, and the study

of bacterial populations in heterogeneous or porous environments.
1 Introduction

Microorganisms and other self-propelling bodies in viscous
uids are known to traverse complex trajectories in the presence
of boundaries. One basic interaction with a plane wall, observed
in experiments with Escherichia coli bacteria and spermatozoa,
is that the cells may accumulate near the surface due to a
combination of hydrodynamic and steric effects.1–7 Another
effect, associated with the rotation of helical agella and a
counter-rotation of the cell body in E. coli, is that agellated
bacteria swim in large circles when they are near a solid
boundary,8 and in circles of opposite handedness near a free
surface.9 The orientations of swimming bodies, even those
hydrodynamically bound to the surface, are non-trivial and
depend on the geometry of the swimmer and its mechanism of
propulsion.7,10–17

The attraction and trapping of microorganisms near
surfaces may lead to the development of biolms,18,19 and
possible infection of medically implanted surfaces.20 Other
biophysical properties may also be important; for example,
Chlamydomonas algae cells scatter from a at wall due to contact
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between its agella and the surface, so that the interaction is
highly dependent on the body and agellar lengths and geom-
etries,21 and the tumbling of E. coli is suppressed near surfaces
due to increased hydrodynamic resistance.22 With an eye
towards bioengineering applications, sorting and rectication
devices have also been constructed at the microscale which
exploit the interactions of microorganisms and asymmetric
surfaces (including funnels and gears).23–28 In some cases, steric
collisions or near-eld lubrication forces may dominate long-
range hydrodynamic effects.6,29,30

Naturally, interactions with geometrical boundaries is not
specic to living organisms, and also applies to the synthetic
self-propelled colloids that have been extensively studied over
the last ve years.31–38 A recent experiment by Takagi et al.39

showed that a self-propelled synthetic swimmer in a eld of
passive colloidal beads displays its own complex trajectory. The
path includes a billiard-like motion between colloids, inter-
mittent periods of entrapped, orbiting states near single
colloids, and randomized escape behavior (see Fig. 1). Takagi
et al.39 argued that short-range hydrodynamic interactions and
steric effects were sufficient to understand their experimental
results. Brown et al.40 explored an extension of these dynamics
to swimming through a “colloidal crystal,” where a synthetic
swimmer hops from colloid to colloid with a trapping time that
depends on fuel concentration, whereas E. coli trajectories are
rectied into long, straight runs.

In this article, we set out to understand quantitatively the
hydrodynamic scattering of a swimming body by a stationary
This journal is © The Royal Society of Chemistry 2015
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Fig. 1 Snapshots from the experiments of Takagi et al.,38 reproduced
with permission. The swimming trajectory of a self-propelled body in a
colloid-filled bath includes a billiard-like motion between colloids,
intermittent periods of entrapped and orbiting states, and randomized
escape behavior. The swimmer is 2mm long.

Fig. 2 (a) Illustration of the colloid/swimmer system. A swimming
body of dimensionless length 2 swims in a direction ê. Its centroid lies a
distance h away from the surface of a spherical colloid of radius A. The
angle between the director ê and the line perpendicular to the line of
centers is denoted by q. (b) The distance h and relative angle q change
even when the body swims straight due to the geometry.
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spherical obstacle. We develop a semi-analytical model to
describe the trajectory of a model swimmer based on far-eld
hydrodynamic interactions and hard-core repulsion. Using
numerical simulations of this minimal model, we demonstrate
that: (i) the swimmer can be hydrodynamically trapped by
colloids above a critical size, (ii) sub-critical interactions involve
only short residence times on the surface, and (iii) that model
“puller” swimmers may be trapped by much smaller colloids
than are necessary to trap “pusher” swimmers. The critical
colloid size for the entrapment of pusher particles is found to
scale quadratically with the inverse of the swimmer dipole
strength, and for puller particles with only the inverse of the
dipole strength. The residence time for sub-critical interactions
is also considered, as is the size of the “basin of attraction”
around the colloid below which a swimmer can be drawn into
the surface. A scaling law for the basin radius is deduced,
resulting in a mastercurve onto which all of the numerically
simulated values collapse. A semi-analytical expression is also
provided for the total scattering angle in the case of sub-critical
colloid size. Finally, with the introduction of Brownian uctu-
ations, swimmers trapped in the deterministic setting are
shown to escape randomly. The distribution of trapping times
are analyzed for a range of colloid sizes, swimmer types, and
diffusion constants. In some cases the trapping time is gov-
erned by an Ornstein–Uhlenbeck process, which results in
trapping time distributions that are well-approximated as
inverse-Gaussian. The predictions are again found to match the
numerical simulations closely.

The paper is organized as follows. In §2 the mathematical
model is presented. Analytical formulae for swimming veloci-
ties are developed using the image singularity system of Oseen
and the application of Faxén’s Law. The resulting swimming
trajectories are described in §3, where we obtain a criterion for
deterministic hydrodynamic capture. In addition, the scattering
dynamics is derived for near-obstacle interactions, the basin of
attraction is shown to collapse to a power-law, and trapping of
puller-type swimmers is shown to be possible using a much
This journal is © The Royal Society of Chemistry 2015
smaller colloid. In §4 we consider the effects of translational and
rotational uctuations, which have distinct consequences on
entrapment, escape, and the statistics of swimming in random
media. The trapping time distribution is explored for varying
dipole strength, colloid size, and diffusion constant. We
conclude with a discussion in §5.
2 Mathematical model

We begin by describing a mathematical model for the dynamics
of self-propulsion near a stationary spherical obstacle. In an
unbounded uid the body is assumed to swim unhindered at a
speed U along a director ê, but it can deviate from its straight
path in the presence of a background ow u. For mathematical
convenience, the swimmer body is assumed to take the shape of
an ellipsoid with semi-major axis length a and aspect ratio g.
Scaling velocities upon U and lengths upon a, the position x0(t)
and orientation ê(t) of the swimmer are provided by Faxén’s
Law,41

dx0

dt
¼ êþ ~u;

dê

dt
¼ ~U� ê; (1)

where ũ and ~U are the hydrodynamic contributions to the
dynamics which are zero in an unbounded quiescent uid.

Consider the introduction of a single spherical colloid of
dimensionless radius A placed at the origin. The setup is illus-
trated in Fig. 2a. The unit vectors r̂ and r̂t are dened at each
moment in time relative to the line joining the centers of the
swimmer and sphere. The angle between the swimming
director ê and the line perpendicular to the line of centers is
denoted by q, and the centroid of the swimmer is located a
distance h from the colloid surface. In addition to the hydro-
dynamic impact on the trajectory, the distance and angle of the
swimmer relative to the sphere also changes in time due simply
to geometry, as illustrated in Fig. 2b. Combining the hydrody-
namic and geometric contributions to the swimming dynamics,
Soft Matter, 2015, 11, 3396–3411 | 3397
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the translational and angular swimming velocities in terms of h
and q are given by

dh

dt
¼ sinðqÞ þ r̂$~u; (2)

dq

dt
¼ 1

Aþ h

�
cosðqÞ þ r̂t$~u

�þ ðr̂t � r̂Þ$ ~U: (3)

When the swimmer makes contact with the surface, we assume
a simple rigid-body interaction. Specically, when geometrical
contact with the surface occurs, q is still allowed to vary
according to eqn (2), but h varies only if _h > 0, so that the
swimmer cannot penetrate the colloid. When the swimmer is in
contact with the wall we therefore write

dh

dt
¼ max

�
sinðqÞ þ r̂$~u; 0

�
: (4)

