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H I G H L I G H T S

� We model planar wave motion of a micro-swimmer in a viscoelastic fluid.
� Using Taylor's swimming sheet model we prescribe the most general periodic waveform.
� Enhanced swimming compared to a Newtonian fluid can occur by adding backwards waves.
� Rise is due to asymmetric viscoelastic damping of waves with different frequencies.
� The rise always occurs for a finite range of Deborah numbers.
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a b s t r a c t

Many small organisms self-propel in viscous fluids using travelling wave-like deformations of their
bodies or appendages. Examples include small nematodes moving through soil using whole-body
undulations or spermatozoa swimming through mucus using flagellar waves. When self-propulsion
occurs in a non-Newtonian fluid, one fundamental question is whether locomotion will occur faster or
slower than in a Newtonian environment. Here we consider the general problem of swimming using
small-amplitude periodic waves in a viscoelastic fluid described by the classical Oldroyd-B constitutive
relationship. Using Taylor's swimming sheet model, we show that if all travelling waves move in the
same direction, the locomotion speed of the organism is systematically decreased. However, if we allow
waves to travel in two opposite directions, we show that this can lead to enhancement of the swimming
speed, which is physically interpreted as due to asymmetric viscoelastic damping of waves with different
frequencies. A change of the swimming direction is also possible. By analysing in detail the cases of
swimming using two or three travelling waves, we demonstrate that swimming can be enhanced in a
viscoelastic fluid for all Deborah numbers below a critical value or, for three waves or more, only for a
finite, non-zero range of Deborah numbers, in which case a finite amount of elasticity in the fluid is
required to increase the swimming speed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of small prokaryotic and eukaryotic organisms exploit
viscous forces from a surrounding fluid in order to self-propel. The
low Reynolds number at which they swim means there are no
inertial effects, and work must be constantly expanded by the cells
to produce motion. This is achieved, for example, by the rotation of
rigid helical appendages (Purcell, 1997) or by the propagation of
planar travelling waves along a flexible flagellum (Brennen and
Winet, 1977). Our fundamental understanding of swimming cells
has increased dramatically with the advancement of imaging

techniques and computer power for more realistic numerical
simulations (Lauga and Powers, 2009).

The vast majority of work on swimming at low Reynolds
number has focused on swimmers moving in Newtonian fluids.
However, in vivo, many self-propelled organisms progress through
non-Newtonian fluids. Examples include the motion of cilia in
lung mucus (Sleigh et al., 1988), nematodes travelling though soil
(Wallace, 1967), bacteria in their host's tissue (Josenhans and
Suerbaum, 2002), and spermatozoa swimming though cervical
mammalian mucus (Suarez and Pacey, 2006). An important ques-
tion is how a transition from a Newtonian to a non-Newtonian
fluid affects the dynamics and kinematics of micro-swimmers. In
this paper, we use a simplified modelling approach to quantify
whether non-Newtonian stresses can help the micro-swimmers go
faster or if they hinder their motion, and how this affects their
mechanical efficiency.
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Experimental studies have not yet reached a clear consensus on
whether viscoelasticity increases or decreases swimming veloci-
ties. Instead a range of results has been reported for different
kinematics and rheological properties. Nematodes swimming in
concentrated solutions of rod-like polymers undergo an increase
in swimming speed (Gagnon et al., 2013). In that case, the
polymers, aligned by the stress caused by the nematode, form
local nematic structures which give rise to shear-thinning and aid
the forward propulsion of the nematode. In contrast, solutions of
long flexible polymers with no shear-thinning but strong elasticity
lead to a decrease of the nematode's swimming speed (Shen and
Arratia, 2011). An experiment imitating Taylor's classic swimming
sheet (Taylor, 1951) in rotational (planar) geometry shows exactly
opposite effects with an increased locomotion in a Boger (con-
stant-viscosity, elastic) fluid but a decrease in a shear-thinning
fluid (Dasgupta et al., 2013). Recently, the locomotion of flexible-
tailed swimmers was also shown to be enhanced in a Boger fluid
(Espinosa-Garcia et al., 2013).

Previous theoretical studies addressing motion in complex fluids
have considered a variety of kinematics, including undulatory motion
(Lauga, 2007; Montenegro-Johnson et al., 2013), helical rotation (Fu
et al., 2007), squirming (Zhu et al., 2011, 2012), three-sphere models
(Curtis and Gaffney, 2013), and paddlers (Montenegro-Johnson et al.,
2013). Methods that are ineffectual in a Newtonian fluid due to
reversibility (Purcell, 1977), such as flapping (Normand and Lauga,
2008) or solid body rotation (Pak et al., 2012), can also be exploited in
a non-Newtonian setting to induce propulsion (Lauga, 2009, 2011). In
the case of locomotion using helical flagella, small-amplitude helices
always go slower, but for larger amplitudes, a modest increase is
possible (Liu et al., 2011). In this paper, we focus on planar wave
motion, a situation for which there is a wealth of work starting with
Taylor's swimming sheet (Taylor, 1951). In the presence of a surround-
ing elastic structure, non-Newtonian stresses were shown computa-
tionally to lead to faster and more efficient swimming (Chrispell et al.,
2013). Numerical simulations also demonstrated that for high-
amplitude motion, both shear-thinning (Montenegro-Johnson et al.,
2013) and polymeric Oldroyd-B fluids (Teran et al., 2010; Spagnolie
et al., 2013; Thomases and Guy, 2014) could lead to faster locomotion.
In particular, using simulations on finite swimming sheets it has been
shown that front–back stress asymmetry together with swimmer
flexibility leads to increased swimming speeds (Thomases and Guy,
2014).

