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Geometric pumping in autophoretic channels

Sébastien Michelin,†*a Thomas D. Montenegro-Johnson,†b Gabriele De Canio,b

Nicolas Lobato-Dauziera and Eric Laugab

Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate

flows in microchannels. In this work, we investigate how the chemical and geometric properties of the

channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by

local concentration gradients of a solute species. We show that chemical patterning of the wall is not

required to generate and control a net flux within the channel, rather channel geometry alone is sufficient.

Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow

rate, and confirm our results analytically in the asymptotic limit of lubrication theory.

1 Introduction

Controlled flow manipulation at the micro- or nano-scale is at
the heart of recent developments in microfluidics, including many
applications in the field of biological analysis and screening.1

Generating and controlling a flow within the confined environ-
ment of a microfluidic channel requires an external forcing to
overcome the viscous stress on the walls. In synthetic micro and
nanofluidic systems, this is usually achieved either mechanically,
by applying a pressure difference between the inlet and outlet of
the domain, or through electrokinetics/electroosmosis, where the
flow results from an externally-imposed electric field within the
channel.2–5

However, many biological systems rely on stresses localized
at boundaries in order to drive flow, rather than on a global
macroscopic forcing. For example, microscopic cilia on the
lung epithelium induce a directional flow of mucus through
their coordinated beating, acting as a pump.6 Similar micro-
scale flow forcing at the wall also plays an essential role in the
early stages of embryo development7 or in the reproduction of
mammals, where cilia-driven flow is responsible for the migra-
tion of the ovum down the female reproductive tract.8

In a dual process, cilia-driven flows play an essential role in
the self-propulsion of micro-organisms such as Paramecium;9

the flow generated by the beating of cilia anchored on the wall
of a moving cell is responsible for its locomotion. For both
swimming and pumping, the coordination of neighboring cilia

into metachronal wave patterns has been proven essential to
achieving maximum flow rate/swimming speed with a minimum
energetic cost.10–14

Several attempts have been made to reproduce ciliary pumping
in the lab through the fabrication of artificial actuated cilia.15–18

All of them rely, however, on the application of a global electro-
magnetic forcing field, and generating efficient pumping would
require the application of phase-shifted forcing on neighboring
cilia.19,20 This constraint, as well as the manufacturing process of
microscopic cilia, poses important challenges to miniaturization.

Phoretic mechanisms, namely the ability to generate fluid
motion near a boundary under the effect of an external field
gradient, represent an alternative route for both pumping and
swimming systems that require no moving parts. These
mechanisms arise from the interaction of rigid boundaries
with neutral or ionic solute species in their immediate environ-
ment, and are known to generate the migration of passive
particles in external gradients.21 Phoretic motion has recently
received renewed attention in the context of artificial self-
propelled systems. Such artificial swimmers generate the field
gradients required for propulsion themselves, for example
through chemical reactions catalyzed at their surface, and thus
do not rely on any external forcing to achieve propulsion.22–25

These systems combine two properties: (i) an activity, i.e. the
ability to release/consume solute species or thermal energy at
their surface, and (ii) a phoretic mobility, i.e. the ability to
create a slip velocity at the boundary from a local tangential
gradient of solute concentration (diffusiophoresis), tempera-
ture (thermophoresis) or electric potential (electrophoresis).
Recently, autophoretic systems have also been considered for
generating micro-rotors that rotate without the application of
external torques.26,27

In order to generate the surface gradients necessary for their self-
propulsion, autophoretic particles must break spatial symmetry.
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A similar requirement exists for autophoretic pumps. This
symmetry-breaking may be achieved for self-propelled particles
following three main routes: (i) chemical asymmetry, i.e. pattern-
ing the particle surface with active and passive sites (e.g. Janus
particles),23,24,28 (ii) spontaneous symmetry-breaking resulting
from the advection of the field responsible for the phoretic
response by the flow itself29,30 and (iii) geometric asymmetry.31,32

