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Ribbons are long narrow strips possessing three distinct material length scales (thick-
ness, width, and length) which allow them to produce unique shapes unobtainable by
wires or filaments. For example, when a ribbon has half a twist and is bent into a circle
it produces a Möbius strip. Significant e↵ort has gone into determining the structural
shapes of ribbons but less is know about their behavior in viscous fluids. In this paper,
we determine, asymptotically, the leading-order hydrodynamic behavior of a slender
ribbon in Stokes flows. The derivation, reminiscent of slender-body theory for fila-
ments, assumes that the length of the ribbon is much larger than its width, which itself
is much larger than its thickness. The final result is an integral equation for the force
density on a mathematical ruled surface, termed as the ribbon plane, located inside
the ribbon. A numerical implementation of our derivation shows good agreement with
the known hydrodynamics of long flat ellipsoids and successfully captures the swim-
ming behavior of artificial microscopic swimmers recently explored experimentally.
We also study the asymptotic behavior of a ribbon bent into a helix, that of a twisted
ellipsoid, and we investigate how accurately the hydrodynamics of a ribbon can be
e↵ectively captured by that of a slender filament. Our asymptotic results provide the
fundamental framework necessary to predict the behavior of slender ribbons at low
Reynolds numbers in a variety of biological and engineering problems. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4938566]

I. INTRODUCTION

Ribbons are everywhere. Some plants create rigid ribbon-like seed pods to encourage seed
dispersal by the wind,1 while many marine animals swim by sending waves down ribbon-like
appendages.2,3 The three dimensional folding structures of proteins can be simplified and understood
well using ribbons,4 while the super-coiling behavior of DNA has been related to a linking number of
ribbons.5 For years, machines have used closed ribbons as drive belts, in order to transfer the power
from a motor to other turning objects. Recently, ribbons have also been used to create magnetically
driven artificial swimmers at the micron scale.6–8

The ability for a ribbon to take so many configurations comes from the fact that it is characterized
by three material length scales: the centerline length, 2`, the plane width, 2b, and the thickness, 2a.
These three length scales make the behavior of a ribbon fully three dimensional and allows for the
creation of di↵erent shapes with complex topology. For example, a Möbius strip,9 a looped ribbon
with a half twist in it, is very di↵erent from a ribbon bent into a loop without any twisting. The ability
to make such configurations explains why ribbons are relevant to so many fields of research.1–8,10,11

Extensive past work has gone into determining theoretically the equilibrium structures of rib-
bons as solid mechanical objects,9,12 experiments have looked into how ribbons curl,13 theory has
addressed how ribbons let animals swim,2,3 and flags flap.10 However, very little theoretical investi-
gation has gone into the general hydrodynamics of ribbons, particularly at low Reynolds number.14–16

The existing computational framework can tackle ribbons with a width on the same order as its
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thickness,15,16 which are thus too thick to represent the ribbons seen naturally or used in micro-
swimming experiments.6,7

In this paper, we derive the asymptotic framework necessary to quantify the hydrodynamics of a
thin slender ribbon at low Reynolds number. The slenderness of the ribbon is assumed to be charac-
terized by the asymptotic limit ` � b � a. An expansion similar to the slender-body theory (SBT)
expansion for Stokes flow17 is performed. Using only force singularities (Stokeslets), we are able to
fully determine the hydrodynamics of the ribbon at leading order in b/`. This expansion assumes that
the curvature of the ribbon and the rate at which the ribbon twists are less than `/b, similar to the curva-
ture restriction in SBT, and that the ribbon is a ruled surface. The resulting formulation is tested against
known solutions and experimental results, and we obtain excellent agreement. We also investigate the
behavior of a slender ribbon twisted around its central axis and that of a slender ribbon with a helical
centerline. The behavior seen is finally compared with the results predicted by SBT for filaments in
order to illustrate the di↵erences in the dynamics of wires and ribbons.17 While the paper focuses
solely on rigid-body motion, the slender-ribbon equations can also be applied to deforming ribbons.

The paper is organized as follows. In Sec. II, we discuss the low-Reynolds number hydrodynamic
framework for this study and give a quick overview of the history and derivation of SBT. Section III is
the main technical part of the paper which presents the derivation of the slender-ribbon theory (SRT)
equations. This section starts by describing the mathematical structure of the ribbons considered
(Sec. III A) and then gives an outline to the expansion process (Sec. III B). We then consider in detail
how the system should be expanded (Sec. III C), before performing the various expansions (Sec. III D)
and determining the final set of equations (Sec. III E). We conclude this section by comparing the
resulting equations to the ones obtained for slender filaments (Sec. III F). In Sec. IV, we then describe
the numerical procedure used to solve the integral equations arising in the SRT formulation. The
working code is then tested against the known analytical formulae for a long-flat ellipsoid (Sec. V)
before comparing the behavior of an asymptotically thin ribbon with a helical centerline to the thicker
ribbons recently explored numerically15,16 (Sec. VI). With the same parametrization, we use the SRT
results to address the swimming dynamics of so-called artificial bacterial flagella recently proposed
and tested experimentally on microscopic scales (Sec. VII). We then address how di↵erent the results
for slender ribbons are from slender bodies, showing in particular that no slender body can e↵ectively
capture the hydrodynamics of a helical slender ribbon (Sec. VIII). Finally, the hydrodynamics of
twisted ribbons with straight centerlines is explored in Sec. IX.