Analytical work on locomotion by waving focuses on small-
amplitude motion. In the case of isolated swimmers, enhanced
swimming was predicted theoretically to take place in gels (Fu et al.,
2010), Brinkmann fluids (Leshansky, 2009) and – with the addition of
elastohydrodynamic effects – viscoelastic fluids (Riley and Lauga,
2014), but not in inelastic shear-thinning fluids (Vélez-Cordero and
Lauga, 2013). Two nearby swimmers also synchronise faster in an
elastic fluid than in a Newtonian medium (Elfring et al., 2010).
However, in the case of polymeric fluids, asymptotic results predicted
a systematic decrease of the swimming speed for all constitutive
models, including all Oldroyd-like fluids (Lauga, 2007) and general
linear viscoelastic fluid models (Fulford et al., 1998) in the case of
prescribed waveform swimming. A decrease also takes place in the
case of helical small-amplitude motion (Fu et al., 2007, 2009).
Provided the prescribed waving amplitude is small compared to its
wavelength, it appears thus that an isolated swimmer is always
slowed down by viscoelastic stresses.

In this paper, we consider mathematically the most general
problem for planar locomotion using small-amplitude waves
periodic both in space and in time. Specifically, we prescribe the
shape deformation as a sum of waves travelling with different
wavenumbers and frequencies and in different directions and
consider the resulting locomotion in a viscoelastic, Oldroyd-B
fluid. We show that swimming in a non-Newtonian fluid at small

amplitudes need not always lead to slower swimming compared
to the Newtonian case, provided the right combination of waves
are considered. For swimming enhancement to be observed,
different waves need to travel in opposite directions, and the
enhancement in that case results from the asymmetric viscoelastic
damping of waves with different frequencies. A change of the
swimming direction is also possible. After presenting the general
derivations, and introducing a sufficient condition for enhanced
locomotion, we analyse in detail the cases of two or three
travelling waves. The enhancement in a viscoelastic fluid can be
obtained for all Deborah numbers below a critical value or, in the
case of three waves or more, only if a finite amount of elasticity is
present in the fluid.

2. General small-amplitude wave in a viscoelastic fluid

2.1. Setup

Analogous to Taylor's classic swimming calculation (Taylor,
1951; Lauga, 2007), an infinite inextensible sheet of negligible
thickness is placed in a fluid and undergoes waving motion. The
waveform of the sheet is prescribed, and results in swimming. In
the frame of the swimmer the oscillation of the vertical position,
yðx; tÞ, of the sheet is described by,

yðx; tÞ ¼ b
Xþ1

n ¼ �1

Xþ1

m ¼ �1
αn;meiðmkx�nωtÞ; ð1Þ

where x denotes the coordinate along the average sheet axis
and t time. In Eq. (1) the modes n¼0 and m¼0 are omitted as
there is no mean deformation in x or in time. The fluid is
assumed to be located above the sheet along the y40 direc-
tion. In Eq. (1), b is the sheet amplitude, k the fundamental
wavelength and ω the fundamental frequency. We allow both
positive and negative values of the mode number (m,n) in
order to include waves travelling in both directions along the
sheet. The order-one complex coefficients αn;m represent
dimensionless Fourier amplitude of each (m, n) mode and
since y is real they satisfy α�n;�m ¼ αn

n;m. To simplify notation
all sums over n and m from �1 to þ1 will be denoted with a
single summation symbol,

P
n;m.

Upon non-dimensionalising x by k�1 and t by ω�1, Eq. (1)
becomes

yðx; tÞ ¼ ϵ
X
n;m

αn;meiðmx�ntÞ; ð2Þ

with a prefactor ϵ¼ bk defined as the ratio of the sheet amplitude
to its wavelength. We assume that this ratio is small in this paper,
ϵ⪡1, allowing the swimming speed to be computed as an asymp-
totic expansion in ϵ.

As the sheet is infinite along the z direction we can reduce the
three-dimensional swimming problem to two dimensions. The
velocity field is written as u¼ uxexþuyey. This allows a stream-
function, ψ ðx; y; tÞ, to be defined such that ux ¼ ∂ψ=∂y and
uy ¼ �∂ψ=∂x, ensuring that the flow remains incompressible.

In order to find the streamfunction we must first consider the
boundary conditions imposed on the flow. On the waving sheet
the no slip boundary condition enforces the velocity of the fluid at
the sheet location to be the same as the velocity of the sheet,
so that

∇ψ j x;yðx;tÞ ¼ ϵ
X
n;m

inαn;meiðmx�ntÞex: ð3Þ
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Far away from the sheet we expect that the flow will be unaffected
by the wavemotion. Hence in the frame of the swimmer, the far
field velocity will be the speed of the swimmer, but in the opposite
direction. So if the steady swimming of the sheet is denoted �Uex
then we have the boundary condition

∇ψ j x;1 ¼Uey; ð4Þ
where the value of U is to be determined.

2.2. Constitutive relationship: Oldroyd-B fluid

The swimmer is self-propelling in a fluid described by the
Oldroyd-B constitutive relationship, modelling a dilute solution of
infinitely extensible polymers in a Newtonian solute as a homo-
geneous continuum (Oldroyd, 1950; Phan-Thien, 2012). In this
classical model, the shear viscosity is constant but the polymer
elasticity affects the flow, giving rise to normal stresses. This is a
good model for the Boger fluids used in many non-Newtonian
micro-swimmer experiments (Phan-Thien, 2012). Furthermore,
from Lauga (2007), we expect that to second order in ϵ, our
asymptotic results will remain valid for a large class of constitutive
relationships.