In this work, we use a combination of theoretical analysis
and numerical simulations to investigate whether, and how,
autophoretic mechanisms and geometric asymmetry can gen-
erate a net flow in a microfluidic channel without imposing
any external mechanical forcing, electromagnetic forcing or
chemical patterning. For simplicity we focus on the specific
case of diffusiophoresis, where slip velocities are generated at
the wall from tangential gradients in the concentration of a
solute released from one of the channel walls into the fluid.
Because of the similarity between the different phoretic
mechanisms, it is expected that the results of the present
contribution may easily be generalized to thermo- or electro-
phoretic systems. Specifically, we follow the classical continuum
framework of self-diffusiophoresis,24,33–35 and consider how a left-
right asymmetry in the wall shape can generate a net flow within
the channel which hence acts as a microfluidic pump.

The paper is organized as follows. Section 2 summarizes
this continuum framework for the case of the flow within an
asymmetric channel, and presents the numerical methods used
in this work. Section 3 shows how the wall geometric character-
istics determine the net flow within the channel. The results
are then confirmed analytically in Section 4 using lubrication
theory in the long-wavelength limit, and conclusions and pers-
pectives are presented in Section 5.

2 Problem formulation
2.1 Diffusiophoretic channel

We consider a two-dimensional channel of mean height H,
bounded by a flat bottom boundary ( y = 0) and a top wall with a
periodic non-flat profile, y = h(x) (see illustration in Fig. 1). In
the channel gap, filled with a Newtonian fluid of dynamic
viscosity m and density r, a solute species of local concentration
C(x) with molecular diffusivity D is present and interacts with
the channel walls through a short range potential. When the
typical thickness of this interaction region is much smaller
than the other length scales of the problem (namely the
channel gap and the wavelength), the interaction of the wall
with a local solute gradient generates an effective slip velocity at
the wall21,35

uslip = M=JC, (1)

where =J = (I � nn)�= is the tangential component of the
gradient to the surface of local normal n and M, the phoretic
mobility, is a property of the solute–wall interaction which may
be positive or negative depending on the repulsive or attractive
nature of that interaction.21 The chemical properties of the
channel walls are also characterized by a chemical activity,

i.e. the ability to create or consume the solute species. Here we
consider a simple fixed-flux model, for which the activity of the
wall is given by a fixed flux of solute per unit area A, counted
positively (resp. negatively) when solute is released (resp. absorbed)

Dn�=C = �A. (2)

In the case of self-diffusiophoretic propulsion, locomotion
is often achieved through inhomogeneity in the chemical
treatment of the particle.22–24 Recent work has shown that
geometric asymmetry of chemically-homogeneous particle alone
is in fact sufficient to ensure locomotion.31,32 Here we investigate
a similar question, namely the possibility of obtaining a net flow
from chemically-homogeneous channel walls using shape asym-
metry. We thus assume that the top corrugated wall has homo-
geneous mobility M and activity A. To ensure the existence of a
steady state solution, the concentration of the solute on the
bottom wall is assumed to be fixed (C = C0). Consequently, the
fluid velocity on that wall satisfies the no-slip boundary condi-
tion. By studying the relative concentration of solute to that on
the bottom wall, we can assume without loss of generality that
C0 = 0.

The phoretic slip velocity generated at the top wall by the
wall–solute interaction drives a flow within the channel. When
viscous effects dominate inertia (namely, when the Reynolds
number Re = rUH/m is small, with U = |AM|/D the typical
phoretic velocity), the flow satisfies the incompressible Stokes
equations

mr2u = =p, =�u = 0 (3)

for the velocity and pressure fields, u and p respectively. Solute
molecules diffuse within the channel, and in general can also
be advected by the phoretic flows. However, when diffusive
effects dominate (i.e. when the Péclet number, Pe = UH/D, is
small), the solute dynamics is completely decoupled from the
flow, and the solute concentration satisfies Laplace’s equation

r2C = 0. (4)