This is equivalent to the swimmer experiencing a hard wall
repulsion (Heaviside potential) with no torque. The geometry
and propulsive mechanism of a swimmer may also result in
short-range body torques very close to the surface, but for the
sake of model simplicity we do not include them.
2.1 Far-eld hydrodynamics

Thus far we have not assumed anything about the ambient ow
eld local to the swimming body, or about the ow eld
generated by the swimming motion. Let us rst summarize the
approach that we take in this paper in order to model the
interplay between the swimmer propulsion and the uid ow.
The ow eld generated by the swimming motion is approxi-
mated by its leading order approximation far from the body.
This simplied ow takes the form of a singular solution to the
underlying Stokes equations of viscous uids.7,42–44 Images of
the fundamental singularity solutions to the Stokes equations
have been used to derive ows in the upper-half plane with no-
slip boundary conditions.45,46 Those ow elds, along with an
application of Faxén’s Law, result in a description of the
trajectory of a self-propelled body near a wall3,6,7 or a stress-free
surface.7 A similar technique may be used to nd the ow
generated by a point force external to a sphere with a no-slip
boundary condition, as derived by Oseen,47 and it is used here
to derive the hydrodynamic effect of the colloid on the swim-
ming body. We now describe these steps for the present case in
greater detail.

Although the uid ow near a swimming organism is
complex and depends on both the swimmer geometry and the
propulsive mechanism, the ow far from the body may be
represented as a multipole expansion of the velocity eld so
produced. The ow-eld far from a neutrally buoyant self-
propelled body at leading order is given by

u(x) ¼ aSD(x � x0; ê) + O(|x � x0|
3), (5)

where

SDðx; êÞ ¼ x

jxj3
 
3ðê$xÞ2
jxj2 � 1

!
(6)
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is a symmetric force dipole.43 The value of the coefficient a may
be measured for a given microorganism. Recent experimental
measurement of the ow produced by a swimming E. coli cell
was performed by Drescher et al.,6 for which a was approxi-
mately a ¼ 0.6. Swimmers with a > 0 are known as pushers, and
those with a < 0 are known as pullers.48 We henceforth focus our
attention on values of a on this scale which is also relevant to
synthetic microswimmers.
2.2 Image singularity system and method of reections

We denote the singular solutions to the Stokes equations placed
internal to the spherical body, selected so as to cancel the uid
velocity on the surface |x| ¼ A, by u*(x) ¼ S*D(x � x*0, ê), where
x*0 ¼ (A2/|x0|

2)x0 is the image point of the swimming body inside
of the sphere (details are given in Appendix A). By introducing
the image system, the uid ow given by

u(x) ¼ a[SD(x � x0; ê) + S*
D(x � x*

0; ê)], (7)

is such that u ¼ 0 on the surface of the colloid, as shown in
Fig. 3 for q¼ 0 and q¼ p/4. The total ow no longer satises the
appropriate boundary conditions on the surface of the swim-
ming body. Instead, there results a net force and torque on the
swimmer associated with the image ow, which when balanced
with translational and rotational drag return the leading-order
hydrodynamic effects of the colloid on the swimming trajectory.

Returning to eqn (1), Faxén’s Law for an ellipsoidal particle
results in the expressions

~u ¼ u*ðx0Þ þO

�ju*ðx0Þj
h2

�
; (8)

~U ¼ 1

2
V� u*ðx0Þ þ Gê� E*ðx0Þ$êþO

�ju*ðx0Þj
h3

�
; (9)

where G ¼ (1 � g2)/(1 + g2), g is the body aspect ratio, and E* ¼
(Vu* + V(u*)T)/2 is the symmetric rate of strain tensor. The full
expressions for ũ and ~U are included in Appendix B, and we will
use these full expressions in numerical simulations, but for the
sake of mathematical tractability we now also consider the
leading order dynamics assuming h/A � 1. Caution must be
taken, as we are expanding expressions valid for 1/h2 � 1 (see
eqn (8)) in the small parameter h/A. In other words, it is
important that A [ 1 for what follows (the colloid must be
much larger than the swimmer).

Inserting the expressions for ũ and ~U into eqn (2) and (3), we
nd the following model equations for the dynamics,

dh

dt
¼ sinðqÞ � 3a

8h2

�
1� 3 sin2

q
�
; (10)

dq

dt
¼ 1

A
cos q� 3a

64h3
½4� Gð3� cos 2qÞ�sin 2q: (11)

Eqn (10) and (11) in the limit as A/N have been used by other
authors to study self-propulsion near innite plane walls.3,6,7 We
observe that the leading order variation in the dynamics from
the innite-wall case is due solely to the geometric effect, and
not to variations in the hydrodynamic effects. Note that the
This journal is © The Royal Society of Chemistry 2015



Fig. 3 The flow fields due to a pusher (a > 0) near a sphere, with q ¼ 0 (left) and q ¼ p/4 (right). The flow field for q ¼ 0 case suggests a
hydrodynamic attraction to the colloid, while the q ¼ p/4 case suggests an extra hydrodynamic repulsion. A puller (a < 0) generates the identical
flow field but with velocity signs reversed. The flow field is singular at the swimmer center; the velocity near the swimmer is not shown here for
the sake of clarity.
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far-eld hydrodynamic approximations of swimming bodies
were found to give surprisingly accurate results for motion near
an innite plane wall, as compared to solutions of the full
Stokes equations for Janus swimmers of varying eccentricity, for
motion as close as a fraction of a body length away from the
surface.7
Fig. 4 A spherical dipole pusher (a ¼ 0.8) with initial position x0 ¼
�40x̂ + 0.1ŷ and orientation ê(0) ¼ x̂ swims towards colloids of radius
A ¼ 5, 10, 15, and 20 in the time t: 0/ 120. The critical colloid size for
entrapping a swimmer with a ¼ 0.8 is Ac z 15.1. The simulations are
produced by integrating numerically the full system of eqn (39) and
(40).
3 Hydrodynamic collision:
entrapment and scattering

Previous studies of self-propulsion near innite plane wall
surfaces have shown that pushers (a > 0) swimming nearly
parallel to the wall are attracted to a planar surface by a
passive hydrodynamic interaction. Pullers (a < 0), meanwhile,
are repelled in this conguration. With these effects in mind,
we now look to the case of a nite colloid size. Note that in
this deterministic setting, the swimmer is conned to the
plane spanned by the swimming director and the line of
centers between the swimmer and the colloid; coordinates
can thus be dened so that the swimmer is conned to the x–y
plane.