If p denotes the pressure and τ the deviatoric stress, Cauchy's
equation of mechanical equilibrium in the absence of inertia is
simply written as

∇p¼∇ � τ: ð5Þ
In an Oldroyd-B fluid, the total deviatoric stress, τ, a combination
of stresses from the Newtonian solvent τs, and those from the
polymers τp, is written as τ ¼ τsþτp. If ηs denotes the solvent
viscosity and assuming that τp follows a first-order Maxwell
constitutive equation with relaxation time λ, elastic modulus G,
and polymer viscosity ηp ¼ G=λ, the total stress obeys (Phan-Thien,
2012)

τþλτ
▿ ¼ η _γþηsλ _γ

▿
; ð6Þ

where _γ is the shear rate tensor, defined as _γ ¼∇uþ∇uT , and
η¼ ηsþηp is the sum of the solvent and polymer viscosities. In
Eq. (6), the upper-convected derivative defines the rate of change
of the tensor A while it translates and deforms with the fluid and
is written as

A
▿
¼ ∂A

∂t
þu � ∇A�ð∇uT � AþA �∇uÞ: ð7Þ

Upon non-dimensionalising stresses by ηω and shear rates by ω,
Eq. (6) becomes

τþDeτ
▿ ¼ _γþβDe _γ▿; ð8Þ

where β¼ ηs=ηr1, and De¼ λω is the Deborah number that
describes the relative importance of viscoelasticity by comparing
the relaxation time to the timescale on which the fluid is
perturbed, given by 1=ω, where ω is the fundamental waving
frequency.

2.3. Asymptotic solution

Since we have ϵ⪡1 we seek to find solutions to the stress,
streamfunction and velocity in terms of perturbative expansion in
ϵ, such that

ψ ¼ ϵψ1þϵ2ψ2þ…; ð9Þ

τ ¼ ϵτ1þϵ2τ2þ…; ð10Þ

U ¼ ϵ2U2NNþ…: ð11Þ
The swimming velocity is expected to be quadratic in ϵ, and so we
focus on the first and second-order solutions (the subscript NN is

used as a reminder that the final result for the swimming speed
will quantify non-Newtonian swimming).

2.3.1. Solution at order ϵ
The leading-order constitutive equation is linear and given by

τ1þDe
∂τ1
∂t

¼ _γ1þβDe
∂ _γ1

∂t
� ð12Þ

This can be reduced into a streamfunction equation by taking its
divergence, combining with Eq. (5), and taking the curl to
eliminate the pressure, leaving

1þβDe
∂
∂t

� �
∇4ψ1 ¼ 0: ð13Þ

The post-transient solution to Eq. (12) is found using Fourier
notation and solving the biharmonic equation analytically, leading
to

ψ1 ¼
X
n;m

αn;m
n
m
ð1þjmjyÞe� jmj yeiðmx�ntÞ; ð14Þ

where the first-order boundary conditions

∇ψ1 j x;0 ¼
X
n;m

inαn;meiðmx�ntÞex; ð15aÞ

and

∇ψ1 j x;1 ¼ 0; ð15bÞ
are satisfied. Clearly, the first-order solution is the same as the
Newtonian case, and as expected there is no swimming at
this order.

2.3.2. Solution at order ϵ2

At order ϵ2, the constitutive equation, Eq. (8), is given by

1þDe
∂
∂t

� �
τ2� 1þβDe

∂
∂t

� �
_γ2

¼Deð∇uT
1 � τ1þτ1 �∇u1�u1 �∇τ1Þ

�βDeð∇uT
1 � _γ1þ _γ1 �∇u1�u � ∇ _γ1Þ: ð16Þ

Using Fourier notation of the form

A¼
X
n;m

~aðn;mÞe� int ; ð17Þ

for any tensor, vector, or scalar, the first-order constitutive equa-
tion, Eq. (12), gives access to the Fourier component of the first-
order stress as

~τ ðn;mÞ
1 ¼ 1� inβDe

1� inDe
~_γ ðn;mÞ
1 : ð18Þ

As we are interested in the time-averaged swimming, it is
sufficient to focus on the time-averaged version of Eq. (16). We
then use Eq. (18) to express the mean of Eq. (16) using the Fourier
modes of its right-hand-side, and obtain

〈τ2〉� 〈 _γ2〉¼
X
n;m

Deð1�βÞ
1� inDe

�ð∇uTn
1 � _γ1þ _γ1 �∇un

1�un

1 �∇ _γ1Þðn;mÞ: ð19Þ
With the first-order streamfunction whose Fourier component is

~ψ ðn;mÞ
1 ¼ αn;m

n
m
ð1þjmjyÞe� jmj yeimx; ð20Þ

we obtain the Fourier modes of the flow velocity

~uðn;mÞ
1 ¼ αn;m

n
m
e� jmj yeimx �jmj2y

�ð1þjmjyÞim

 !
; ð21Þ

the velocity gradient

∇ ~uðn;mÞ
1 ¼ αn;m

n
m
e� jmj yeimx
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� � imjmj2y m2ð1þjmjyÞ
jmj3y�jmj2 imjmj2y

 !
; ð22Þ

and the shear stress tensor

~_γ ðn;mÞ
1 ¼ αn;m

n
m
e� jmj yeimx �2imjmj2y 2jmj3y

2jmj3y 2imjmj2y

 !
: ð23Þ

The divergence and curl are then taken, as before, to obtain an
explicit equation for the second-order streamfunction as

d4
〈ψ2〉

dy4
¼
X
n;m

�jαn;mj2 n
2

m2

ðβ�1ÞDe
1� inDe

� d2

dy2
e�2jmj y �4imjmj4yþ4imjmj5y2�2jmj3im� �� �

: ð24Þ

Integrating with respect to y three times, this gives

d〈ψ2〉

dy
¼ Ay2þByþC

þ
X
n;m

jαn;mj2
n2

m2

ðβ�1ÞDe
1� inDe

e�2jmj yð�2imjmj4y2þ imjmj2Þ:

ð25Þ
Given the form of the boundary conditions at infinity, Eq. (4), we
obtain A¼ B¼ 0 and C is equal to the second-order swimming
speed, hence C ¼U2NN . Its value can be found using the time-
averaged second-order boundary condition

d〈ψ2〉

dy x;0 ¼
X
n;m

nmjαn;mj2
����� ; ð26Þ

leading to

U2NN ¼
X
n;m

nmjαn;mj2
1� inDeβ
1� inDe

� �
: ð27Þ

Rewriting Eq. (27) with sums in n and m running from 1 to 1 only,
and using that α�n;�m ¼ αn

n;m, leads to a simplified expression for
the final result as

U2NN ¼ 2
X
nZ1

X
mZ1

nmðjαn;mj2�jαn;�mj2Þ
1þβn2De2

1þn2De2

 !
; ð28Þ

where the opposite-sign contributions of waves travelling in the þx
and �x directions are apparent.