II. STOKES FLOW AND SLENDER-BODY THEORY

This paper intends to determine the hydrodynamic forces on slender ribbons at low Reynolds
numbers, with an eye on application to microscopic and biological bodies. In this case, the fluid is
accurately described by the incompressible Stokes equations

rp = µr2
u, (1)

r · u = 0, (2)

where µ is the dynamic viscosity of the fluid, p is the pressure, and u is the velocity field. These
equations are linear and independent of time. Therefore, the net hydrodynamic force and torque on
a submerged rigid body are linearly related to the linear and angular velocities of the body by

F̃ = �R

F̃Ũ

Ũ, (3)

where F̃ is a six-component vector containing all components of the hydrodynamic forces and torques
on the body and Ũ is a six-component vector containing the instantaneous linear and angular velocities
of the body. In Eq. (3), R

F̃Ũ

is the 6 ⇥ 6 resistance matrix which is proportional to the viscosity and
only depends on the size and shape of the body.

Computing the resistance matrix is in general not an easy task for an arbitrarily shaped body
and is typically obtained numerically through the use of flow singularities, starting with the Green’s
function for Stokes equation’s. The flow for this Green’s function is given by

8⇡µU

s(R; f) = I + R̂R̂

|R| · f, (4)
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where R is the vector from the singularity to the desired point of flow, R̂ is the unit vector in the
direction of R, and I is the identity tensor. This fundamental singularity is called the Stokeslet and
represents the flow created by a point force in the fluid of strength f. Other singularity solutions to
the Stokes equation can be obtained by taking derivatives of the Stokeslet. For example, a potential
“source dipole” of strength gSD is defined as �1/2 the Laplacian of the Stokeslet and has the form18

8⇡µU

sd(R; gSD) = �
I � 3R̂R̂

|R|3 · gSD. (5)

These singularities can be used to determine the hydrodynamics of any body moving in a Stokes
fluid in two ways. In the first method, the Green’s function nature of the Stokeslet can be used to
turn the Stokes equations into integral equations over the surface of the body. This is the boundary
integral method.19 The second method consists of placing Stokeslet singularities, and its derivatives,
within the body and the use of the boundary conditions on the surface of the body to determine their
strengths.18 This method arises from the linearity of the Stokes equations20 and is sometimes called
the representation by fundamental singularities. For example, the Stokes flow around a rigid sphere
of radius a and velocity U is described by a Stokeslet and source dipole of strengths 6⇡µaU and
�⇡a3U, located at the centre of the sphere.20,21

The distribution of singularities in second method is only known exactly for some simple shapes18

and so for most calculations, the dynamics of a body are typically found using boundary integrals.
The boundary integral method is very powerful but for some shapes, such as those characterized by
a large range of length scales, the surface discretization can be di�cult, requiring a fine mesh of the
surface and potentially creating long computation times. For long thin bodies with a circular cross
section, an approximation is typically used, based on the representation by fundamental singularities,
called slender-body theory.

SBT aims to capture the hydrodynamics of a long thin body by placing Stokeslets and source di-
poles along its centerline. These singularities are then expanded in two domains: an outer region where
the centerline length dominates and the body has e↵ectively zero thickness, and an inner region where
the thickness of the body dominates. The two domains are then matched asymptotically to determine
the flow at the surface of the body assuming that the velocity at the surface of the body moves rigidly
with the centerline. The relative strengths of the source dipoles are then found by ensuring that at
each cross section, there is no velocity variation across the surface.

There have been a few di↵erent formulations of SBT.17,21–23 Early work used the flow past an infi-
nite cylinder as the inner region and matched the results to a line of Stokeslets in the outer region.22,23

These formulations were only applicable far from the ends of the long thin body and produced a
series in powers of 1/ log(✏), where ✏ is the body thickness divided by the centerline length (i.e., the
inverse of its aspect ratio). Shortly thereafter, Lighthill proposed a derivation which was accurate to
order ✏1/2.21,24 This was a vast improvement on the earlier methods but still did not account for the
ends of the body. Eventually, Johnson derived a version of SBT that took into account the ends of the
body.17 He further showed that the force distribution obtained in his equations was accurate to order
✏2 log ✏ , which was achieved by placing higher-order singularities along the centerline and matching
the boundary conditions to higher order. These additional singularities added no additional force to
the system thus leaving the leading-order force distribution unchanged.

