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A reciprocal theorem for boundary-driven channel flows
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In a variety of physical situations, a bulk viscous flow is induced by a distribution of
surface velocities, for example, in diffusiophoresis (as a result of chemical gradients)
and above carpets of cilia (as a result of biological activity). When such boundary-
driven flows are used to pump fluids, the primary quantity of interest is the induced
flow rate. In this letter, we propose a method, based on the reciprocal theorem of Stokes
flows, to compute the net flow rate for arbitrary flow distribution and periodic pump
geometry using solely stress information from a dual Poiseuille-like problem. After
deriving the general result, we apply it to straight channels of triangular, elliptic, and
rectangular geometries and quantify the relationship between bulk motion and surface
forcing. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935415]

The precise manipulation of micro- or nano-scale flows is essential to many recent develop-
ments and applications in microfluidics, in particular for biological analysis and screening.' It has
also long been recognized as important in the biological world, where flows are used to trans-
port, deliver, mix, and flush away nutrients, for example, in mucus transport’ and in cytoplasmic
streaming inside plant cells.® Generating a flow within a confined environment requires to overcome
the resistance of viscous stresses either through some external or localized forcing. Hence, two
broad classes of methods have been proposed in order to induce flow in soft and hard (MEMS)
microfluidics that relies either on mechanical or on phoretic/osmotic forcing.*

Mechanically driven flows are most classically achieved in the lab by imposing a pressure
difference between the inlet and outlet of the channel. Another example of mechanical actuation
is given by ciliary carpets,”!? responsible for many biological functions such as mucociliary flow
in the lungs or egg transport down the oviduct of mammals,>'! and recently reproduced artificially
using magnetically driven cilia'?> or bacterial carpets.'>'* When the cilia layer is thin compared to
the channel-size, its mechanical forcing on the flow effectively takes the form of a slip velocity
along the channel wall. The concept is similar for cytoplasmic flows inside plant cells, with the
wall-driven motion being now induced by the motion of specialized molecular motors carrying
cargos along the surface of the cells.?

In contrast to mechanical forcing, phoretic mechanisms exploit the interaction of charged or
neutral solute molecules with the solid boundaries and externally (or locally) imposed concentration
or temperature gradients, or electric fields. Interactions between solute molecules and solid bound-
aries are generally localized over nanometer-size layers near the walls due to the short-range nature
of the interaction forces. For channels with cross-sectional length scales of microns or more, the
phoretic forcing on the flow thus effectively results in a slip velocity at the wall.®!>-17

A variety of biological and physical situations of interest consist thus of confined geometries
with prescribed flow velocities at the wall. An important question and challenge is then to relate
the prescribed boundary conditions to the resulting flow rate for a given geometry. This generally
requires solving the incompressible Stokes equation within the channel for a prescribed boundary
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condition, which can lead to cumbersome algebra when the geometry or the distribution of flow
forcing is not trivial.'-2

Here, inspired by classical work deriving the locomotion kinematics of microswimmers driven
by surface motion,>' we show that the problem of computing the flow rate can be solved easily
for periodic geometries for which the solution to a Poiseuille-like problem has already been found.
We first present the derivation for an arbitrary geometry and obtain explicitly the flow rate and its
sensitivity to wall-forcing. Applying this result to the straightforward case of a circular channel
leads to classical solutions, and we then extend the calculation to three straight channels of different
cross-sectional geometries (elliptic, triangular, and rectangular). These examples illustrate how our
formal result allows us to compute the flow rate and its sensitivity directly, without explicitly solv-
ing for the entire flow field, and hence represents a useful tool for design and optimization of flow
manipulation in microfluidic devices.

The general problem addressed here is illustrated in Figure 1. We want to compute the net flow
rate through a periodic channel resulting from a flow forcing at the walls. The periodic channel is
obtained by the repetition of a pattern of arbitrary shape, and we denote by d the unit vector joining
a given point of the inlet section to its periodic counterpart on the outlet cross section of the pattern
and L the distance between them. Without any loss of generality, we can assume that the inlet and
outlet cross sections dQ* are normal to d. Let Q be the fluid volume contained in one period of
the channel with boundary dQ, and dQ = 0Q; U dQ* U dQ~, with dQ; the lateral boundary of the
channel. We seek to compute the volume flux Q through the micro-channel defined as

0- u.ndsz/ u - nds, (1)
aQ+ 0Q~

generated by a prescribed forcing on 0Q,, in the form of net slip (tangential) velocity at the wall
denoted u®.