3. A sufficient condition for enhanced swimming

The result in Eq. (28) gives the leading-order swimming speed
of the swimming sheet with the most general shape deformation

periodic in both x and t. When there are no viscoelastic effects
De¼ 0, and the Newtonian result is recovered. We denote the
swimming speed U2N in that case.

As can be seen in Eq. (28), it is the value of the (dimensionless)
frequency n that affects the non-Newtonian change of each mode,
not the value of the (dimensionless) wavenumber m. In order to
gain insight into the conditions for swimming to be enhanced or
slowed down by the presence of viscoelastic stresses, let us focus
on the simple case where only the modes jmj ¼ jnj are present.
The sheet deformation is written now as a linear superposition of
travelling waves

y¼ ϵ
X
nZ1

αþneinðx� tÞ þα�neinðxþ tÞ; ð29Þ

where αþn and α�n describes the nth mode wave travelling to the
right ðx40Þ and the left ðxo0Þ respectively. Using Eq. (28) this
leads to non-Newtonian swimming with speed

U2NN ¼
X
nZ1

an
1þn2βDe2

1þn2De2

 !
; ð30Þ

and Newtonian swimming with speed

U2N ¼
X
nZ1

an; ð31Þ

where we have further simplified notation such that

an ¼ 2n2ðjαþnj2�jα�nj2Þ; ð32Þ
describes the superposition of mode n waves in both directions.
Clearly, for both Newtonian and non-Newtonian cases, the addi-
tion of backwards waves always reduces the absolute value of the
swimming speed. Let us now focus on the relative change in speed
when comparing swimming between a Newtonian and a non-
Newtonian fluid.

Using only inspection we cannot, a priori, define a range of
Deborah number where we expect to see an increase in speed
from the Newtonian to the non-Newtonian swimming (i.e.
U2NN=U2N41). In order to look for further insight, we consider
the infinite and zero Deborah number limits. At zero Deborah
number, where there are no elastic effects, the ratio of swimming
speeds is equal to 1. In the limit of large Deborah numbers De⪢1,
where elastic effects dominate, it is straightforward to get from
Eq. (30) that U2NN=U2N ¼ βo1, and thus swimming is always
eventually decreased. As the value of De increases from zero to
infinity, the speed ratio could monotonically decrease from 1 to β,
in which case no enhancement would be seen, or non-monotoni-
cally, where enhancement could take place.

Our numerical simulations indicate that in the cases where the
speed ratio does go above 1, then in most cases it is always increasing

Fig. 1. Ratio between the non-Newtonian swimming speed U2NN , and the Newtonian value U2N, as a function of the Deborah number, De, for various values of the relative
wave amplitude α, and frequency ratio n, in the waveform from Eq. (35). Here we have chosen β¼0.1. Left: fixed value of n¼2 and a range of α values (between 0.5 and 5).
Right: fixed value of α¼9.5 and n ranging between n¼1 and 9.
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in the neighbourhood of De¼ 0 before monotonically decreasing to β
(see numerical results in Fig. 1 and discussion below). In order to
characterise the behaviour around De¼ 0, we can compute derivatives
and Taylor-expand the ratio of swimming speeds. The first derivative
∂U2NN=∂De evaluated at De¼ 0 is zero because the swimming speed
depends quadratically on the Deborah number. However, the second
derivative (the curvature) is non-zero, and is given by

∂2U2NN

∂De2

����
De ¼ 0

¼
X
nZ1

2n2anðβ�1Þ: ð33Þ

When it is divided by the Newtonian swimming speed, Eq. (31), the
above gives access to the curvature of U2NN=U2N at De¼ 0 (this is
equivalent to taking the first derivative of the speed ratio with respect
to De2). If that curvature is positive, then faster swimming occurs in
the neighbourhood of De¼ 0. As we always have βo1, the curvature
is positive if there is a sign difference between the sums in
Eqs. (31)–(33) and therefore a sufficient condition for enhanced
swimming is the kinematic condition:

X
nZ1

an

" #
�

X
nZ1

n2an

" #
o0: ð34Þ

In order to achieve the condition in Eq. (34), waves travelling in
opposite directions are required. Indeed, for example if all an ampli-
tudes are positive, then it is easy to see from Eq. (30) that each an
mode decreases in amplitude, resulting in an overall decrease in
magnitude of the speed. If there are waves travelling in both
directions, i.e. at least one α�na0 and one αþna0, then they need
different combinations of amplitudes and frequencies in order to
satisfy the condition in Eq. (34). Hence a combination of positive and
negative an values are required.

Physically, the increase in swimming speed between New-
tonian and viscoelastic fluids seen here arises from the fact that
the damping caused by a non-zero Deborah number affects modes
with different frequencies differently. Specifically, the damping
term of the form ð1þn2βDe2Þ=ð1þn2De2Þ decreases monotonically
with n. Modes with higher frequencies are therefore damped more
than those with lower values of n, which provides a mechanism
for enhanced swimming.