We begin by investigating numerically the dynamics of a
dipole swimmer using the complete far-eld approximation
(eqn (2) with no assumption that h/A � 1, as described in
Appendix B). We show in Fig. 4 the trajectories of a spherical
pusher with strength a ¼ 0.8 and initial position x0 ¼ �40x̂ +
0.1ŷ and orientation ê(0) ¼ x̂ as it swims towards colloids
centered about the origin of varying sizes. For small colloid
sizes, A ¼ 5 and A ¼ 10, the swimmer makes hard contact with
the sphere, then turns and travels along the colloid until
escaping from the surface. The colloid of size A ¼ 15 makes
escape more difficult but the swimmer is eventually able to
propel freely away from the sphere. However, for all colloid sizes
larger than A z 15.1, the colloid captures the swimmer. The
swimmer is trapped in a periodic orbit and endlessly propels
along the surface of the colloid, as shown for the case A ¼ 20.
This journal is © The Royal Society of Chemistry 2015
More generally, the critical colloid size for entrapment,
denoted by Ac, depends on the dipole strength a and the aspect
ratio of the swimmer. The critical colloid size for entrapping a
spherical pusher or puller is shown in Fig. 5 along with
predictions to be described in the following section. The size of
the colloid is found to scale as 1/a2 when a > 0 for pushers and
as 1/|a| for pullers.
3.1 Estimating the critical trapping radius

One of the primary goals of this paper is to estimate the rela-
tionship between the dipole strength, a, and the critical
colloid size Ac. Linearizing eqn (10) and (11) about q ¼
0 (swimming parallel to the colloidal surface), pushers are
found to be attracted to the surface and pullers are repelled
from the surface, just as in the innite wall case.3 However,
Soft Matter, 2015, 11, 3396–3411 | 3399



Fig. 5 (a) The critical colloid size for entrapment, Ac, as a function of
the dipole strength a for a spherical pusher swimmer. Values
computed using initial position x0 ¼ (A + 1)ŷ and q ¼ 0 are shown as
symbols, and the prediction Ac ¼ 64/9a2 as a solid line. The theory is
strongest for smaller dipole strengths and larger colloid sizes, where
the escape angle is smaller and the linearized equations are more
accurate. (b) The same, for puller swimmers, along with the theoretical
prediction of Ac ¼ 8/(3rar).
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unlike the dynamics near a plane wall, for nite colloid size A
we now have _q > 0 when q ¼ 0 as a consequence of the topo-
graphical curvature. Hence, q ¼ 0 is no longer an equilibrium
pitching angle and the body cannot swim parallel to the
surface for any sustained period of time. Linearizing the
system about q ¼ 0,

dh

dt
¼ q� 3a

8h2
þO

�
q2
�
; (12)

dq

dt
¼ 1

A
� 3að2� GÞ

16h3
qþO

�
q2
�
; (13)

we nd an equilibrium solution h* ¼ (9a2A(2 � G)/4)1/5/2 and
q* ¼ (3a/[4A2(2 � G)])1/5.

Let us focus rst on the pusher case. Here we see that q* >
0 for a > 0. The normalized equilibrium distance h*/A decreases
with increasing A as expected (a larger sphere results in a larger
hydrodynamic attraction), but surprisingly increases with a due
to the effect of the dipole strength on the rotation rate. However,
it is not difficult to show that this solution is not asymptotically
stable, and instead corresponds to a saddle point in the
dynamics. Instead, given the nature of the hydrodynamic
attraction, we expect hydrodynamic capture to be achieved
when there is a balance between hydrodynamics and some
other physical repulsion, which we model here as an effective
hard-core interaction. We can then estimate a criterion for
entrapment by xing h ¼ �h when the swimming body is in
contact with the colloid (�h ¼ 1 for a spherical swimmer). We
recall that when hard contact is established, we still allow the
pitching angle q to evolve. Consistent with the linearization
about small q we set h ¼ �h z g in eqn (13), and we infer the
3400 | Soft Matter, 2015, 11, 3396–3411
pitching angle for which the geometric and hydrodynamic
effects are in balance:

q* ¼ 16h
3

3Aað2� GÞ : (14)

We note that q* vanishes in the innite-wall or innite dipole
strength limit, Aa/N. Recalling that G ¼ (1 � g2)/(1 + g2), the
predicted equilibrium angle is monotonically increasing in the
swimmer aspect ratio g from a value of zero for a very slender
swimmer (g ¼ 0, G ¼ 1) to a positive value of 8/(3Aa) for a
spherical pusher (g¼ 1, G¼ 0). Physically, a slender swimmer is
able to draw nearer to the colloid, where the hydrodynamic
attraction is more signicant, thereby making the surface of the
colloid hydrodynamically more akin to an innite plane wall.

This equilibriumpitching anglemay now be used to propose a
criterion for hydrodynamic capture. The question of escape now
reduces to determining whether or not _h in eqn (10) is positive
when q ¼ q*. Using the same linearization about q ¼ 0 and
inserting q* above into eqn (12) (with h ¼ �h xed) we obtain a
critical colloid size Ac for which _h ¼ 0:

Ac ¼ 128h
5

9a2ð2� GÞ : (15)

For colloid sizes A > Ac we predict hydrodynamic capture;
conversely for A < Ac the hydrodynamic attraction cannot trap
the swimmer, which will continue to rotate until it reaches a
critical pitching angle qe for escape (the angle for which _h
becomes positive),

qe ¼ 3a

8h
2
; (16)

which is notably independent of the colloid size A. For a
spherical swimmer we therefore predict the critical colloid size
for capture

Ac ¼ 64

9a2
: (17)

Is this capture criterion borne out by full numerical inte-
gration of eqn (2)? Returning to Fig. 5a we nd a very close
agreement between this criterion and the numerically deter-
mined critical colloid sizes for a range of dipole strengths with
the estimate above. The theory is strongest for smaller dipole
strengths and larger colloid sizes, where the escape angle is
smaller and the linearized equations are more accurate.

Pullers, however, act very differently near the colloid. For a
spherical puller (a < 0, G¼ 0), upon examination of eqn (11) we see
that the angle for which the swimmer is directly facing the surface
and is motionless there, q ¼ �p/2, is linearly stable as long as the
colloid is of size A ¼ 8/(3|a|) or larger, which is considerably
smaller than the colloid size required to trap a pusher for the
range of a most relevant to microorganisms. Fig. 6 shows the
trajectories of non-interacting pullers with a ¼ �0.8 swimming
towards a sphere of size A¼ 20. In each case, the swimmer quickly
reaches a steady equilibrium at the location shown in Fig. 6. We
should therefore expect to see dramatic entrapment of such
swimmers on trajectories which bring the swimmer almost
This journal is © The Royal Society of Chemistry 2015



Fig. 6 (Top) pullers (a ¼ �0.8) swim towards a sphere of size A ¼ 20,
released from initial points x0 ¼ �40x̂ + 2.5jẑ where j ranges from 0 to
8, and angleQ0 ¼ 0 in the lab frame. The trajectories are computed for
t: 0 / 100, and in each case the swimmer comes to a steady equi-
librium at the location shown, generally much earlier than t ¼ 100.
(Bottom) Streamlines of the flow created by a puller swimming
towards the surface of a large colloid.
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directly into contact with the colloid. The “suction” in the direc-
tion of locomotion requires such a direct impact; an oblique
interaction would result in a hydrodynamic repulsion, as depicted
by the ow eld shown in Fig. 3 but with the sign of the velocity
everywhere reversed. The estimate of the critical colloid size is
compared again to the results of the numerical simulations in
Fig. 5b, and once again we obtain excellent agreement.
3.2 Basin of attraction

We next investigate the basin of attraction, i.e. the domain in
space over which the particle is eventually captured by the
colloid. In the regime studied, with h/A � 1 and a ¼ O(1), the
basin of attraction has a radius not much larger than the colloid
itself. For instance, even with A ¼ 200 and a ¼ 0.8, if a spherical
swimmer is initially placed parallel to the surface, the initial
distance from the colloid below which the body is trapped is
approximately h ¼ 2.5, smaller than three body lengths away.
For A ¼ 20, the value is smaller still and the spherical swimmer
in this case must be placed closer than h¼ 1.5 from the surface,
only a percentage of its size away from the colloid. In general,
we therefore expect that hydrodynamic trapping may be a
This journal is © The Royal Society of Chemistry 2015
strong effect, but only for particles that are on a trajectory that
leads to a direct contact with the obstacle.