The SBT equations derived by Johnson for a slender filament of length 2` give the velocity U(s)
at a specific arc length s along the filament (�`  s  `) as an integral

8⇡µU(s) =
⌅ `

�`

"
I + R̂0R̂0

|R0|
· f(s0) � I + t̂t̂

|s0 � s| · f(s)
#

ds0

+ log *
,
`2(1 � s2)
r2
b
⇢(s)2e

+
-
�
I + t̂t̂

�
· f(s) + 2

�
I � t̂t̂

�
· f(s), (6)

where e is the exponential, 2rb is the thickness of the body, ⇢(s) is the dimensionless radial surface
distribution (so that the surface of the body is located at r = rb⇢(s)), R0 = r(s) � r(s0) is the vec-
tor between s and s0 on the centerline, t̂ is the tangent to the centreline at s, and f is the unknown
force density along the centerline of the body. This framework has been very successful in addressing
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many aspects of micro-scale fluid mechanics, in particular, for the flow of fibers and self-propelled
swimmers.25–31

In the current paper, we perform an expansion similar to that of Johnson’s SBT but for ribbons
characterized by three length scales such that ` � b � a. In order to do so, we place a plane of
singularities within the ribbon, expand the system into the relevant regions, and asymptotically match
them. As we demonstrate, the force distribution can be approximated with errors at most of the order
b/` without the need for any other singularity than the Stokeslet.

III. SLENDER-RIBBON THEORY

A. The slender ribbon geometry

The ribbon structures considered in this paper have a centerline length of 2`, a long edge (plane
width) of length 2b and a short edge (thickness) of length 2a (see illustration in Fig. 1, top). The
position of the centerline is given by the vector r(s1), where s1 is the arclength along the centerline. At
a given value of s1, the long edge of the ribbon points in the direction T̂(s1) and has an edge-to-edge
width of 2b⇢1(s1). Here, T̂(s1) is a unit vector and ⇢1(s1) contains the information of how the width
varies along the ribbon length. In our calculation, we assume that ⇢1(s1) behaves like an ellipsoid near
the ends of the ribbon and that T̂(s1) remains everywhere perpendicular to the tangent of the centerline,
t̂(s1). Both are also assumed to change smoothly with s1. The displacement from the centerline along
the direction T̂(s1) is measured by a second arc length denoted as s2 (�b⇢1(s1)  s2  b⇢1(s1) ). Since
T̂(s1) does not depend on s2, the long edge sits in a plane defined by T̂(s1) and t̂(s1). Physically, this
assumption means that the body is suitably rigid to prevent the bending along s2.

The shape defined by the centerline and the vector T̂ is called the ribbon plane. Any point on this
plane is thus located at position X(s1, s2) given by

X(s1, s2) = r(s1) + s2T̂(s1) (7)

FIG. 1. Schematic representation of the full ribbon surface (top) and the equivalent ribbon plane (bottom). The black line
in both figures depicts the centerline, described by points located at r(s1). The centerline length is 2`, the maximum length
along the long edge (width) is 2b, and the maximum length along the short edge (thickness) is 2a. The functions ⇢1 and ⇢2
characterize how the long and short edge lengths vary across the ribbon, respectively. The vector t̂(s1) is the tangent vector to
the centerline and T̂(s1) is the direction of the long edge sits in. The ribbon shape is parametrized using s1, which describes
the arclength along the centerline, and s2, which gives the displacement in the direction T̂(s1) from the centerline.
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as is illustrated in Fig. 1 (bottom). The definition of this ribbon plane is consistent with the typical
mathematical definition of a strip or ribbon.5 Finally, the surface of the physical ribbon itself is located
at a distance±a⇢2(s1, s2) normal to the ribbon plane at s1, s2. Again, ⇢2(s1, s2) is assumed to be roughly
ellipsoidal towards the edges and also must be greater than 0 away from the edges. The surface of the
ribbon is then described by material points S(s1, s2) given by

S(s1, s2) = r(s1) + s2T̂(s1) ± a⇢2(s1, s2)n̂, (8)

where n̂ is the normal to the ribbon plane (see notation in Fig. 1). Though this mathematical descrip-
tion can be used to describe ribbons with arbitrary thickness, the framework derived below for SRT
only characterizes the fluid dynamic forces when the length is much larger than the width, which itself
is much larger than the thickness, i.e., the limit ` � b � a. In this regime, surfaces can accurately
be described by a ruled surface, as above.

B. An outline of the expansion

In this section, we derive the leading order flow for bodies with slender-ribbon shapes. Like the
expansion for SBT, the total flow will be represented by a series of fundamental singularities and then
expanded in the small parameters. Unlike SBT, singularities will here be placed within the ribbon
plane, not just along its centerline.