For illustration, consider two waves travelling in opposite
directions with the high-frequency (n) wave travelling along the
�x direction ðano0Þ and the low-frequency (m) one along the þx
direction ðam40Þ. Then their respective amplitudes be such that
the resulting Newtonian swimming speed is positive, U2N40. In
the viscoelastic fluid, the an wave will be damped more than the
am wave, as n4m. On one hand, decreasing the magnitude of the
an wave will increase the swimming speed while on the other
hand, decreasing the am mode will hinder the swimming velocity
– it is thus a matter of relative decrease. If the wave amplitudes are
such that the gain found by suppressing the an wave more than
compensates for the damping of the am wave, then the non-
Newtonian swimming speed will be above the Newtonian one,
U2NN4U2N . If the wave amplitudes are such that U2No0, then a
similar reasoning might be used to lead to U2NN40 and in that
case, viscoelasticity might lead to a reversal of the direction of
locomotion.

4. Superposition of two travelling waves: continuous
enhancement

We now consider in detail simple cases. We start by swimming
using two travelling waves, and show that in this case the sufficient
condition described above is in fact necessary: when enhancement
takes place, it will lead to faster swimming for all Deborah numbers
below a critical value. In order to analytically describe situations where

faster swimming can occur, two simple waveforms each containing
two waves travelling in opposite directions will be considered. Clearly
these two travelling waves must have different frequencies, otherwise
they are both damped in the same proportion by viscoelasticity and
the swimming speed decreases.

4.1. Superposition of two travelling waves with identical wave
speeds

An example of two waves with different frequencies modes, amp-
litudes, and wave direction but identical magnitude of wave speed is
given by

yðx; tÞ ¼ ϵ α sin ðx�tÞþ sin nðxþtÞ½ �; ð35Þ
where α is the dimensionless ratio of amplitudes between the two
waves. Using Eqs. (30) and (31) for the sinusoidal waveform in Eq. (35)
we get the second-order Newtonian swimming speed as

U2N ¼ 1
2 ðα2�n2Þ; ð36Þ

while the second-order non-Newtonian swimming speed is given by

U2NN ¼ α2

2
1þβDe2

1þDe2

 !
�n2

2
1þn2βDe2

1þn2De2

 !
: ð37Þ

To find where faster swimming occurs, we compute as above the
second derivative of the swimming ratio, U2NN=U2N with respect to De
at De¼ 0, giving

∂2

∂De2
U2NN

U2N

� �
De ¼ 0 ¼ 2ðβ�1Þ α2�n4

α2�n2

� ����� : ð38Þ

This is positive (i.e. upwards curving from U2NN=U2N ¼ 1) when
noαon2. Hence faster swimming requires the relative amplitude
between the two waves to lie in a precise interval. If α is too small the
behaviour is dominated by the �x wave while if it is too large the
dynamics is dominated by the þxwave. At higher modes, the range of
amplitudes available to the swimming sheet that can produce faster
swimming in a non-Newtonian environment compared to a New-
tonian one is increased.

We illustrate in Fig. 1 these results numerically. We plot the ratio of
swimming velocities, U2NN=U2N , as a function of the Deborah number,
De, for a range of values of both n and α. We choose a fixed value of
β¼0.1. The computational results confirm that when enhanced
swimming is obtained, the speed ratio first increases in the neigh-
bourhood of De¼ 0 before monotonically decreasing to β. This
validates the curvature analysis as a proxy for predicting enhanced
swimming, and indeed faster swimming in a non-Newtonian fluid is
seen in the range noαon2. An illustration of travelling wave that
swims faster in a non-Newtonian fluid is shown in Fig. 2, with
n¼2 and α¼5/2. This waveform corresponds to the speed ratio
shown as the uppermost solid grey line in Fig. 1 with a maximum
of U2NN/U2N=1.3 at De¼ 0:5.

Further analytical insight can be provided by noting from Fig. 1
that the peak swimming speed ratio occurs when De is order one.
Dividing the result in Eq. (34) by that in Eq. (36) and taking a first
derivative with respect to De we can compute the value of the
Deborah number at which the velocity ratio is extremised. It
occurs for two values of De given by

De1n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�α

n2ðα�1Þ

s
and De2n ¼ 0: ð39Þ

For α above n2 the only solution is the maximum value of
1 occurring at De2n ¼ 0. When α crosses below n2 a maximum is
created near De1n ¼ 0, and increases as α decreases. When α¼n a
transition occurs where De1n changes from a maximum point
ðnoαÞ to a minimum ðαonÞ; its value at that point is De1n ¼ 1=n.
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It remains a minimum until α crosses the value 1, below which the
only solution is the maximum of 1 at De2n ¼ 0.

A final point of interest in Fig. 1 is the fact, as discussed above, that
the ratio between the swimming speeds can become negative. In
these cases, the swimmer would then swim in different directions in
the Newtonian and non-Newtonian fluids, as was already noted in Fu
et al. (2007). This occurs when αon, and the speed ratio goes
through a minimum before increasing back towards β at large
Deborah numbers. The reversal of swimming occurs when there is a
difference in sign between Eqs. (36) and (37), which corresponds to
the amplitude range:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ð1þβn2De2Þð1þDe2Þ
ð1þn2De2Þð1þβDe2Þ

s
oαon: ð40Þ

This result is reminiscent of a recent study on reciprocal (time-
reversible) motion in a worm-like micellular solution, which showed
that the direction and the speed of the swimmer could be changed
when distinct Deborah numbers are reached (Gagnon et al., 2014).
Finally, we can also find a range of a values for which the swimmer
will not only change direction but will also swim with a larger
magnitude, which occurs whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ð1þβn2De2Þð1þDe2Þ
ð1þn2De2Þð1þβDe2Þ

�1

s
oαon: ð41Þ

Here the swimming speed ratio becomes negative and less than �1.