In Fig. 7a we show the initial value of h, with q(0) ¼ 0 (initial
swimming is parallel to the surface) such that the swimmer is
captured at the colloid surface. This basin depth, dened by h¼
h*, naturally increases with both increasing dipole strength a

and colloid size A. Here again, as in the estimation of the critical
colloid sizes leading to capture, the quantity a2A is found to play
a critical role. Plotting h* as a function of a2A reveals a collapse
of the data to a single mastercurve, h*z h*(a2A), for almost the
complete range of A and a considered, as shown in Fig. 7b.

In order to estimate theoretically the basin depth, h*, we
consider a spherical swimmer, G ¼ 0, and perform a Taylor
expansion of the dynamics at small times, h(t)¼ h0 + h1t + h2t

2 +.,
q(t) ¼ q1t + q2t

2 + .. Inserting these expansions into eqn (12) and
(13) and matching terms of like powers of t, we nd

hðtÞ ¼ h0 � 3a

8h0
2
tþ
 

1

2A
� 9a2

64h0
5

!
t2 þ.; (18)

qðtÞ ¼ t

A
� 3a

16Ah0
3
t2 þ.: (19)

Using the expression for h(t) up to quadratic terms in t, the
distance from the colloid is seen to be minimal when tmin ¼
12Aah0

3/(32h0
5 � 9a2A). Setting this value to unity would seem

to distinguish whether the swimmer makes eventual contact
with the colloid, but this results in a poor approximation.
Instead, we look to the equation for q(t) at this moment in time.
The angle q(tmin)¼ 3a/8h(tmin)

2 is an unstable xed point for the
dynamics as noted earlier (see eqn (13)). For a value q(tmin)
smaller than this critical value the swimmer will collapse
towards the colloid, while for larger values the swimmer will
escape. Using the quadratic expressions in time above, and
setting q(tmin) ¼ 3a/8h(tmin)

2 as the boundary case, we arrive at
an equation for the initial height h0, which approximates the
critical capture distance h*,

h* ¼ r1/5(a2A)1/5, (20)

where the prefactor r1/5z 0.96 corresponds to the only real zero
of a third order polynomial, 16 384r3 � 24 192r2 + 10 611r �
1458 ¼ 0. This analytical prediction is in excellent agreement
with the results from the numerical simulations (solid curve in
Fig. 7b). We stress that the scaling (a2A)1/5, which reects the
subtle interplay between self-propulsion, contact, and hydro-
dynamic reorientation, could not have been anticipated from a
dimensional analysis alone.
3.3 Scattering by a spherical obstacle

Now that we have gained intuition about the physical mecha-
nisms responsible for swimmer capture, we lay out a compre-
hensive description of the scattering process in the case of a
spherical pusher swimming toward a spherical obstacle. Fig. 8
provides a general picture of the scattering dynamics, where we
x the colloid size to A ¼ 20. The initial orientation angle in the
Soft Matter, 2015, 11, 3396–3411 | 3401



Fig. 7 Basin of attraction. For a spherical swimmer placed initially parallel to the surface, q(0)¼ 0, h* denotes the critical initial distance from the
colloid above which the particle escapes, and below which entrapment ensues. (a) The critical initial distance for a selection of dipole strengths,
shown where the colloid size is larger than the critical size for entrapment. (b) The curve collapses upon plotting against a2A to a power law
scaling with exponent 1/5. The solid line is the prediction from eqn (20) (inset) the trend continues over five orders of magnitude in a2A.

Fig. 8 Scattering of a spherical swimmer with initial position x0¼�40x̂ + y0ŷ and orientationQ0¼ 0 by a spherical colloid of fixed size A¼ 20. (a)
Fixing the dipole strength to a¼ 0.6, the scattering angle DQ is non-monotonic in the impact parameter y0. (b and c) Fixing the impact parameter
to y0 ¼ 0.1, the scattering angle is also non-monotonic in the dipole strength a. Swimmers with a > 0.67 become hydrodynamically bound to the
colloid, corresponding to a singularity in the scattering angle. For a extremely close to its critical value the swimmer may wind around the colloid
multiple times before departing from the surface (see Fig. 10). (d) The scattering angle for a range of impact parameters and dipole strengths,
from simulations. Contours are shown at multiples of 5�. (e) The analytical prediction from eqn (27).
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lab frame is Q0 ¼ sin�1(x̂$ê(0)) ¼ 0, and the swimmer is initially
located at a position x0 ¼ �40x̂ + y0ŷ, where y0 is called the
impact parameter.
3402 | Soft Matter, 2015, 11, 3396–3411
Fig. 8a shows the trajectories of a swimmer with a¼ 0.6 near
a colloid of size A ¼ 20, where we vary the impact parameter y0.
The interaction of the swimming body with the spherical
This journal is © The Royal Society of Chemistry 2015



Fig. 9 Scattering interaction of a swimming body with a colloid of
sub-critical size for entrapment, A < Ac. The impact angle with no
hydrodynamic interaction is denoted by q(in)0 , the impact parameter is
y0, the distance travelled along the surface by de, and the escape
angle by qe. The total scattering angle in the lab frame is given by DQ¼
Qe � Q0.

Paper Soft Matter
surface need not be long lived in order for the swimmer to be
redirected dramatically. The amount of time spent in close
contact with the sphere decreases monotonically with
increasing y0. In contrast, the scattering angle displays non-
monotonic variations with the impact parameter, as seen in
Fig. 8b. Of particular note, the impact with y0 ¼ A has only a
brief period of contact with the sphere, but the hydrodynamic
attraction to the surface is sufficiently strong to induce a
signicant scattering of the swimming trajectory, which results
in a scattering angle as large as DQ z �18�. The swimmer for
which y0 ¼ A/4, on the other hand, interacts with the colloid for
a longer period of time, but it departs from the surface in such a
way as to result in a positive change in the swimming angle,
even though the interaction is much more dynamic. Comparing
all four cases shown it is clear that the scattering angle can be
positive or negative, small or large, and is rather sensitive to the
swimmer’s trajectory of approach.

Furthermore, we observe that the scattering angle is also
non-monotonic in the dipole strength. In Fig. 8c we plot the
trajectories of spherical pushers of varying dipole strength a

through their interactions with a colloid of radius A ¼ 20. The
case a ¼ 0 (no hydrodynamic interactions) results in no change
in the swimming director, only a lateral translation in space as
the swimmer slowly pushes past the spherical obstacle. The
nal swimming direction is not a simple monotonic function of
a, as shown in Fig. 8d, and a singularity appears in the scat-
tering angle as a approaches a critical value for entrapment.

The variation of the deection angle as a function of the
impact parameter y0 is shown in Fig. 8e for the same dipole
strengths as in Fig. 8c (in which the impact parameter is xed to
y0 ¼ 0.1). A rapid transition is observed for impact parameters
very near to A. The scattering angle is nearly zero for values h0/A
not much larger than one (recall the small depth of the basin of
attraction), indicating that the effective cross-section of the
colloid is not signicantly different from its diameter even
though hydrodynamic interactions are long-ranged. The
capture of the swimmer is again clearly revealed by the singu-
larity in the scattering plot for a ¼ 0.8.
3.4 Estimating the scattering angle

We now proceed to estimate the scattering angle of a spherical
pusher that impacts a colloid of sub-critical size for entrapment,
A < Ac. In order to do so we decompose the scattering process
into three steps (see Fig. 9): (i) the approach toward the colloid
during which hydrodynamic interactions modify the orienta-
tion of the swimmer at a distance, (ii) the sliding of the
swimmer over the colloid surface, and (iii) the escape during
which the hydrodynamic interactions act again at a distance.