For slender-ribbon theory, the singularities are placed in the ribbon plane for two reasons: the
similarity between the cross section of the ribbon and a prolate ellipsoids, and the requirement that the
singularities used in a representation by fundamental singularities method must lie inside the body of
the ribbon. Locally, the ribbon is roughly cylindrical with a elliptical cross section. This cross section
is similar to a central cross section of a prolate ellipsoid which has a flow given by a line of singularities
placed between the two foci of the ellipsoid.18 Therefore, it is reasonable to assume that, that at least
locally, the singularity distribution should be distributed over the ribbon plane. The requirement that
the singularities must lie inside the body of the ribbon20 also supports this. As slender-ribbon theory
expands the dynamics of the ribbon in the limit ` � b � a, the zeroth order shape of the ribbon is the
ribbon plane itself. Therefore, at zeroth order, the singularities can only be placed in the ribbon plane.

Using the above justifications, the total fluid velocity at location (s1, s2) on the surface of the
ribbon arising from the hydrodynamic singularities in the plane is given by

8⇡µU(s1, s2) = 8⇡µ
⌅ `

�`
dt1

⌅ b⇢1(t1)

�b⇢1(t1)
dt2

�
U

s(R; f(t1, t2)) + U

sd(R; gSD(t1, t2))
 
, (9)

where R = X(s1, s2) � X(t1, t2) ± a⇢2(s1, s2)n̂(s1, s2), and the integral is naturally broken into two
parts: the component due to the Stokeslets, U

s

, and the one due to the source dipoles, U

SD

. The
above equation truncates the sum of singularities to Stokeslets and source dipoles as this is all that is
required for the leading order flow. At higher order, it is likely that other singularities will be needed.

In order for the small parameters to be apparent in the formulation, we proceed to scale the inte-
grals. The velocity is taken to scale as a typical velocity U, the parameter s2 as b⇢1, and all other
lengths as `. The total force on the ribbon will then scale as µ`U and the area of the sheet like `b;
therefore, the force per unit area, f, should scale as µU/b.

The scaling of the source dipoles, gSD, in Johnson’s (and Lighthill’s) SBT derivation is propor-
tional to the thickness of the body squared times the force per unit length. Therefore, it is reasonable
to assume that the gSD scaling would be a function of b and a with units length squared. With this
consideration, we then scale gSD by µUb⇢2

1. The scaled Stokeslet and source dipole integrals are then
given by

8⇡U

s

(s1, s2) =
⌅ 1

�1
dt1⇢1(t1)

⌅ 1

�1
dt2

 
f(t1, t2)
|R| +

RR · f(t1, t2)
|R|3

!
, (10)

8⇡U

SD

(s1, s2) = �b2
`

⌅ 1

�1
dt1⇢1(t1)3

⌅ 1

�1
dt2

 
gSD(t1, t2)

|R|3 � 3RR · gSD(t1, t2)
|R|5

!
, (11)
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where

R(s1, s2) = R

0

+ b`⇢1(s1)s2T̂(s1) � b`⇢1(t1)t2T̂(t1) ± a`⇢2(s1, s2)n̂(s1, s2), (12)

and where we have denoted b` ⌘ b/`, a` ⌘ a/` and R

0

⌘ r(s1) � r(t1). The total force and torque are
thus given by

F =

⌅ 1

�1
dt1

⌅ 1

�1
dt2⇢1(t1)f(t1, t2), (13)

L =

⌅ 1

�1
dt1

⌅ 1

�1
dt2⇢1(t1) [X(t1, t2) ⇥ f(t1, t2)] , (14)

where the force F has been scaled by µ`U and the torque L by µ`2U.
A slender-body-like expansion requires the singularity integrals to be expanded in the relevant

small parameters and then asymptotically matched. In the case of a ribbon, two small parameters are
present, namely, b/` = b` and a/` = a`. The behavior of the hydrodynamic kernels in s1 and s2 should
therefore each be expanded in three possible regions: t � s = O(1), t � s = O(b`), and t � s = O(a`).
The expansion procedure is outlined in Sec. III C, in which we show that only a subset of all expansions
are actually required.

After the solution has been expanded and asymptotically matched (done in Sec. III D), the appro-
priate boundary conditions must be applied. For a slender ribbon, we assume that material points on
the surface immediately below and above a point in the ribbon plane (in the n̂ direction) move with the
same velocity as that point. Physically, this states that the ribbon surface does not expand, contract,
or shear. Mathematically, this is equivalent to ensuring that the final equations have no ± signs. The
no-slip boundary condition for the fluid is applied and thus, the velocity components of the material
points on the surface are equal to the velocity in the fluid there.