4.2. Necessary vs. sufficient condition for enhanced swimming

The sufficient condition for enhancement derived in Section (3)
detailed the conditions required for an upwards curving of the
swimming speed ratio from zero Deborah number. In order to
study if this sufficient condition is also necessary, we search

analytically for the conditions leading to U2NN4U2N , leading to

0oDeo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4�α2

n2ðα2�n2Þ

s
�Dea: ð42Þ

This condition requires noαon2, and defines the range of Deborah
number where forward swimming enhancement is achieved, namely
½0;Dea�. If we enforce the curvature to be negative thenwe cannot find
a set of viable parameters for which U2NN4U2N40, thus showing
that the sufficient condition is also necessary when two modes are
considered: in the case of two waves, if forward swimming enhance-
ment is ever to be obtained, it will take place for any Deborah number
below a critical value Dea.

4.3. Swimming efficiency

We now turn to energetic considerations. The rate of viscous
dissipation in the fluid as the sheet is swimming is equal to the
volume integral of τ : _γ in the fluid. At leading order we therefore
have to integrate τ1 : _γ1. With the general waveform in Eq. (1), the
dimensional second-order dissipation rate in the non-Newtonian
fluid per unit length in the ez direction is easily found and we
obtain W ¼ ϵ2W2NNþ… with

W2NN ¼
X
nZ1

X
mZ1

8πηω2mn2 1þn2βDe2

1þn2De2

 !
jαn;mj2�jαn;�mj2
� �

: ð43Þ

The result in Eq. (43) should then be compared with its Newtonian
counterpart.

Let us consider for illustration the waveform in Eq. (35). In that
case, the ratio of the work done against the non-Newtonian fluid
compared to the Newtonian one is given by

W2NN

W2N
¼ η
ηNðn3þα2Þ α2 1þDe2ηs=η

1þDe2

 !
þn3 1þn2De2ηs=η

1þn2De2

 !" #
; ð44Þ

Fig. 2. Illustration of a waveform producing faster swimming in a non-Newtonian fluid. The waveform is described by Eq. (35) with α¼5/2 and n¼2, and corresponds to a
swimming speed ratio as shown by the uppermost solid grey line in Fig. 1a. The black lines in each of the four figures show the waveform at dimensionless times 0, π=2, π and
3π=2, and the grey lines show the evolution of the wave an eighth of a period later, to show how the wave travels and changes shape during its period.
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where ηN is the Newtonian viscosity. In order to contrast the
locomotion in the polymeric fluid with that in the solvent alone,
we then take ηN ¼ ηs. Furthermore, as is done traditionally, the
swimming efficiency is defined as

E ¼ ηU2

W
� ð45Þ

In order to compare the efficiency of swimming in the different
fluids, we compute the ratio

E2NN

E2N
¼ ηU2

2NN

W2NN

W2N

ηNU
2
2N

� ð46Þ

The ratio of the work and viscosity in the two different fluids,
ηW2N=ηNW2NN , is always greater than 1 for non-zero Deborah
number, meaning that when the swimming speed ratio U2NN=U2N

is greater than 1, the swimming efficiency is automatically always
increased.

We plot the ratio of efficiencies against De for a range of rel-
ative wave amplitude α, and wavenumber ratio n, in Fig. 3, where
ηs=η¼ β¼ 0:1. Clearly, an increase in swimming speed is corre-
lated with an increase in efficiency, but increased efficiencies can
in fact be obtained without enhanced swimming. Indeed,
increased efficiency is obtained as soon as

U2NN

U2N

� �2

4
ηNW2NN

ηW2N
� ð47Þ

Given that the right-hand side of Eq. (49) is less than one, the
condition for enhanced efficiency does not require enhanced

swimming. Specifically, using the illustrative sinusoidal waveform
of Eq. (35), we obtain an improved efficiency when

ðn3þα2Þ
ðα2�n2Þ2

4

α2 1þβDe2

1þDe2

 !
þn3 1þβn2De2

1þn2De2

 !" #

α2 1þβDe2

1þDe2

 !
�n2 1þβn2De2

1þn2De2

 !" #2; ð48Þ

for which noαon2 is not a necessary condition. This result is
illustrated in Fig. 4 in the case n¼2. When α4n2, the waveform
travels in the same direction in both fluids and the swimmer is
always faster in a Newtonian fluid although it is more efficient in
the non-Newtonian one for a range of Deborah numbers.

4.4. Two waves with identical wavelengths

Instead of two waves with identical wave speeds, enhanced
swimming can also be obtained in a combination of waves with
identical wavelengths. Since the waves need to have different
frequencies, then they necessarily have different wave speeds. As
an example we consider here the waveform

y¼ ϵ½α sin ðx�tÞþ sin ðxþntÞ�: ð49Þ

This gives

U2NN ¼ α2

2
1þβDe2

1þDe2

 !
�n
2

1þn2De2

1þn2De2

 !
; ð50Þ

and

U2N ¼ 1
2 ðα2�nÞ: ð51Þ

Similarly as above, the second derivative of U2NN=U2N at De¼ 0 is
given by

∂2

∂De2
U2NN

U2N

� �
De ¼ 0 ¼

α2�n3

α2�n

� �
ðβ�1Þ

���� ; ð52Þ

and faster swimming occurs when

n1=2oαon3=2; ð53Þ

which is confirmed by numerical computations (not shown). A
waveform leading to enhanced swimming in this case is illustrated
in Fig. 5, in the case α¼2 and n¼2. This corresponds to a max-
imum speed enhancement of U2NN=U2N � 1:1 at Deborah number
De� 0:4. To obtain the optimal Deborah number, we extremise the

Fig. 3. Ratio of the swimming efficiency in a non-Newtonian fluid compared to its Newtonian counterpart as a function of De: (a) n¼2 for a range of values of α; (b) α¼9.5
and 1rnr9. The waveform is the one described in Eq. (35).