Eqn (3) and (4), together with the boundary conditions
eqn (1) and (2) applied at the top wall and the inert boundary
conditions C = 0 and u = 0 at the bottom wall, form a closed set
of equations that can be solved successively for the solute

Fig. 1 Asymmetric phoretic channel. The top wall is characterized by
constant chemical activity A and mobility M. The bottom wall maintains a
fixed concentration and thus flow satisfies no-slip there. The example
shown here corresponds to g = p/4, a/H = 1/2 and L/H = 2p with the
asymmetric shape of the wall given in eqn (6).
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concentration C and velocity field u = (u,v). From these results,
the net flow rate within the channel, Q, can be computed as

Q ¼
ðhðxÞ
0

uðx; yÞdy; (5)

which is independent of x because the flow is incompressible.

2.2 Asymmetric channel

The shape of the channel is a periodic function of x character-
ized by a wavenumber k = 2p/L. A sinusoidal wall will generate
a perfectly left-right-symmetric concentration distribution and
flow pattern, leading to no net flow along the channel. In the
following, we focus on a subset of asymmetric wall shapes,
essentially smoothed ratchets, that are formally obtained by
mathematically shearing the symmetric sinusoidal profile. The
top wall is described in parametric form by

xðsÞ ¼ s� g
k
sin ks; yðsÞ ¼ H þ a sin ks; (6)

the non-dimensional asymmetry parameter, g, determines the
asymmetry of the profile, and H and a are the mean channel
width and the amplitude of the width fluctuations, respectively
(see Fig. 1).

Hereafter, the problem is non-dimensionalized using 1/k as
characteristic length, U as characteristic velocity, and |A|/Dk as
characteristic concentration fluctuation. While A and M are
both signed quantities, after nondimensionalisation we focus
on the case A = M = 1; changing the sign of either A or M simply
reverses the slip velocity forcing and flow rate without changing
its magnitude. The problem is now completely specified by
three geometrical quantities, namely the non-dimensional
mean gap, H* = kH, the corrugation amplitude, a* = ka, and
the asymmetry parameter, g.

2.3 Numerical method

Eqn (3) for the solute concentration and eqn (4) for the flow and
pressure fields are solved numerically using a boundary integral
approach with periodic Green’s functions.

We denote O the fluid domain in a period of the channel
gap, qO its lower and upper boundaries (the inert and active
walls), and n the unit normal vector pointing into the fluid
domain. The two-dimensional periodic Green’s function for
Laplace’s equation, eqn (4), is given by

Fðx; y; x; ZÞ ¼ 1

4p

X1
n¼�1

ln x� xþ 2npð Þ2þðy� ZÞ2
h i

¼ 1

4p
ln 2ðcoshðy� ZÞ � cosðx� xÞÞ½ �:

(7)

Assuming that the channel walls are smooth, the concentration
at a point (x, y) on one of the walls can then be computed using
the boundary integral formulation36

1

2
Cðx; yÞ ¼

ð
@O

Cðx; ZÞ @
@n

Fðx; y; x; ZÞð Þ
�

� Fðx; y; x; ZÞ @
@n

Cðx; ZÞð Þ
�
dsðx; ZÞ:

(8)

The upper and lower boundaries of the domain are discretized
into 200 straight-line segments, and C and dC/dn are assumed
constant over each element. For elements on the bottom (resp.
top) boundary, C = 0 (resp. dC/dn = �1) is enforced at the
midpoint of each segment. This reduces the boundary integral,
eqn (7), to a dense matrix system for the solution vector
containing the unknown dC/dn on the lower boundary and C
on the upper boundary. The free-space (i.e. singular) compo-
nent of the Green’s function is isolated and integrated analy-
tically, and all non-singular element integrals are computed
with a 16-point Gaussian quadrature. In order to compute the
fluid flow and flow rate in the channel, only the boundary
concentration of solute (and not its bulk distribution) is
needed, which makes the boundary element method particu-
larly suitable for this problem. The numerical code was vali-
dated against analytical solutions for diffusion in a channel
with nontrivial boundary conditions and domain geometry,
achieving a relative error of at worst 0.004%.