The approach (step i) may be described using eqn (12) and
(13). We dene the contact time as t¼ 0, at which point the body
is oriented at an angle q0, assumed to be small, and h ¼ 1.
Before impact, approximating the distance from the surface as
h ¼ 1 + q0t for t < 0 and that q z q0, then the body rotation may
be estimated by integrating the hydrodynamic effect on rotation
alone (ignoring the geometric part of eqn (13)),
This journal is © The Royal Society of Chemistry 2015
DQ�N/0 ¼ � 3a

8

ð0
�N

q0

½1þ q0t�3
dt ¼ 3a

16
: (21)

Therefore, with the unimpeded impact angle illustrated in Fig. 9
given by q(in)0 ¼ sin�1(y0/A)�p/2, then the adjusted impact angle
is estimated as q0 ¼ q(in)0 + 3a/16.

Next we describe the sliding motion of the swimmer in
contact with the colloid (step ii). Integrating eqn (13) with initial
condition q(0) ¼ q0, we nd

q(t) ¼ q* + (q0 � q*)e�3at/8, (22)

where q*¼ 8/(3aA) is the xed point of _qwhen h¼ 1. The time at
which q reaches the escape angle qe ¼ 3a/8 is therefore

te ¼ 8

3a
log

�
1� q0=q*

1� A=Ac

�
; (23)

with Ac ¼ 64/9a2 > A, and the distance traveled is approximated
simply by de ¼ te. When the swimmer is in contact with the
colloid, the dynamics of Q(t) is given generally by Qt ¼ qt �
cos q(t)/A z qt � 1/A. Integrating from t ¼ 0 to t ¼ te, the vari-
ation in the swimmer’s orientation angle while the swimmer
slides along the surface is

DQ0/e ¼ ðqe � q0Þ � de

A
: (24)

Finally, as the swimmer escapes from the colloid surface
(step iii) we have the initial conditions h(te) ¼ 1 and q(te) ¼ qe

which set the initial conditions of eqn (12) and (13). Once again
carrying out a Taylor expansion for small time, we nd for t > te
that h(t) ¼ ~h(t � te) + O((t � te)

5), where

~hðtÞ ¼ 1þ
�
1

A
� 1

Ac

��
1

2
t2 þ a

16
t3 þ 9a2

256
t4
�
: (25)

Again assuming that _q is small so that here q z qe ¼ 3a/8, then
the remainder of the body rotation is also found by integrating
numerically only the hydrodynamic effect on rotation,

DQe/N ¼ � 9a2

64

ðN
0

dt

~hðtÞ3: (26)
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Fig. 10 Fraction of an orbit traversed around the spherical surface
before escape from a colloid of subcritical size, A < Ac.
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That this expression is negative indicates that the hydrody-
namic interaction causes the swimmer to rotate back towards
alignment with the colloid surface aer departure.

Combining steps (i–iii), we obtain the total scattering angle

DQ ¼ 3a

16
þ p

2
� sin�1

�y0
A

	
� te

A
� 9a2

64

ðN
0

dt

~hðtÞ3; (27)

with te given in eqn (23) using q0 ¼ sin�1(y0/A) � p/2 + 3a/16. In
the limit of no hydrodynamic interaction with the colloid, a / 0,
the expression above returns zero, as expected. Fixing the colloid
size to be A ¼ 20, the scattering angle as a function of the impact
parameter y0 and the dipole strength a from the estimate above
is shown in Fig. 8e, alongside the values determined by
numerical simulations in Fig. 8d. We observe a close agreement
between the two, with the prediction systematically over-
estimating the scattering angle in this case by a few degrees.

An alternative way to quantify the swimmer-colloid interaction
is to measure the number of orbits (or fraction of an orbit) around
the colloid travelled by the swimmer before escape, given by the
ratioW ¼ de/(2pA)z te/(2pA). The result in eqn (23) suggests that
the residence time is continuous in its rapid increase to innity as
A/ Ac. However, due to the logarithmic dependence on 1 � A/Ac,
unless A is extraordinarily close to Ac the swimmer will undergo
only a partial orbit before departure. For a very rough bound,
taking q0 ¼ �p/2 and qe ¼ p/2, and setting A ¼ Ac(1 � 3) for some
small positive 3, then W ¼ log(2/3 � 1)/[4(1 � 3)], so that even one
full revolution around the colloid requires 3# 0.043, or Amust be
within 4% of Ac for the swimmer to make one complete orbit
around the colloid. Fig. 10 shows the fraction of the orbit traversed,
computed for the simulations shown in Fig. 4, which shows
precisely this logarithmic singularity as A approaches the crit-
ical colloid size, Ac.
4 Fluctuation-induced escape from a
colloidal trap

The dynamics of swimming microorganisms are anything but
smooth and deterministic. Whether because of thermal
3404 | Soft Matter, 2015, 11, 3396–3411
uctuations (Brownian motion) or other complex biological
behaviors (e.g., run-and-tumble locomotion of E. coli),
randomness plays an important role in the trajectories of
microorganisms and synthetic microswimmers. To evaluate the
robustness of our ndings for the deterministic problems
studied in the previous section, we now consider the effects of
uctuations on the interaction dynamics between the swim-
ming body and the colloid. We conne our study to the case of
pushers (a > 0).

To gain some intuition about the effects of random uctu-
ations, the full nonlinear model is solved with the addition of
noise. We model the trajectory of a swimmer considering the
effect of random forces and torques on the translational and
rotational dynamics by Langevin equations,

dx

dt
¼ �êþ ~u

�þ ffiffiffiffiffiffiffi
6D

p
hðtÞ; (28)

dê

dt
¼
�
~Uþ

ffiffiffiffiffiffiffiffi
4Dr

p
hRðtÞ

	
� ê; (29)

where ê is the unit direction of swimming, and ũ and ~U are
contributions from the hydrodynamic interaction with the
colloid (§2). Forces and torques from thermal uctuations are
proportional to normalized Gaussian white noise in three-
dimensions, h(t), and on a sphere, hR(t), where hhi(t)hj(t0)i ¼
dijd(t � t0) and h(hR)i(t)(hR)j(t0)i ¼ dijd(t � t0).

In an innite viscous uid, the dimensionless constants of
translational diffusion, D and rotational diffusion, Dr, are
related by an application of the uctuation-dissipation theorem
and insertion of the mobilities of a sphere, so that Dr ¼ 3D/4,
though this relation in general will depend on h. For this rst
exploration we will assume the relation Dr ¼ 3D/4. In an innite
uid, D¼ kbT/(6pma

2U) where kb is the Boltzmann constant and
T is the temperature.