C. Relevant expansion points

In Johnson’s SBT, the singularity kernels are integrated over one dimension, namely, the ar-
clength s1. Depending on how s1 scales, the behavior of the singularity kernels is distinct. Specifi-
cally, when s1 scales with the total arclength along the slender body, the influence of singularities far
from the point of interest contributes; in contrast, if s1 scales with the body thickness, then the local
contribution from the singularities is important. By combining these two regions and removing any
common behavior found in the overlap region (the common part), the full integrand can be evaluated
asymptotically.

These two di↵erent regions reflect the two length scales inherent to the slender body formula-
tion. In the slender-ribbon formulation, the kernels are integrated over two dimensions, s1 and s2, and
have three (dimensionless) length scales, 1, b`, and a`. Therefore, there are nine possible forms the
kernel can take. However, many of these nine kernels are simply a limiting case of another one of the
nine. In that case, the common asymptotic behavior of these limit regions will be identical to their
behavior outside the overlap region. Therefore, these kernels are redundant and will be removed by
the subtraction of their common parts. Performing the calculation on each region and then relying
on the removal of the redundant parts by matching are very mathematically intensive. If the regions
relevant to the final solution can be determined beforehand, such a long derivation is not needed.

The scaled Stokeslet and source dipole kernels only depend on the value of R, f, and gSD. A
Taylor series expansion of f and gSD give their respective forms in each of the nine regions, so their
variation occurs in a very obvious manner. The leading-order behavior of R can change significantly
between the di↵erent regions and therefore is a good indicator of when the behavior of the kernels
change. In Table I, we show the leading-order form of R in the di↵erent limits.

The top row of Table I shows that in all these regions, R takes the same form at leading order.
Only one of these three regions is needed as the common behavior between them would remove the
redundant parts. The top row right column (namely, the t2 � s2 = O(1), t1 � s1 = O(1) region) is the
completely unexpanded region, and so f and gSD take their most general forms there. Hence, the top
row, left and center columns have behavior which is already contained within the O(1), O(1) region.
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TABLE I. The expansion of R in the nine di↵erent asymptotic regions. When the t � s values are of order b` or a`, the
expressions are obtained by Taylor series expansions of the relevant terms. Each superscripted block represents a region in
which the kernel must be expanded.

R t2� s2= a`�2,a` t2� s2= b`�2,b` t2� s2=O(1)

t1� s1=O(1) R

0

R

0

R

0

a

t1� s1= b`�1,b` �b`�1,b`t̂ �b`�1,b`t̂ b`

⇣
��1,b`t̂+⇢1(s1)T̂(s1)(s2� t2)

⌘
b

t1� s1= a`�1,a` �a`�1,a`t̂±a`⇢2n̂

�a`�1,a`t̂±a`⇢2n̂

b`⇢1(s1)T̂(s1)(s2� t2)
+b2

`⇢1(s1)�2,b`T̂(s1)c

at2� s2=O(1), t1� s1=O(1) (outer) region.
bO(1), O(b`) (middle) region.
cO(b`)O(a`) (inner) region.

These redundant regions obviously would not add anything new to the expansion. Therefore, only the
O(1), O(1) region needs to be included from the top row. This is the region indicated by ‘a’ in the table.

A similar procedure is needed for the remaining six regions; however, the common behavior
there is not as obvious. For example, the form of R in the right column of the center row (namely,
the O(1), O(b`) region) limits to the form in the left and center columns. Therefore, though the form
is not exactly the same, this row can be correctly represented by the O(1), O(b`) region. This is the
region indicated by ‘b’ in the table.

Finally, in the bottom row, the R of the center column (namely, the O(b`), O(a`) region) is seen
to correctly limit to the other regions in this row. However, in this region, f and gSD are expanded
with respect to s2 in factors of b`. This expansion prevents the center column kernel representing the
far right column. Conveniently, the R of the right column of the bottom row is a limit of the O(1),
O(b`) region. Therefore, the right column of the bottom row does not need to be accounted for, as
it already is accounted for in the O(1), O(b`) region. Ignoring the bottom row right column term,
the O(b`) O(a`) region term correctly captures the remaining behavior of the other terms in this row
indicated by ‘c’ in the table.

The above analysis suggests that there are three distinct asymptotic regions for t2 � s2 and t1 � s1
to expand the kernels in: the O(1), O(1) region, the O(1), O(b`) region, and the O(b`), O(a`) region.
For simplicity, these regions will be called the outer, middle, and inner regions, respectively, and
they are illustrated schematically in Fig. 2. The Stokeslet kernel will now be expanded in these three
regions and the common parts subtracted, followed by the final integration. Inspecting the final result,
we will see that the source dipole distribution will in fact not be needed for the leading-order flow.