For Stokes flow, the dimensionless boundary integral equation
for boundary force density, f, is given by

ujðxÞ ¼
1

2p

ð
@O

Sijðx� nÞfiðnÞ
�

�Tijkðx� nÞuiðnÞnkðnÞ
�
dsðnÞ:

(9)

For x̂ = x � n and r = |x̂|, the two-dimensional, 2p-periodic Green’s
functions for Stokes flow are

S ¼
X1
n¼�1

I ln rn �
x̂nx̂n

rn2
; T ¼

X1
n¼�1

4
x̂nx̂nx̂n

rn4
; (10)

where x̂n = (x� x + 2np, y�Z). These functions may be expressed in
the closed form

Sxx ¼ K þ ŷ@ŷK � 1; Txxy ¼ 2@ŷ ŷ@ŷK
� �

;

Syy ¼ K � ŷ@ŷK ; Txyy ¼ �2ŷ@x̂ŷK ;

Sxy ¼ �ŷ@x̂K ¼ Syx; Tyyy ¼ 2 @ŷK � ŷ@ŷŷK
� �

;

Txxx ¼ 2@x̂ 2K þ ŷ@ŷK
� �

; Tijk ¼ Tkij ¼ Tjki;

(11)

for K ¼ 1

2
ln 2 cosh ŷð Þ � 2 cos x̂ð Þ½ �. The computational procedure

for discretizing the domain boundary is identical to that used for
the diffusion equation, eqn (7). Constant force elements are
assumed, singular integrals have the singularity removed and
computed analytically, and non-singular integrals are computed
with 16-point Gaussian quadrature. The implementation is based
upon the authors’ previously published work on the optimal
swimming of a sheet,37 with the addition of Tikhonov regularisa-
tion to improve matrix conditioning.

3 Results
3.1 The role of asymmetry

When inertia and solute advection are negligible, the Laplace
problem for the solute concentration is linear and decouples
from the Stokes flow problem, which is also linear. Breaking the
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left-right symmetry is thus required in order to create a net flow
within the channel, in the same way that symmetry breaking is
required to achieve self-propulsion of autophoretic particles.
If the chemical properties of the walls are homogeneous, this
asymmetry can only arise from geometry and therefore, purely
symmetric profiles such as sinusoidal upper-wall shapes will
yield zero net flux.

In order to analyze the effect of asymmetry, we first inves-
tigate the effect of the asymmetry parameter, g, on the flow rate.
The numerical results are shown in Fig. 2. At g = 0, we recover
zero-net flux, as expected. For asymmetric shapes, we obtain
that the flow rate within the channel increases monotonically
with g.

To gain insight into the origin of this flow rate, we illustrate
in Fig. 3 the dependence of the solute concentration distribu-
tion and streamlines with g. For a strictly symmetric profile,
g = 0, a flow is induced in the channel but one with no net flux.
Indeed, a vertical solute concentration gradient is created
between the two walls due to the fixed-flux emission of solute
at the upper wall and the constant concentration imposed at
the lower wall, where the solute is consumed. The upper wall is
not horizontal, and regions of the upper wall located the
furthest from the bottom wall are exposed to higher concen-
tration than regions corresponding to the narrowest channel
width. This implies the existence of tangential solute gradients
along the wall and, hence, of a slip velocity that drives a flow
within the channel. Due to the symmetry of the channel, the
flow organizes into two counter-rotating flow cells leading to
zero fluid transport across the channel. For positive activity and
mobility of the upper wall, the flow is directed away from the
active wall (i.e. downward) in the regions where the channel
width is greatest, while it is directed toward the active wall
(i.e. upward) in the narrowest regions (Fig. 3a).