Using this framework we now show how noise allows
microswimmers to escape hydrodynamic traps. We show in
Fig. 11 twenty instances of the swimming trajectory of a
spherical swimmer with a ¼ 0.8 near a colloid of size A ¼ 20,
released from x(0) ¼ �40x̂ with initial orientation e(0) ¼ x̂. A
forward Euler method is used to integrate the stochastic
differential equations with time-step size Dt¼ 0.001. Simulating
the dynamics in the time interval from 0 to 120, the rst panel
shows that in a few instances with D ¼ 5 � 10�4 the swimmer
makes contact with the colloid surface but then escapes, never
to return, while many others remain trapped in this time
interval. Meanwhile, the second panel shows the same
swimmer but with a dimensionless diffusion constant four
times larger, D ¼ 2 � 10�3, and in this case there is but one
instance for which the swimmer remains trapped at the surface
by the end of the simulation. In the limiting case of very large
noise, diffusive behavior overwhelms any hydrodynamic effects,
and the trajectory essentially behaves as a Brownian motion
with reection on the spherical obstacle.

In Fig. 12a we plot the distance from the surface, h, and the
pitching angle, q, as functions of time for two instances in the
case D ¼ 2 � 10�3; we have initialized the system with the body
close to the colloid and parallel to the surface, h(0) ¼ 1.001, and
This journal is © The Royal Society of Chemistry 2015



Fig. 11 Twenty instances of swimming trajectories for a pusher (a ¼ 0.8) near a sphere of radius A ¼ 20 with initial position x0 ¼ �40x̂ and
orientation ê(0) ¼ x̂, computed for t: 0 / 120. (Left) the dimensionless diffusion constant is D ¼ 5 � 10�4 and many of the instances remain
hydrodynamically bound at t ¼ 120. Color coding/shading indicates the final position along the z-axis with darker swimmers coming out of the
page and lighter swimmers going into the page. The colloid boundary may be inferred. (b) The same, but with a larger diffusion constant,D¼ 2�
10�3. In this case none of the swimmers are bound to the colloid at t ¼ 120.

Fig. 12 (a) The distance to the colloid, h(t), for two instances of swimmers with h(0) ¼ 1.001 and q(0) ¼ 0, and diffusion constant D ¼ 2 � 10�3.
The intermittency of near-surface swimming is due to translational Brownian fluctuations, and the hydrodynamic attraction rapidly returns the
swimmer to the surface. (b) The local pitching angle, q(t), for the same two instances as in (a). Eventual escape in this regime of (A, a, D) is due to q

nearing the deterministic escape angle, qe ¼ 3a/8 for spherical swimmers, in concert with random fluctuations.
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q(0) ¼ 0. In one instance the swimmer stays close to the surface
for nearly the duration of the time interval considered while in
the second instance the swimmer departs from the surface
much earlier. In both cases the distance h(t) does not remain
xed, and instead the body leaves from the spherical surface to
distances of variable size repeatedly throughout, though in each
This journal is © The Royal Society of Chemistry 2015
case the swimmer is drawn back towards the colloid. The
intermittent departures are due to translational uctuations,
and the hydrodynamic attraction rapidly brings the swimmer
back to the surface. The rotational diffusion and deterministic
dynamics, however, act in concert to rotate the body until it is
oriented with nearly the deterministic escape angle, qe ¼ 3a/8
Soft Matter, 2015, 11, 3396–3411 | 3405
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for a spherical swimmer (§3), at which point a small trans-
lational or rotational uctuation can result in particle escape.
We show in Fig. 12b the pitch angle in time for each of the
instances shown in Fig. 12a, along with the deterministic escape
angle, displayed as a dashed line.

The time spent close to the colloid, or trapping time, is now a
random quantity and we seek to understand its distribution.
There are at least two natural ways to dene trapping times. The
rst is to measure the rst time the swimmer has escaped from
the surface out to a specied distance r, Th ¼ mint {t: h(t) > r},
which we refer to as the h – trapping time. Alternatively, the
trapping time can be studied by looking at the rst time that the
swimmer reaches a suitable angle for escape in the deterministic
setting, Tq¼mint{t: q(t) > qe}, which we refer to as the q – trapping
time. The swimmer may not complete its escape and the
dynamics near the wall may include numerous intermittent resi-
dences on the surface, a fact that is not captured by this second
denition of trapping time. However, Tq is easier to analyze than
Th, and we have observed in simulations that in many cases the
body rotation governs particle escape. In Fig. 13 we compare Tq to
Th for a threshold value of r¼ 1.5 for two cases, (A, a, D)¼ (20, 0.8,
0.002) and (A, a, D) ¼ (80, 0.4, 0.002) (xing a2A). In the rst case,
we nd that Tq is seen to be a nearly perfect proxy for Th as seen in
Fig. 12. For a smaller dipole strength, however, the escape angle is
smaller; once the swimmer achieves this orientation it does not
swim directly away from the colloid, and instead may reside near
the surface for a longer time so that Th > Tq. Reducing the
threshold value r draws Th closer to Tq.
4.1 Distribution of trapping times

To gain intuition about the trapping time, we turn to the full
simulations. In Fig. 14 we plot the empirical distributions of the
trapping time from 104 independent simulations, where the
body is placed initially at h(0) ¼ 1.001 and parallel with the
surface, q(0) ¼ 0. A threshold of r ¼ 1.5 is chosen in the
Fig. 13 Trapping times Th (with threshold value r ¼ 1.5) and Tq are
compared for two cases, from 200 trials. The dashed line indicates
Th ¼ Tq. A smaller dipole strength corresponds to a smaller escape
angle, so that the swimmer resides near the surface for longer before
escaping, and Th > Tq.
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denition of Th. The distribution depends on the diffusion
constant, dipole strength, and colloid size. For (A, a, D) ¼ (20,
0.8, 0.002) (Fig. 14a) it is clear that the distribution is not
exponential, which may have been expected, but instead clearly
shows a peak at a nite typical escape time. Increasing the
diffusion constant to D ¼ 0.004 (Fig. 14b) decreases the expec-
ted time, intuitively. The mean escape time is also reduced if
instead the dipole strength is reduced (a ¼ 0.2 in Fig. 14c).
However, increasing the colloid size to A ¼ 320 so that a2A is
identical to that in Fig. 14a results in a similar distribution.

In order to understand these empirical distributions, we aim
to understand the q – trapping time, Tq, by turning to the
stochastic differential equation for q from eqn (29),

dq

dt
¼ 1

A
cos q� 3a

16h3
sin 2qþ

ffiffiffiffiffiffiffi
2D

p

Aþ h
hðtÞ þ

ffiffiffiffiffiffiffi
3D

2

r
hRðtÞ; (30)

where h(t) and hR(t) are independent one-dimensional Gaussian
white noise uctuations. In the regime A [ 1 the contribution
of h(t) can be disregarded. Linearizing about q ¼ 0, and setting
h ¼ 1, the pitching angle during contact with the colloid is seen
to satisfy an Ornstein–Uhlenbeck process,

dq

dt
¼
�
1

A
� 3a

8
q

�
þ

ffiffiffiffiffiffiffi
3D

2

r
hRðtÞ: (31)

The distribution of trapping times f(t) (the rst passage time)
for the Ornstein–Uhlenbeck process with dri, eqn (31), has
been a research topic of its own.49–54 There are no known exact
expressions for the distribution, with the exception of asymp-
totically valid distributions and one for a specic parameter
relationship.