D. The leading-order expansion

The leading-order hydrodynamic behavior of a slender ribbon can be found by expanding the
Stokeslet kernel in the outer, middle, and inner regions, and removing the common behavior found

FIG. 2. A diagram depicting the scales of the di↵erent expansion regions measured about the ribbon center. Most of the
length is occupied by the outer or O(1), O(1) region in blue, dealing with interactions on that scale. The red box depicts the
middle O(1), O(b`) region, which deals with variation on the scale of the square. Finally, the small yellow box represents
the inner O(b`), O(a`) region.
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in the overlap regions. This is then followed by the integration of the asymptotic kernels and the use
of the boundary conditions to obtain the final asymptotic approximation.

From Eq. (10), the Stokeslet kernel has the form

KS = ⇢1(t1)
 

f(t1, t2)
|R| +

RR · f(t1, t2)
|R|3

!
, (15)

where R is defined by Eq. (12). We proceed to expand this term in the three regions and remove the
overlap.

1. Outer region

In the outer, O(1), O(1) region, t1 � s1 = O(1) and t2 � s2 = O(1). In this region, R is approxi-
mately given by

R

(o) = R

0

+ b`(s2⇢1(s1)T̂(s1) � t2⇢1(t1)T̂(t1)) +O(b2
`) +O(a`), (16)

where the superscript (o) indicates an expansion in terms of the outer region. We thus have

|R|2 = |R0|2 + 2b`R0

· (s2⇢1(s1)T̂(s1) � t2⇢1(t1)T̂(t1)) +O(b2
`) +O(a`), (17)

|R|�1 =
1

|R0|
� b`R0

· (s2⇢1(s1)T̂(s1) � t2⇢1(t1)T̂(t1))
|R0|3

+O(b2
`) +O(a`), (18)

|R|�3 =
1

|R0|3
� 3

b`R0

· (s2⇢1(s1)T̂(s1) � t2⇢1(t1)T̂(t1))
|R0|5

+O(b2
`) +O(a`), (19)

RR = R

0

R

0

+ b`
f
R

0

(s2⇢1(s1)T̂(s1) � t2⇢1(t1)T̂(t1)) + (s2⇢1(s1)T̂(s1) � t2⇢1(t1)T̂(t1))R0

g
+O(b2

`) +O(a`), (20)

and the leading-order outer-region Stokeslet kernel is given by

K

(o)
S
= ⇢1(t1)

 
f(t1, t2)
|R0|

+
R

0

R

0

· f(t1, t2)
|R0|3

!
+O(b`) +O(a`). (21)

2. Middle region

In the middle, O(1), O(b`) region, t1 � s1 = O(b`). In this region, any dependence on t1 should
be written in terms of the behavior at s1. This is done by using a Taylor series expansion around s1,
for all the terms which depend on t1. We define the new scaled variable

�1,b` =
t1 � s1

b`
. (22)

The terms in the Stokeslet kernel which depend on t1 are r(t1), ⇢1(t1), T̂(t1), and f(t1, t2). Their Taylor
series expansions are given by

r(t1) = r(s1) + (t1 � s1)t̂ +
(t1 � s1)2

2
n̂

s

1

+ · · · (23)

= r(s1) + b` �1,b`t̂ + b2
` �

2
1,b`



2
n̂

s

1

+O(b3
`), (24)

R

0

= �b` �1,b`t̂ � b2
` �

2
1,b`



2
n̂

s

1

+O(b3
`), (25)

⇢1(t1) = ⇢1(s1) + b` �1,b`@s1⇢1(s1) +O(b2
`), (26)

T̂(t1) = T̂(s1) + b` �1,b`�N̂ +O(b2
`), (27)

f(t1, t2) = f(s1, t2) + b` �1,b`@s1f(s1, t2) +O(b2
`), (28)
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where n̂

s

1

is the normal vector to the centerline,  is the curvature of the centerline, N̂ is the direction
of twisting of the ribbon plane, and �N̂ = @s1T̂. From the above series, R is

R

(m)

b`
= ��1,b`t̂ + ⇢1(s1)T̂(s1)(s2 � t2)

+ b` *,��
2
1,b`



2
n̂

s

1

� �⇢1(s1)t2�1,b`N̂ � t2�1,b`(@s1⇢1(s1))T̂(s1) ±
a`

b2
`

⇢2n̂+-
+O(b2

`) +O(a`), (29)

while the leading-order kernel is given by

b`K
(m)
S
= ⇢1(s1) *,

I

|R(m)
1 |
+

R

(m)
1 R

(m)
1

|R(m)
1 |3

+
- · f(s1, t2) +O(b`) +O(a`), (30)

with

R

(m)
1 = ��1,b`t̂ + ⇢1(s1)T̂(s1)(s2 � t2), (31)

and with the superscript (m) to indicate the middle expansion.
Importantly, in this middle expansion, terms proportional to the curvature and rate of twisting

terms have been discarded. These terms scale like b` and b`�, respectively. Therefore, slender-
ribbon theory assumes that the curvature, , and rate of twisting, �, are less than O(b�1

` ). If  or �
do become large, the error associated with these terms could also become large. The condition on
� is not hard to satisfy, as ribbon with b` = 10�2 would require around 30 twists to have a mean �
of O(b�1

` ). However, like in SBT, it is easier to think of configurations where  becomes large. The
centerline bending condition here is identical to that required in the framework of SBT. We note that
SBT has been used very successfully in applications where this curvature condition has been broken.25

Therefore, slender-ribbon theory could also work when  or � are large but the results should be
viewed with caution as they are formally outside the expected domain of validity.