When g a 0, asymmetry is introduced in two ways. The
asymmetric upper wall can now be decomposed into a longer
backward facing section and a shorter forward-facing section.
The solute gradient on the former is weaker than on the latter,
leading to a stronger left-to-right slip flow along the forward
facing section. Additionally, wall asymmetry increases confine-
ment in the trough along the upper wall leading to higher

solute concentration (the rate of production of solute per unit
surface is fixed). This asymmetry between the wall sections
driving the flow within the channel generates a shape and
intensity asymmetry between the two recirculation regions, and
a traversing streamtube appears (marked by dark red stream-
lines in Fig. 3). This streamtube corresponds to flow regions
that do not recirculate, but are transported along the channel,
being ‘‘pumped’’ by the phoretic mechanism. This tube follows
a pattern along the channel similar to that of a conveyor belt
driven between the two recirculating regions forced by the slip
flow on the wall. Along the shorter forward-facing section of the
upper wall, it is driven by the stronger slip flow that dictates the
direction of the net flow in this case. The tube then separates
from the wall where the slip velocity changes sign, and circum-
navigates around the counter-rotating flow cell driven by the
longer wall section.

As g is increased beyond g Z 1, the slope of the shorter flow-
driving wall changes sign, leading to a ‘‘folded’’ geometry that
promotes large confinement effects on the solute concentration
distribution (see the difference in color scales in Fig. 3). This, in
turn, enhances the phoretic slip and net flow rate. For strong
asymmetry, the traversing streamtube is mostly rectilinear and
away from the active wall, except in a narrowing region where it

Fig. 2 Dependence of the net flow rate through the channel, Q, with the
left-right asymmetry of the top wall, g, in the cases a/H = 1/2, L/H = 2p and
0 r g r p. The four red dots correspond to the different panels illustrated
in Fig. 3.

Fig. 3 Solute concentration (colors) and streamlines (lines) within the
channel with increasing asymmetry in the case a/H = 1/2 and L/H = 2p.
The four panels above correspond to the four red dots in Fig. 2. Red (resp.
white) streamlines correspond to traversing (resp. recirculating) flow
regions.
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circles around the smaller recirculation region and is driven by
the phoretic slip within the trough on the boundary.

This process does not appear to saturate when g c 1 for
fixed amplitude a. In this limit, the flow domain can be
decomposed into two regions: a complex, thin region corre-
sponding to long and thin folds in the wall shape where very
large concentration gradients are established by confinement,
and an outer region where a net unidirectional flow is forced
within the channel. Beyond obvious practical considerations
regarding the manufacturing of such geometries, the assump-
tions of the current model would potentially break down when
the asymmetry parameter g becomes too large, as the phoretic
flow become sufficiently intense for advection to be non-
negligible (Pe a 0). Furthermore, when local concentrations
become too large, it is likely that the model of fixed-flux release
would be impacted, and more detailed reaction kinetics may be
required.

3.2 Effect of the pattern amplitude on the flow rate

The flow within the channel is effectively driven by the upper
wall, while the no-slip condition on the lower inert wall tends to
limit the fluid motion. As a consequence, it is expected that
when the channel gap in the narrowest region becomes small
(a E H), the net flow rate should be small, as the flow viscosity
will offer maximum resistance there. However, the corrugation
amplitude is an essential element to the pumping performance

of the device as it determines the gradient along the upper wall
between the peak and troughs, and therefore the intensity of
the two recirculating regions driving the flow. When a { H, it is
therefore also expected that the flow rate will become negligi-
ble. This intuition is confirmed by our numerical results in the
case of weak asymmetry (g o 1, unfolded geometry, see Fig. 4a)
for which the net flow rate within the channel displays a
maximum at intermediate amplitude and decreases to zero in
both limits a { H and a E H. In this case, the limit a { H
corresponds to a flat upper wall.