Due to the linearity of Stokes equations, the relationship between Q and the forcing u® is linear,
and it can be formally written as

0= [ Hx- v’®ds, )
aQr,
where H(x) is a (yet unknown) vector field defined on the lateral boundary that characterizes the
sensitivity of the flow rate in the channel to the boundary forcing at x on d€2;. The direction of H
indicates the direction of the most efficient forcing by a slip velocity, and its intensity provides a
map of the wall regions to which the flow rate is most sensitive.
A possible route to determine H(x) is to solve the Stokes flow problem resulting from the
arbitrary surface field u® explicitly. This boundary forcing generates a flow and pressure (u,p)
within the channel which satisty the following Stokes problem:

V.o =0, V-u=0, 3)

FIG. 1. Schematic representation of a periodic channel of period L. Along one of the periods containing a fluid volume Q,
the lateral boundary of the channel is denoted Q.. The inlet and outlet have parallel surfaces Q™ and dQ* and the unit
vector joining these two surfaces, and perpendicular to them, is denoted as d.



111701-3 S. Michelin and E. Lauga Phys. Fluids 27, 111701 (2015)

where o = —p1 + 2ne is the Newtonian stress tensor, e the symmetric rate-of-strain tensor, and 7,
the dynamic viscosity. The associated boundary conditions are

u=ugondQy, (u, p) periodic. 4)

If an explicit solution can be obtained, then the total volume flux within the channel and the flow
rate sensitivity to wall forcing are easily obtained by integration along the inlet (or outlet) surface.
Solving this Stokes flow problem for a single boundary forcing is however challenging for complex
geometries, and determining the solution for an arbitrary forcing is even more complex.

We propose here an alternative approach. The idea is to solve a simpler dual problem, once
and for all, that does not depend on the boundary forcing and use its solution to obtain a direct
relationship between the distribution of slip velocity and the resulting flow rate. This approach
makes an extensive use of the reciprocal theorem for Stokes flows.?’

The dual problem considered is the periodic Stokes flow in the same geometry forced by a
constant volumetric forcing, i.e.,

V.o =-G1d, V-u* =0, &)

together with no-slip boundary condition, u* = 0, on dQ, and periodicity, i.e., u(dQ*) = u(9Q") and
p(0QY) = p(0Q7). Here, 0* = —p*1 + 2ne* denoted the Newtonian stress tensor associated with the
velocity and pressure fields (u*, p*) and e* the symmetric rate-of-strain tensor.

Multiplying Eq. (5) by u and integrating over €, after integration by parts, leads to

—G*/u~ddQ=/ u-a’*-ndS—/Vu:O'*dQ
Q 8Q Q

=/ u-o-*-ndS—Zn/e:e*dQ, (6)
a0 Q

with the unit normal n pointing outside the fluid domain. Following the classical approach from the
reciprocal theorem, we multiply Eq. (3) by u* and integrate over €2, leading to

0:/u*(V-0’)dQ=/ u*-o--ndS—Zn/e:e*dQ, @)
Q File) Q

where we have used that u and u* are both divergence-free. Equating the last terms of the right-hand
sides of Egs. (6) and (7) leads to the relationship

/u*-0'~ndS—/ u-0'*~ndS:G*/u-ddQ. 8)
a0 a0 Q
The integral on the right-hand side of the equation can be simplified by noting that

/u~ddQ=QL, )
Q

where Q is the volume flux through the channel, independent of the cross section used to compute
it, and of its orientation. Due to the periodicity of the problem, the integrals on d€2, and d€2_ cancel
each other out, and using the boundary conditions for u and u* on 9€2;, we obtain the final result for
the flow rate as

1
=- 0" -ndS. 10
) LG*/agLuS o’ -n (10)

The dual problem is linear; therefore, o* is proportional to G* and Q does not depend on this
arbitrary constant, which is kept here nonetheless for dimensional consistency of the equations.