Fig. 4. Three example waveforms are shown for which the swimming speed is not
enhanced but the efficiency is. The relative amplitude in Eq. (35) lies outside the
range noαon2 (n¼2).
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ratio of swimming speeds to find the peaks occurring at

De1n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�α

ffiffiffi
n

p

n2ðα ffiffiffi
n

p �1Þ

s
and De2n ¼ 0; ð54Þ

with a behaviour qualitatively similar to that of the last section.

5. Superposition of three travelling waves: continuous vs.
discrete enhancement

In the previous sections, where the superposition of two waves
was considered, we saw that when enhancement is present, it is
continuous from De¼ 0 to an order one Deborah number Dea,
where the value Deaa0 is the only non-zero solution of
U2NN=U2N ¼ 1. We now demonstrate that if the swimmer is able
to use a third travelling wave, it is possible for swimming
enhancement to occur only when a finite amount of viscoelasticity
is present, i.e. for values of the Deborah number in the range
½Deb;Dec�, where Deb and Dec are both non-zero.

We consider, for illustration purposes, a waveform with three
modes 1on2on3. The corresponding square amplitudes a1, an2

and an3 are non-dimensionalised by a1 so that we take a1 ¼ 1.
Using the same notation as above, the Newtonian swimming
speed is then given by

U2N ¼ 1þan2 þan3 : ð55Þ
The difference between the non-Newtonian and Newtonian swim-
ming speeds is then found to be

U2NN�U2N ¼De2ðβ�1Þ 1

1þDe2

� �

þ n2

2an2

1þn2
2De

2

 !
þ n2

3an3
1þn2

3De
2

 !#
:

ð56Þ
Focusing on cases where U2N40, enhanced forward swimming is
found when Eq. (56) is positive. As shown in Fig. 6 numerically for
n2 ¼ 4 and n3 ¼ 8, there are two types of enhancements possible:

either on a range ½0;Dea� where the velocity ratio curves upward at
the origin (continuous enhancement, Fig. 6a, as in Section 4) or on
a range ½Deb;Dec� for which the curvature at De¼ 0 is initially
negative before curving upward as the viscoelasticity increases
(discrete enhancement, Fig. 6b).

In order to distinguish between them analytically, we observe
that when the curvature is negative, we can either have no
enhancement or enhancement at a finite Deborah number. Hence,
we need to search for cases where Eq. (56) is positive, given that
the curvature at the origin is negative. The curvature of the general
wave was obtained in Eq. (33), hence for negative curvature in our
three-mode waveform we require

κ ¼ 2ðβ�1Þð1þn2
2an2 þn2

3an3 Þo0: ð57Þ
The result in Eq. (56) can then be written in terms of U2N and κ as

n2
2n

2
3De

4ðβ�1Þ n2
2þn2

3�1
n2
2n

2
3

þan2 þan3

 !

4 De2κ
1
2
þ De2

� �
þn2

2n
2
3De

4ðβ�1ÞU2N


 �
: ð58Þ

As β�1o0, and assuming that U2N40 and κo0, the minimum
requirement for non-continuous enhancement is

n2
2þn2

3�1
n2
2n

2
3

þan2 þan3 o0: ð59Þ

The three conditions given by Eqs. (55) ðU2N40Þ, (57) and (59)
can be satisfied simultaneously only when an2 o0 and an3 40, i.e.
the first and third modes must have a different sign to the second
mode. We then search numerically over the domain fan2 o
0; an3 40g and De to obtain the regions where Eq. (56) is positive
provided U2N40 and κo0, in the example case n2 ¼ 4 and n3 ¼ 8.
The values of an2 and an3 fitting these conditions are shown in
Fig. 7 (grey scale domain) while the region showing continuous
enhancement is shown in black. The grey scale colouring scheme
used in Fig. 7 displays the value of the lower bound in the interval,

Fig. 5. Illustration of a waveform from Eq. (49) with α¼2 and n¼2 that produces faster swimming in a non-Newtonian fluid. The black lines in each of the four figures show
the waveform at dimensionless times 0, π=2, π and 3π=2, and the grey lines show the evolution of the wave an eighth of a period later.
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Deb, from low (dark grey) to high (light grey) values. For three
waves, in contrast to the case of two waves, situations exist
therefore where a finite amount of viscoelasticity is required to
get enhanced propulsion, De4Deb40 (analysis for four and five
mode waves show similar results and are not shown here).

6. Discussion and conclusion

Motivated by the non-Newtonian environment in which many
swimmers propel themselves in vivo, in this paper, we have cal-
culated the speed of Taylor's swimming sheet in a Newtonian and
an Oldroyd-B (non-Newtonian) fluid, in the small-amplitude limit.
In contrast to previous analytical studies, we found that small-
amplitude travelling waves can produce faster swimming in a non-
Newtonian fluid compared to a Newtonian fluid when there are
waves travelling in opposite directions in different frequency
modes and with different amplitudes. Physically, in a non-
Newtonian fluid the waves in higher frequency modes are damped
more than those in lower frequency modes, increasing the overall
speed of the wave under conditions placed upon the difference in
frequency and amplitude of the summed waveforms. The effi-
ciency of the wave can also be increased, and the direction of
swimming can sometimes be reversed. By studying in detail the
superposition of two or three travelling waves, we also showed
that the range of Deborah number in which the enhancement of
the swimming speed takes place can either include the origin, in
which case any small amount of viscoelasticity will lead to faster

swimming, or it may be a finite interval which does not include
the origin, meaning that faster locomotion requires a finite
amount of viscoelasticity.