The behavior of the system is however quite different when
the upper wall is folded (g Z 1, strong asymmetry, see Fig. 4b).
In this case, the limit a { H is not equivalent to a flat wall, but
to a surface with infinitely thin and almost horizontal folds.
Within these folds, confinement creates very large solute con-
centrations and concentration gradients. As noted in the pre-
vious section, this limit is the singular case of a flat wall forced
periodically by infinitely large slip velocities in infinitely thin
regions. As a consequence, the net flow rate does not decrease
to zero for small amplitude, marking a stark difference between
the folded and unfolded geometries.

3.3 Role of the channel width

We finally turn to the influence of the third geometric character-
istic of the channel, namely its mean width-to-length ratio. The
limit of small minimum width (a E H) was already discussed in
the previous section and the flow rate within the channel
vanishes in that limit due to the diverging hydrodynamic resis-
tance of the channel. When H is large compared to both a and L,
the relative concentration distribution along the top wall is not
influenced by the location of the passive wall so the tangential
concentration gradients and slip velocity become independent
of H. As a result, the net flow rate through the channel varies
linearly with the channel height as for a classical Couette (shear)
flow. This is confirmed by our numerical results shown in Fig. 5.

4 Long-wavelength prediction

When the local height of the channel is small in comparison to
the typical longitudinal length of the topography, i.e. |h0(x)| { 1,

Fig. 4 The net flow rate through the channel, Q, as a function of its
relative amplitude a/H in the case L/H = 2p. (a) Flux for g = p/4 (as Fig. 3b),
showing behaviour representative of weak asymmetry (unfolded) chan-
nels. (b) Flux for g = p/2 (as Fig. 3d), showing distinct behaviour for strong
asymmetry (folded) channels.

Fig. 5 Net flow rate through the channel, Q, as a function of the channel
height H/L for unfolded g = p/4 and folded g = p/2 channels with fixed
relative amplitude, a/L = 0.08.
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the problem can be solved within the framework of lubrication
(long-wavelength) theory. Defining h(x) = ef (x) with f (x) = O(1) and
e = H/L { 1, the method consists in solving for the concentration
and velocity fields as regular series expansions in e. On the upper
wall, the normal unit vector pointing into the fluid is now written

n ¼ �ey þ h0exffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p

¼ � ey þ ef 0ex þ
e2f 02

2
ey �

e3f 03

2
ex þO e4

� �
:

(12)

Defining a rescaled vertical coordinate y = eY, the Laplace and
Stokes flow problems are now given by

1

e2
@2C

@Y2
þ @

2C

@x2
¼ 0; (13a)

1

e2
@2u

@Y2
þ @

2u

@x2
¼ @p

@x
; (13b)

1

e2
@2v

@Y2
þ @

2v

@x2
¼ 1

e
@p

@Y
; (13c)

1

e
@v

@Y
þ @u
@x
¼ 0; (13d)

and the boundary conditions at y = ef (x) become

�1 ¼ �1
e
@C

@Y
þ e f 0

@C

@x
þ f 02

2

@C

@Y

	 

þO e3C

� �
; (14a)

u ¼ @C

@x
þ f 0

@C

@Y

	 

1� e2f 02
� �

þO e4C
� �

; (14b)

v ¼ ef 0
@C

@x
þ f 0

@C

@Y

	 

þO e3C

� �
: (14c)

These, together with the conditions C = 0 and u = v = 0 at Y = 0,
suggest searching for solutions of the form

C(x,Y) = eC1(x,Y) + e3C3(x,Y) + O(e5), (15a)

u(x,Y) = eu1(x,Y) + e3u3(x,Y) + O(e5), (15b)

v(x,Y) = e2v2(x,Y) + O(e4), (15c)

p(x,Y) = e�1p�1(x,Y) + ep1(x,Y) + O(e3). (15d)

The flow rate Q is then given by

Q ¼ e
ðf ðxÞ
0

uðx;YÞdY ¼ e2Q2 þ e4Q4 þO e6
� �

; (16)

with

Qj ¼
ðf ðxÞ
0

uj�1ðx;YÞdY : (17)

The flow is incompressible and steady, therefore Q and Qj do
not depend on x.