3. Inner region

The last region to expand is the inner or O(b`), O(a`) region. In this region, terms with t1 or t2
must be represented by series. Unlike the middle region, t1 is expanded in powers of a`, while t2 is
expanded in powers of b`. Similarly to the middle region, two new variables are defined,

�1,a` =
t1 � s1

a`
, (32)

�2,b` =
t2 � s2

b`
. (33)

Using these variables and recognizing that the expanded terms in the middle region have a similar
form in the inner part, R can be shown to be given by

R

(i)

a`
= ��1,a`t̂ ± ⇢2n̂ �

b2
`

a`
�2,b`⇢1T̂ � b`s2�1,a`

⇣
T̂@s1⇢1 + ⇢1�N̂

⌘
+O(b2

`) +O(a`). (34)

Hence, the Stokeslet kernel in the inner region is given by

a`K
(i)
S
= ⇢1(s1) *,

I

|R(i)
1 |
+

R

(i)
1 R

(i)
1

|R(i)
1 |3

+
- · f(s1, s2) +O(b`) +O(a`), (35)

where

R

(i)
1 = ��1,a`t̂ ± ⇢2n̂ �

b2
`

a`
�2,b`⇢1T̂, (36)

and again we used the superscript (i) to indicate part of the inner expansion.
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4. Overlap regions

The common behavior between the above kernels needs to be subtracted to get the complete
asymptotic solution for the Stokeslets. This is done, classically, by expanding one kernel in terms of
another region’s variables and vice versa (done to check consistency). The overlap region that is most
similar to that of SBT is the overlap between the outer (Sec. III D 1) and middle regions (Sec. III D 2).
The outer kernel expanded in terms of the middle variables looks like

K

(o)2(m)
S

=
I + t̂t̂

b`| �1,b`|
· ⇢1(s1)f(s1, t2) +O(1) +O(a`b�1

` ), (37)

where we used the symbol “(o) 2 (m)” to indicate that it is the outer kernel expanded in terms of the
middle variables (with a labelling convention similar in other cases). The middle kernel expanded in
terms of the outer variables looks like

K

(m)2(o)
S

= ⇢1(s1)
I + t̂t̂

|t1 � s1|
· f(s1, t2) +O(b`) +O(a`). (38)

As expected, these two terms are identical. Furthermore, we note that Eq. (38) is almost identical to
the expression for the overlap region in SBT,17 showing expected similarities in the derivations.

In contrast, the common behavior between the middle and inner regions has no equivalence in
SBT since the inner region reflects the third length scale of the problem (ribbon thickness). Using
the expressions in Sec. III D 3, we obtain the leading-order R behavior when expanding the middle
kernel in terms of the inner variables as

b`R
(m)2(i)
1 = a`(��1,a`t̂ �

b2
`

a`
�2,b`⇢1T̂)

= a`Ra, (39)

which gives a common kernel of

K

(m)2(i)
S

=
⇢1

a`

 
I

|Ra |
+

RaRa

|Ra|3

!
· f(s1, s2) +O(b`a�1

` ) +O(a0
`). (40)

Similarly, when expanding the inner kernel in terms of the middle variables, we obtain

a`R
(i)
1 = b`(��1,b`t̂ � (t2 � s2)⇢1T̂) ± a`⇢2n̂,

= b`R
(m)
a ± a`⇢2n̂, (41)

which gives a common kernel of

K

(i)2(m)
S

= ⇢1 *,
I

b`|R(m)
a |
+

R

(m)
a R

(m)
a

b`|R(m)
a |3

+
- · f(s1, s2) +O(1) +O(a`b�1

` ). (42)

The two kernels are not as manifestly identical as in the outer and middle cases, but by expanding
them explicitly, it is easily shown that they are.

Note finally that the overlap of the outer and inner regions does not need to be considered since
the behavior common to outer and inner regions is included within the overlap of the middle and the
inner regions.