The results in this paper are reminiscent of recent experimental
and theoretical work on the role of inertia in locomotion, where two
important questions have been addressed: (1) for a non-swimmer at
zero Reynolds numbers, how much inertia is needed to make it
swim? and (2) how does the locomotion speed of a Stokesian
swimmer vary with inertia? The answer to question (1) depends
crucially on the geometry and actuation of the swimmer and both
discrete (Alben and Shelley, 2004; Vandenberghe et al., 2004) and
continuous (Lauga, 2007) transition to swimming were obtained. In
response to question (2), model organisms called squirmers were
shown to vary their speed monotonically from zero Reynolds number
(Wang and Ardekani, 2012; Khair and Chisholm, 2014). Similarly, in
our results, we showed that a careful design of the swimming
kinematics could lead to either a decrease or an increase, which could
be continuous or discrete, of the locomotion speed. We expect that
these results will remain valid for more realistic models of swimming
organisms, in particular those including features such as large-
amplitude, finite-size, and three-dimensional effects.

In three-dimensions, the same frequency-dependent damping
term as the one in Eq. (28) is present for infinite cylindrical swimmers
(Fu et al., 2009), hence similar results are expected to hold. With
regard to finite sized swimmers, backward propagating waves are
expected to occur due to the finite nature of real flagella. Previous
computational studies have shown that the addition of viscoelasticity
decreases the backwards motion of a finite swimmer (Teran et al.,

Fig. 6. Two different types of enhancement are shown for two different three-mode waves with n1 ¼ 1, n2 ¼ 4 and n3 ¼ 8: (a) continuous enhancement from zero Deborah
number in the range ½0;Dea� with Dea � 1:9 (an1 ¼ 1, an2 ¼ �1, an3 ¼ 0:3); (b) enhancement in a discrete, finite, range of Deborah numbers, ½Deb;Dec �, where Deb � 0:3 and
Dec � 1:8 (an1 ¼ 1, an2 ¼ �2, an3 ¼ 1:2).

Fig. 7. Regions in the parameters space fan2 ; an3 g where enhanced swimming occurs. The black section represents where the curvature is positive (i.e. upwards curving) so
that from infinitesimally small Deborah number we get an increase in the swimming speed. In contrast, the grey scale section shows regions where enhanced swimming is
obtained despite negative curvature at the origin. The grey scale colour scheme quantifies the value of non-zero Deborah numbers at which the increase in swimming speed
first occurs, Deb, from low Deborah number in dark, to high Deborah number ð � 0:8Þ in light grey. Results are shown for n2 ¼ 4 and n3 ¼ 8.
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2010) due to the presence of a viscoelastic network behind the
swimmer. The opposite has been observed experimentally for nema-
todes where hyperbolic stresses created along the swimmer hinder
propulsion (Shen and Arratia, 2011). It is yet unclear how our
theoretical results would extend to a finite swimmer, though we
may expect that the mechanism provided in this paper would provide
an additional contribution to the swimming speed. In the case of
multiple swimmers, it would be interesting to investigate how waves
with both high and low frequency modes affect one another and
potentially synchronise. From Elfring et al. (2010) we expect the
synchronisation rate to increase with the frequency of the waves
however the generalisation to multiple modes in viscoelastic fluids
has yet to be done. A recent study addresses a related issue in the
Newtonian case (Brumley et al., 2014).

The waveforms produced here offer insight into how swimming
speeds can be increased in fluids with viscoelastic properties often
found in nature (Borzacchiello et al., 2004). Can these shape
kinematics occur in biology? For flagellar swimming this requires
understanding of how the stochastic actuation of molecular motors
create waveforms. Dynein, the motor protein causing flagella bend-
ing, has been proposed to have two distinct modes to create
oscillatory bending – these can be described as active and passive,
or forward and reverse active modes (Brokaw, 2009), leading to
travelling waves that can propagate up or down the flagellum. Due to
the finite nature of flagella the wave is reflected back off the tail end
or basal body, thus creating passive backwards waves (Machin,
1958). Experiments on Drosophila spermatozoa show that the cells
use actively created forwards and backwards flagellar waves to avoid
obstacles (Yang and Lu, 2011). Furthermore by solving elastohydro-
dynamic force balance equations on infinite flagella analytic studies
have shown two different modes of waves travel along the flagella
with the same frequency, but different amplitudes and directions
(Wiggins and Goldstein, 1998). Hence a flagellum naturally creates
forward and backward travelling waves with different amplitudes.
The enhancement described in this paper requires however waves
with different frequencies travelling in the backwards direction for
enhancement to occur. The addition of higher frequency modes
(n¼2 and n¼3), found in small amounts in beating spermatozoa
(Reidel-Kruse et al., 2007), would not however lead to an increase in
swimming speed as an40 for all values of n found experimentally.
Changes in flagella beating frequency can occur by altering the
environment in which the swimmer propagates, for example hyper-
activation when mammalian spermatozoa reach the ovum, leading
to a reduction in the beat frequency and increase in the beat
amplitude (Suarez et al., 1991); a variation in ATP or salt concentra-
tions also change frequencies (Brokaw, 2009). Recent work on the
unsteady modes of flagellar motion show that most modes have a
frequency smaller than the fundamental frequency, and hence would
correspond to a reduced swimming speed (Bayly and Wilson, 2015).
The addition of noise to the molecular motor oscillations, either
through variations in concentrations in the bulk or variations
between motors, could lead to increased swimming provided the
coherent noise is large enough for the flagellum to access a higher
frequency mode, however this is larger than the noise measured (Ma
et al., 2014). Backwards travelling wave results have been described
for muscle-actuated planar motion occurring for example in the
nematode Caenorhabditis elegans(Sznitman et al., 2010) as well as
other flagellar systems such as the green alga Chlamydomonas
reinhardtii (Guasto et al., 2010).

While our study offers only an idealised view, and although as of
yet there are no experimental studies from biology for which the
model here would predict faster swimming, our work addresses the
most general periodic waving deformation and points to the use of
multiple waves travelling in different directions as a mechanism
allowing control of swimming magnitude and direction in complex
environments.
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