Inserting eqn (15a) into eqn (13a) and (14a) gives at
leading order

C1(x,Y) = Y. (18)

Eqn (13b), (14b) and (15b) then provide at O(e):

u1ðx;YÞ ¼
p�1

0

2
Y2 � Yf
� �

þ Yf 0

f
; (19)

with p�1 the leading-order pressure distribution which is
vertically invariant. The function p�1(x) is periodic, therefore

Q2 = 0 and p�1(x) = �6/f. (20)

We see that in the lubrication limit, a velocity field is present at
O(e), which takes the form of two recirculating regions, but does not
give rise to any net flow through the channel at this order. After
substitution and application of the continuity equation, we obtain

u1ðx;YÞ ¼ 3
f 0

f 2

	 

Y2 � 2

f 0

f

	 

Y ; (21a)

v2ðx;YÞ ¼
f 0

f

	 
 0
Y2 � f 0

f 2

	 
 0
Y3: (21b)

At next order, the Laplace problem, eqn (13a) and (14a),
together with eqn (18), provide

C3ðx;YÞ ¼
Yf 02

2
� (22)

The horizontal Stokes flow problem now yields,

u3ðx;YÞ ¼ 2
f 0

f

	 
 0 0
Y3�Yf 2

3

	 

� f 0

f 2

	 
 0 0
Y4�Yf 3

4

	 
" #

þ ~p1
0

2
Y2�Yf
� �

þ ff 0f 00 � f 03

2

	 

Y

f
;

(23)

with p̃1(x) a function of x only. Integrating the previous equa-
tion in Y finally provides the flow rate at O(e4)

Q4 ¼ 2
3f 5

40

f 0

f 2

	 
 0 0
�f

4

12

f 0

f

	 
 0 0" #
� ~p1

0

12
f 3þ f 2f 0f 00

2
� ff 03

4

	 

:

(24)

Using the periodicity of p̃1, Q4 can be computed by dividing the
previous equation by f 3, taking the spatial average in x, and
integration by parts. The result can be rewritten in terms of the
original channel height h(x). At leading order we obtain that the
flow through the channel is given by

Q¼ 11

30

h03
�
h2

� 
1=h3h i ; (25)

where h�i is the spatial average over a period.
We see two important results: (i) the flow rate is intimately

linked to the distribution of local slope along the wall h0(x), and
(ii) shape asymmetry is essential for the existence of a net flow.
Indeed, slip flow along the active wall arises from the orientation
of the wall with a component along the leading order solute
concentration gradient. A non zero h0(x) is therefore sufficient to
guarantee the existence of a local flow but not necessarily of a net
flow through the channel. This separation of scales is clearly
visible in the lubrication expansion: the leading order flow arises
from the local channel geometry (i.e. the fact that the wall is not
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flat and orthogonal to the leading order solute gradient). How-
ever, at this order, the net flow is zero because the flows driven
by the forward- and backward-facing walls exactly cancel out.
A net flux results from an imbalance between these local flows
which can only be induced by geometric asymmetry. Left-right
symmetric profiles are characterized by an even channel height,
h(x) = h(�x). Consequently the function h03/h2 is odd and thus
exactly averages to zero, so that Q4 is identically zero (all higher
orders are expected to be zero as well).

The result in eqn (25) is a weighted algebraic spatial average
of the slope of the active wall. More precisely, the leading order
flow rate through the channel, eqn (25), is the ratio of two
integrals; the numerator is the mean flow forcing due to the
asymmetry of the channel, while the denominator is the average
hydrodynamic resistance of the channel over a wavelength.

This leading-order prediction is compared to the full numerical
simulations in Fig. 6. For a fixed asymmetry parameter g and rela-
tive amplitude a/H, several simulations are performed for increasing
L/H (note that as H is reduced, a is reduced in the same amount)
and the flow rate through the channel is shown to converge for large
slenderness to the prediction of the lubrication theory.