The result in Eq. (10) provides thus an explicit expression for the sensitivity of the flow rate to
wall forcing, H(x), in terms of the stress tensor of the dual problem,

o’ -n

. 11
LG* 1D
From this result, one is able to compute the average flow rate within the channel for arbitrary
slip velocity at the wall. Note that the previous equation was obtained for a purely tangential

H(x) = -
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flow forcing at the wall (i.e., ug - n = 0), in order to ensure that the flow rate Q is independent
of the cross section considered. In that case, only the deviatoric part of the viscous stress tensor
is needed to compute H. The approach may however be generalized for flow forcing including a
normal component by replacing Q with its spatial average. Furthermore, the derivation was done in
three dimensions but is directly applicable to two-dimensional channels by applying our result to
a slice of the two-dimensional channel since the invariance in the third dimension guarantees the
cancellation of the integrals on the lateral surfaces.

In the case of a circular cylindrical channel of axis e, and radius R, the dual problem in Eq. (5)
is the classical Poiseuille flow. In that case, the velocity field and stress tensor are obtained in
cylindrical polar coordinates as

G* G*
= E(R2 -re,, 2ne” = —Tr(ezer +e.e,). (12)

Here, the surface traction o* - n on the boundary is uniform, which is expected by symmetry. The
flow rate created by a localized forcing on the boundary is thus independent of the position of that
forcing location and the sensitivity H(x) is therefore uniform, with value

*

u =

R
H(x) = iez. (13)

Hence, for any distribution of velocity u,(6, z) along the channel, and as expected, the channel flow
rate is simply the average of the boundary velocity

0= R / u, - e,dS = TRXup,). (14)
09y

2L
Turning now to more complex geometries, the reciprocal theorem approach is particularly
powerful when a solution of the dual problem can be obtained easily. We highlight three of such
solutions for straight channels of axis e,.
We first consider a straight channel of elliptical cross section with major and minor axes
denoted a and b < a, respectively. The dual flow problem can be solved analytically and we have

22 2 2
b= 9PC (X v, (15)
2n(a? + b?) az b
G*
2ne* = —————— [bx(ece, + ece,) + a’y(e.e, +e,e,)]|. (16)

(a% + b?)

The contour of the elliptical cross section can be parameterized as x = acos 6, y = bsin 6, with
0 < 0 < 27n. We are interested in the flow resulting from tangential boundary forcing u,(6,z) =
up(0,7)e, along the axis of the pipe. The local tangent and normal unit vectors in the cross section
are

—asinfe, +bcosfe, bcosfe, +asinbe,
T = n= — .

v a2sin0 + b2cos20 v a2sin6 + b2cos?

The sensitivity of the flow rate to forcing on the boundary is therefore given by

aby b%c0s20 + a’sin’6

L(a? + b?)
When the channel is non-circular, the sensitivity is no longer uniform along the cross section and
is greatest in the regions of lowest curvature (6 = +7/2, i.e., along the y axis). Instead, for an
ellipsoidal cross section with high aspect ratio, the sensitivity of the strongly confined tips (8 = 0, ,
i.e., along the x axis) is very small. Finally, the flow rate is given by the integral

a7

H(x) = e,. (18)

2
0= (az“—sz) /0 (up),(0)(b*cos’6 + a’sin’6)d, (19)

where (u;), the z-average of the boundary forcing.



111701-5 S. Michelin and E. Lauga Phys. Fluids 27, 111701 (2015)

Another example considers a cylindrical channel with equilateral triangular cross sections of
side a. We use Cartesian coordinates so that the three sides have equations y = 0 and y + V3x =
aV3/2. Here, again the dual flow problem is known analytically and given by

2

G* 3

we Gy |(aV3_ y] —3:2e,. (20)
Zn‘/ga 2

On the bottom boundary y = 0, the normal is n = —e,, and we have o7, = G*V3/2a(a?/4 - x?) so
the sensitivity of the flow rate to a forcing on the bottom wall is then given by

V3 (a®
H(X)— m(z—x )ez. (21)
Clearly the sensitivity is non-uniform in this case. A tangential forcing u,(x) = u,(x)e, applied on
the bottom boundary therefore leads to a net flow rate

\/§ al?

&2
0= % (upy,(x) (Z - xz) dx. 22)

—-a/2
The flow rate is more sensitive to a forcing in the central region of the channel walls than in one
of the corners, a result that is expected due to the higher confinement and viscous friction in the
corners of the triangular cross section. Obviously, the flow rate resulting from a forcing on each
of the three edges can be obtained by superimposing the contribution of each side. Because the
geometry is invariant by a rotation of 27r/3 around the section’s center, the sensitivity of the flow
rate to boundary forcing is identical and parabolic on each side.