We draw attention to a few special cases. First, when the
diffusion constant D is large, the angle q is dominated by the
noise term, and the dynamics is primarily governed by a Wiener
process. The rst passage time of a Wiener process is well
studied, it has an inverse-Gaussian distribution,

f ðtÞ ¼ lffiffiffiffiffiffiffiffiffiffi
2pt3

p exp

 
� lðt� mÞ2

2m2t

!
; (32)

where m ¼ E[T] is the mean of the distribution and l ¼ m3/var[T]
is a shape parameter. For large D, f(t) tends towards a Lévy
distribution. A second setting in which the process is approxi-
mately governed by a Wiener process is when the colloid size is
just larger than the critical size for deterministic entrapment,
Ac ¼ 64/(9a2). In that case the deterministic component of eqn
(31) becomes small and negative as q approaches the escape
angle, qe ¼ 3a/8. At this point, the determination of the escape
time is dominated by diffusion, and we again expect an inverse-
Gaussian distribution for the trapping time. In Fig. 14a and b
we have overlaid on the empirical trapping time distributions
the inverse-Gaussian prole, using parameters m and l as
calculated from the empirical data. Even though the diffusion
constant is relatively small, and the colloid size is about twice as
large as the critical colloid size, (A ¼ 20, whereas Ac z 11), the
inverse-Gaussian distribution gives a remarkably accurate
depiction of the trapping time in the full simulations.
This journal is © The Royal Society of Chemistry 2015



Fig. 14 Empirical distributions, f(t) ¼ vtP(T# t) for the trapping time T ¼ Tq, from 104 trials by numerical simulation. (a) (A, a, D) ¼ (20, 0.8, 0.002),
with inverse-Gaussian distribution overlaid. The computedmean m, standard deviation s, and shape parameter l¼ m3/s2 are (m, s, l)¼ (38.4, 20.3,
137). (b) (A, a,D)¼ (20, 0.8, 0.004), and inverse-Gaussian distribution with (m, s, l)¼ (25.1, 13.2, 90.2). (c) (A, a, D)¼ (20, 0.2, 0.002), with (m, s, l)¼
(6.33, 1.61, 98.6). (d) (A, a, D) ¼ (320, 0.2, 0.002), with (m, s, l) ¼ (43.7, 35.9, 64.7).
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A third situation that results in an approximately inverse-
Gaussian distribution is when the dipole strength a > 0 is
small, in which case eqn (31) appears as a Wiener process with
dri. Recall that a smaller dipole strength also corresponds to a
smaller escape angle. The inverse-Gaussian prole is again seen
to match the empirical values closely in Fig. 14c, where a ¼ 0.2.
Note that this is not a trapping colloid in the deterministic
setting, since A < Ac, which ensures that the body will escape in
nite time even if there are no uctuations; this is known as the
“suprathreshold regime”.54

The small dipole effect can be counteracted, however, by a
large colloid size (including the limit of an innite plane wall).
Setting A¼ 320 so that a2A is identical to that used in Fig. 14a, the
distribution is found to be similar, though with a much longer
tail, and the inverse-Gaussian approximation is in fact more
accurate here. In general, the trapping time distribution from the
Ornstein–Uhlenbeck process in eqn (31) resembles something in
between exponential and inverse-Gaussian.52,54 Had we only
focused on eqn (31), when A [ Ac and the diffusion constant is
not too large, the dynamics are in the “subthreshold” regime and
the distribution is well approximated as a Poisson (exponential)
This journal is © The Royal Society of Chemistry 2015
distribution.54 The exponential distribution of trapping times was
suggested in the model studied by Takagi et al.38 However, in
practice we do not observe an exponential distribution. Tq is not a
good proxy for Thwhen a is relatively small, and eqn (31) does not
completely specify the escape dynamics. The issue of escape from
an innite plane wall was also taken up by Drescher et al.,6 who
noted that the escape time is very sensitive to the ratio of trans-
lational and rotational diffusion constants, which in turn depend
on the distance from the wall.
4.2 Mean trapping time

While closed-form expressions of the distribution function are
not known for the general case of the Ornstein–Uhlenbeck
process, eqn (31), the moments of the distribution are known.51

It is useful to rst linearize the equations around the equilib-
rium pitching angle on the surface, q* ¼ 8/(3aA), and to dene
variations around this point as ~q¼ q� q*, so that (setting h¼ 1),

d~q

dt
¼ � 3a

8
~qþ

ffiffiffiffiffiffiffi
3D

2

r
hRðtÞ: (33)
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Fig. 15 Contours of the mean trapping time, E[Tq], with a ¼ 0.8 as a function of the diffusion constant D and the colloid size A, starting from
h(0) ¼ 1 and q(0) ¼ 0: (a) from the simple estimate in eqn (36); (b) from numerical integration of eqn (34); (c) and from full simulations using 100
trials for each of 720 parameter pairs (A, D) out to a time t ¼ 100.
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We seek the time for which q ¼ qe ¼ 3a/8, the deterministic
escape angle (i.e., the rst time when ~q ¼ ~qe ¼ 3a/8 � 8/(3aA)).
The trapping time T ¼ Tq of the Ornstein–Uhlenbeck process
with no dri has moments that may be written in a recursive
structure in terms of special functions,

E
�
Tk
� ¼ k

ð~qe
~q0

dz
2

s2W ðzÞ
ðz
�N

dxW ðxÞE�Tk�1
�
; (34)

where

WðxÞ ¼ 1

s
ffiffiffiffiffiffi
ps

p exp

�
� x2

s2s

�
; (35)

and we have dened s ¼ 8/(3a) and s ¼ ffiffiffiffiffiffiffiffiffiffiffi
3D=2

p
(see ref. 51). An

estimate of the mean trapping time may be found by assuming
that ~q0 and ~qe are small. In the event that q(0) ¼ 0, we nd

E½T � ¼
ð~qe
~q0

dz
2

s2WðzÞ
ðz
�N

dxWðxÞz
ffiffiffiffiffiffiffi
pa

4D

r
þ 4

3AD

�
9a2A

128
� 1

�
;

(36)

(see Appendix C). Intuitively, we nd that factors which increase
the mean trapping time are: smaller diffusion constant, larger
dipole strength, and larger colloid size. Yet again, the product
a2A appears; recall the similarity of the distributions in Fig. 14a
and d, where a2A is xed.

Fig. 15a shows contours of this simple estimate of the mean
trapping time as a function of the diffusion constant and colloid
size in the case q(0) ¼ 0. The value computed by integrating eqn
(36) numerically is then displayed in Fig. 15b, which shows
qualitative agreement with the simple estimate, but a consid-
erable departure either when the colloid is large and the diffu-
sion constant is small. Finally, contours of the mean trapping
time as determined from simulation of 720 different parameter
sets (A, D), each using 100 trials and computing up to t ¼ 100,
are shown in Fig. 15c, indicating that the linearization of the
3408 | Soft Matter, 2015, 11, 3396–3411
full system about small q used to write eqn (31) gives a very
accurate picture of the full dynamics for a wide region of the
parameter space.
5 Conclusion

In this paper, we have studied the scattering and capture of
model microswimmers by spherical obstacles. Predictions were
given for a critical colloid size, Ac, as a function of the dipole
strength and the body geometry, for which hydrodynamic
capture is possible. For situations in which the swimming body
is in contact with the colloid but eventually escapes (when A <
Ac), we provided analytical estimates of the residence time near
the surface, the escape angle, the distance travelled along the
spherical surface, and the net scattering effect of the complete
interaction with the colloid. We also investigated the basin of
attraction for pushers near the colloid, and while not generally
much larger than the spherical radius, we provided a power law
scaling of the basin size in terms of the dimensionless param-
eter a2A with exponent 1/5. The dimensionless number a2A
featured prominently in our work, including its appearance in
the critical colloid size Ac. Due to the smallness of this attraction
region around the sphere for all but the largest colloids and
dipole strengths, we expect that entrapment may occur robustly,
but only if the particle makes a very direct initial contact with
the sphere. This is consistent with the statement by Drescher
et al.6 that “hydrodynamics is practically irrelevant if the
bacterium is more than a body length away from the surface”.