Note that the lubrication result, eqn (25), is valid for any
ratio H/L { 1, regardless of the relative magnitude of the mean
channel height H and the perturbation amplitude a. In the limit
of small wall roughness (a { H), the hydrodynamic resistance
(the denominator in eqn (25)) is independent of a at leading
order and simply scales as 1/H3, while the phoretic forcing
(the numerator in eqn (25)) scales as a3/H2. As a consequence,
Q scales as a3H when a { H.

In the opposite limit a B H, using classical asymptotic
expansions to compute the leading order contribution to the
integrals in eqn (25),38 one can show that the flow forcing due
to the channel’s asymmetry (i.e. the numerator in eqn (25))
remains finite and O(H), but that in contrast the hydrodynamic
resistance diverges. More specifically, a standard lubrication
calculation leads at leading order to

1

h3

� �
¼ 3

ffiffiffi
2
p

16H1=2ðH � aÞ5=2 � (26)

As a consequence, Q B H3/2(H � a)5/2 when (H � a) { H.

Note that since the limiting factor is then the channel width
at the narrowest point, and its impact on the hydrodynamic
resistance, it is expected that this scaling in (H � a)5/2 should
hold true even when H is not small and could be recovered
through a new lubrication expansion limited to the narrow-gap
region of the channel,39 provided the curvature of the wall in
that region remains finite.

5 Conclusions

The active research in recent years on autophoretic particles
has demonstrated that fuel-based mechanisms represent a
promising route to designing self-propelled systems that rely
only on chemical reactions and the interaction with the
immediate environment to create locomotion. The results pre-
sented in this work show that this is also true for the dual
problem of pumping flow within a micro-channel, and that
geometric asymmetry, rather than chemical patterning of the
channel walls, is sufficient to create a net flow. Our results
provide insight into the flow dynamics within the channel, and
the mechanism leading to the net fluid transport: the breaking
of symmetry between two recirculating flow regions driven by
wall slip velocity, and the emergence of a conveyor-belt-like flow
within the channel.

For simplicity, we focused in this paper on a reduced set
of wall shapes with one active wall and the other one passive.

Fig. 6 Ratio between the numerical results and the lubrication (long-
wavelength) theory predictions for g = p/10 and a = H/3 as a function of an
increasing slenderness, 1/e.

Fig. 7 Concentration distribution and flow streamlines within an annular
closed-loop channel with a geometrically-asymmetric inner active wall
releasing solute with a fixed flux, and a passive circular outer wall with
uniform concentration. The recirculating streamlines are shown in white
while the traversing streamlines are plotted in red, and correspond to a
clockwise-rotating flow.
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The numerical methodology and the long-wavelength theory,
eqn (25), are however valid for any periodic channel geometry
in two dimensions. Furthermore, these results were obtained
within the simplified framework of a fixed-rate release of solute
by the active wall. Previous studies on autophoretic self-
propelled particles have shown that the exact reaction kinetics,
in particular the dependence of the reaction rate on the local
solute concentration, may significantly impact the system
dynamics.35,40 We expect for example the direction of pumping
to be impacted by reaction kinetics, although the basic result
showing the emergence of a net flow due to geometric asym-
metry of the phoretic wall should remain true. Finally, our study
focused on the particular case of self-diffusiophoresis. Because
of the formal similarities in the equations of the problem, these
results can be generalized easily to other phoretic mechanisms
such as self-thermophoresis or self-electrophoresis.

Looking forward, the results of this work could be generalized
to a larger range of geometries, including closed-loop channels
for which pressure-driven flows can not easily be achieved.
This is shown in Fig. 7 where we have adapted our numerical
approach to compute the net clockwise flow through a two-
dimensional annular channel driven by the geometric asymme-
try of the inner active wall.
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