Another example considers a straight channel of cross-sectional dimensions L, and L, the
geometry most widely used in microfluidics.® Assuming a uniform problem along the channel axis
e, the dual flow problem solution is known analytically in the form of a doubly infinite series and
given by

o sin ((ZIJZI)H'X) sin ((Zqzl)ny )
x y

e

(2221) (M) ]
Lx Ly

The sensitivity of the flow rate to wall forcing is then obtained for horizontal walls at y = 0 and

y=1L,as

_16G*
=

*

(23)
P.a=0 2p + 1)(2qg + 1)

16 s sin ( Q2p+)mx )

Lx
€
3 21 7%
b ey | (2 (2]
x y

while the sensitivity on the vertical walls Hye(y) at x = 0 and x = L, can be obtained by symmetry.

The dependence of the sensitivity along the horizontal wall with the aspect ratio of the channel
is shown on Figure 2. In the limit of L, < Ly, the microchannel is close to being two-dimensional
and does not “feel” the presence of the vertical walls except within a neighborhood of size O(L,)
near the edges, and thus, the sensitivity is approximately constant along the entire channel wall. In
the opposite limit (L, > L), the flow resulting from a forcing on the bottom boundary (y = 0)
is not influenced by the presence of the upper wall and the sensitivity becomes independent of
L, /L. The sensitivity is maximum in the center of the channel as expected, as this is the location
minimizing the effect of friction along the vertical walls.

The general framework presented in this letter provides a direct method to compute the flow
rate and sensitivity to wall-forcing within any periodic channel without actually solving the full
Stokes flow problem for this particular forcing. Instead, provided that a dual Poiseuille-like solution
is known for the same geometry, our main result, Eq. (10), gives an explicit and direct expression
of the net flow rate. Importantly, even in situations where the dual solution is not trivially obtained,
it only needs to be derived once, be it analytically or numerically. Then, the flow rate’s response to
any wall forcing can be directly obtained from the integration of Eq. (10) which, in the cases where

Hior(x) =

(24)
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0.4

o
N

H]“),(.’I,’)

o
[N
- O

x/L,

FIG. 2. Sensitivity of the flow rate to a slip forcing along the horizontal (bottom) wall of a rectangular channel for different
aspect ratios: L, /Lx=0.01 (dotted), L, /L, =0.1 (dashed-dotted), L, /Ly =0.4 (dashed), L,/Lx=1 (thin solid), and
L, /Ly = 10 (thick solid).

the dual solution is tedious, can be carried out computationally. Note that a similar result can be
easily obtained when the stress (rather than the slip velocity) is prescribed at the boundary: in that
case, the dual Poiseuille-like problem must be solved with zero-stress (rather than no-slip) boundary
conditions. Then, the sensitivity is proportional to the dual slip velocity and the flow rate is obtained
as a boundary integral of the prescribed stress, similarly to Eq. (10).

The original paper showing how to use the reciprocal theorem for low-Re propulsion?! allowed
to derive the velocity of a micro-swimmer in terms of the prescribed surface velocity boundary
condition. Cases of interest there include the envelope model of a ciliate (i.e., when the cilia layer
is thin compared to the cell size so that the cilia beating can be replaced by a tangential slip
velocity?) or for phoretic swimmers which have generated much excitement recently as examples
of fuel-based torque- and force-free artificial micro-swimmers.?>~>* Such alternative approaches to
solving the full Stokes flow problems around the moving swimmers have recently attracted much
interest with generalizations to two-dimensional locomotion problems,” multiple-body problems,’®
or Marangoni propulsion.?’ The present paper can be very much seen as an extension of those ideas
to wall-driven pumping, as it directly relates the flow rate to the kinematic forcing at the boundary
of the channel. For example, our results could be used to determine the net flow generated by
biological or artificial cilia carpets and analyze the influence of density, orientation, and coordina-
tion of cilia. Also, the present paper could be a useful tool for designing diffusio-phoretic pumps,
exploiting phoretic phenomena near active channel walls,'” and for analyzing how the flow rate of
such pumps depends on the details of the chemical boundary conditions.

Funding from the French Ministry of Defense (DGA — S.M.) and the European Union (Marie
Curie CIG — E.L.) is gratefully acknowledged.
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