We also considered the contribution of Brownian uctua-
tions to the dynamics. We demonstrated that a swimmer which
would be trapped at the surface in the deterministic case may in
the uctuating case experience an occasional rotation which
results in its escape. The residence on the colloid surface can be
intermittent, and the colloid may simply act as a pure reection
This journal is © The Royal Society of Chemistry 2015
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obstacle in the case of a large diffusion constant. In some cases
the residence time was found to be governed by an Ornstein–
Uhlenbeck process, which resulted in a trapping time with
approximately inverse-Gaussian distribution. An analytical
estimate of the mean trapping time was derived, comparing
favorably to its computed value for a wide range of colloid sizes
and diffusion constants.

In addition to Brownian uctuations, some microorganisms
exhibit random changes in their direction at exponentially
distributed random times (“run-and-tumble” locomotion55).
Geometric defects in synthetic microswimmers can also lead to
more complicated random behavior which in turnmay have long
term consequences for macroscopic diffusion.38 The effects of
non-Gaussian uctuations will be considered in future work. In
the study of living organisms, agellar activity may have dramatic
effects on entrapment when the body is in contact with a
surface,21 which presents another interesting direction of study.

The theory provided in this paper might allow for a more
complete model of bacterial populations in an inhomogeneous
or porous medium, and we envision applications in bioremedi-
ation and microorganism sorting techniques. In future experi-
ments, numerous scalings provided in the paper can be tested.
Specically, we hope to see measurements of: the scaling of the
critical colloid size for entrapment in the strength of the dipole
for both pushers and pullers, the scaling of the basin of attraction
with dipole strength and colloid size, the scattering angle as a
function of the impact parameter and dipole strength, and the
distribution of trapping times in the thermal uctuations.
Appendix A: Image system for a no-slip
sphere

The uid velocity due to a point force of magnitude f located at
point y in the uid, and its image system, derived such that the
uid velocity on the sphere |x| ¼ A is zero, is written as uj(x) ¼
(Sjk + S*jk)fk/(8pm). With y* ¼ (A2/|y|2)y the image point inside the
sphere, and r ¼ |x � y*|, we have47

Sjk ¼ djk

|x� y|
þ
�
xj � yj

�ðxk � ykÞ
|x� y|

3
; (37)
S*
jkfk ¼

�Adjk

jyjr � A3

jyj3
�
xj � y*j

��
xk � y*k

�
r3

� jyj2 � A2

jyj

(
y*j y

*
k

A3r
� A

jyj2r3

F ¼ jyj2 � A2

2jyj3
(
� 3
�
xj � y*j

�
yk

Ar3
þ Adjk

r3
� 3A

�
xj � y*j

��
xk � y*k

�
r5

�

�
�
xj � y*j

�
y*kr

2þ�xj � y*j
��
xk � y*k

�jy*j2þðr� jy*jÞr2jy*jdjk
r3jy*j

�
rjy*j þ xmy*m � jy*j2

	 �

� 3A

jy*j
xjy

*
k þ jxjjy*jdjk

jxjjy*j�jxjjy*j þ xmy*m
�þ 3A

jy*j

�jy*jxj þ jxjy*j
��jy*jxk þ

jxjjy*j�jxjjy*j þ xmy
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The velocity eld for a symmetric stresslet (pusher or puller
singularity) and its image system is found by placing two
opposing singularities of the form above in the uid, with
strengths inversely proportional to the distance between them,
and taking the limit as that distance vanishes.
Appendix B: General expression for
translational and angular velocities

Neglecting the higher order derivatives of the velocity eld near
the swimming body, we have the following expressions of the
hydrodynamic attraction/repulsion and rotation on the
swimmer (with ~U ¼ ~Ur̂t � r̂):

~u ¼ �3Aað1� 3 sin2
qÞðAþ hÞ

2h2ð2Aþ hÞ2 r̂

þ 3A3að2A2 þ 6Ahþ 3h2Þsin 2q

4h2ðAþ hÞ3ð2Aþ hÞ2 r̂t; (39)

~U ¼ �3aA3 sin 2q

4h3ðAþ hÞ2ð2Aþ hÞ3

�
 �

2A2 þ 6Ahþ 3h2
�þ GQðqÞ

8A2ðAþ hÞ2
!
;

(40)

where

Q(q) ¼ A6 � 5A4(A + h)2 + 10A2(A + h)4

+ 6(A + h)6 + (9A6 � 29A4(A + h)2 + 34A2(A + h)4

� 18(A + h)6)cos 2q (41)

However, if we assume that A [ 1 for xed h we recover the
innite plane wall result along with the leading order correction
for a wall of curvature 1/A,

~u ¼
�3a

�
1� h2

4A2

��
1� 3 sin2

q
�

8h2
r̂

þ
3a

�
1� h

A
� 3h2

4A2

�
sin 2q

8h2
r̂t þO

 
a

h2

�
h

A

�3!
; (42)
h
y*j
�
xk � y*k

�þ y*k
�
xj � y*j

�iþ 2y*j y
*
ky

*
m

�
xm � y*m

�
A3r3

)
�
�
jxj2 � A2

	
F;

2y*j yk

Ar3
þ 6yk

Ar5

�
xj � y*j

�
y*m
�
xm � y*m

�þ 3A

jy*j

3A

jy*j

�jy*j�xj � y*j
�þry*j

��
y*kr

2�jy*j2�xk � y*k
�þ�xk � 2y*k

�
rjy*j

	
r2jy*j

�
rjy*j þ xmy*m � jy*j2

	2
jxjy*k

�
*
m

�2
)

(38)
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~U ¼� 3a sin 2q

16h3

�
1� h

2A
� 3h2

2A2

�

� G

2

�
1þ sin2

q� h

A

�
1� 2 sin2

q
�� h2

A2

��
þO

 
a

h3

�
h

A

�3!
:

(43)

(See ref. 7). Note that A [ 1 with h/A xed produces a different
expression, but the swimmer may not feel the wall strongly in
that case.

Appendix C

The approximating expression for the mean trapping time is
found for general initial angle q(0) by assuming ~q0 and ~qe are
small, and noting thatð0

�N

W ðxÞdx ¼ 1

2
; (44)

whereW(x) is dened in eqn (35). Taylor expanding about small
z in the inner integral of eqn (36) we have approximately that

E
�
T
� ¼ ð 

~q0

~qe

dz
2

s2WðzÞ
ð  z

�N

dxW ðxÞ

z
2

s2

ð 
~q0

~qe

dz


1

2W ð0Þ þ z

�
1� W 0ð0Þ

2Wð0Þ2
��

;

(45)

and then using Wð0Þ ¼ ðs ffiffiffiffiffiffi
ps

p Þ�1, W0(0) ¼ 0, s ¼ 8/(3a), and
s ¼ ffiffiffiffiffiffiffiffiffiffiffi

3D=2
p

(and setting q(0) ¼ 0), we arrive at the expression in
eqn (36).
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