5. Complete Stokeslet kernel

From the above expansions, the complete Stokeslet kernel is then asymptotically approximated
by

KS ⇡ K

(o)
S
+K

(m)
S
+K

(i)
S
�K

(m)2(o)
S

�K

(m)2(i)
S

, (43)
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which when expanded gives

KS ⇡
I + R̂

0

R̂

0

|R0|
· ⇢1(t1)f(t1, t2) �

�
I + t̂t̂

�
|t1 � s1|

· ⇢1(s1)f(s1, t2)

+
I + R̂

(m)
1 R̂

(m)
1

b`|R(m)
1 |

· ⇢1(s1)f(s1, t2) +
I + R̂

(i)
1 R̂

(i)
1

a`|R(i)
1 |

· ⇢1(s1)f(s1, s2)

�
(

I + R̂aR̂a

a`|Ra|
· ⇢1(s1)f(s1, s2)

)
. (44)

E. The slender-ribbon equations

By integrating Eq. (44) over both t1 and t2, the asymptotic behavior of a sheet of Stokeslets can
then be obtained. The leading-order solution is thus given by the surface integral

8⇡U

s

(s1, s2) =
⌅ 1

�1
dt1

⌅ 1

�1
dt2

266664
I + R̂

0

R̂

0

|R0|
· ⇢1(t1)f(t1, t2) �

�
I + t̂t̂

�
|t1 � s1|

· ⇢1(s1)f(s1, t2)

+
I + R̂

(m)
1 R̂

(m)
1

b`|R(m)
1 |

· ⇢1(s1) f (s1, t2)

+
I + R̂

(i)
1 R̂

(i)
1

a`|R(i)
1 |

· ⇢1(s1)f(s1, s2)

� I + R̂aR̂a

a`|Ra |
· ⇢1(s1)f(s1, s2)

377775 . (45)

Wherever possible, we wish to evaluate the above integrals explicitly. However, this cannot be
done for two of the terms. Specifically, the first right-hand side term on the first line involves f (t1, t2)
and cannot be integrated over t1, while second line involves f (s1, t2) and therefore cannot be integrated
over t2. As a side remark, we note that each right-hand side term on the first line is individually singular
but when combined together the singularity disappears, a feature also appearing in SBT.

The remaining integrals, which can be evaluated, typically take the form
⌅ 1

�1
dt1

�i

p
�2 + ✓2 j

, (46)

where i and j are positive integers, ✏ � = t1 � s1, ✓ is an arbitrary real function that does not depend
on t1, and ✏ is a small parameter. The asymptotic forms of these integrals have been evaluated previ-
ously by Götz32 and are listed in the Appendix. After all possible integrations are performed, the final
integral formulation for slender-ribbon theory is given by

8⇡U(s1, s2) =
⌅ 1

�1
dt1

266664
I + R̂

0

R̂

0

|R0|
· ⇢1(t1) hfi (t1) �

�
I + t̂t̂

�
|t1 � s1|

· ⇢1(s1) hfi (s1)
377775

+

⌅ 1

�1
dt2 log *

,
4(1 � s2

1)
b2
`⇢

2
1(s2 � t2)2

+
-
�
I + t̂t̂

�
· ⇢1(s1)f(s1, t2)

+ 2
⇣
T̂T̂ � t̂t̂

⌘
· ⇢1(s1) hfi (s1), (47)

where we have used the notation hfi (t1) ⌘
⇤ 1
�1 dt2f(t1, t2). This is the main result of our paper. Errors

between this asymptotic result and the exact solution are at most of the order b`.
We note that in the final equation, there is no ± signs and thus, each point of the surface moves

rigidly with a corresponding point on the ribbon plane. As this was the boundary condition we wished
to enforce, no further singularities (source-dipoles) are needed in order to satisfy the boundary condi-
tions. This is consistent with known results for the motion of rigid prolate spheroids in the small-
thickness limit.18
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F. Slender-ribbon versus slender body

There are many similarities between our slender-ribbon equations (Eq. (47)) and Johnson’s
slender-body equations (Eq. (6)). The left-hand sides of both equations have the exact same form
and the integral over the centerline, s1, is very similar. In fact, the integral over the centerline would
be identical if Johnson’s force distribution was replaced by ⇢1(t1) hfi (t1). Physically, this means that
in the far-field, the ribbon behaves like a slender body with a force density, for each s1, equal to the
total force across s2.

The logarithmic term in SRT is also very similar to the logarithmic term in SBT. Both these terms
have the same tensorial behavior and contain a logarithm which depends on the aspect ratio and on
how the surface of the body varies along its length. However, unlike Johnson’s SBT, the logarithm
in the slender-ribbon equations has a dependence on the ribbon width, s2. It also multiplies the force
distribution and is integrated over.

Finally, the remaining (non-integral) term in the SRT equations bears some resemblance to the
remaining terms in Johnson’s SBT. However, instead of the tensor T̂T̂, Johnson’s result has the
identity tensor, I. In SBT, this local term modifies the logarithmic behaviour to further separate
the drag for motion perpendicular and parallel to the centerline. The same reasoning is at play here,
however instead of just two directions (normal and tangential), three distinct directions must be
considered. The T̂T̂ term therefore exists to ensure that the drag from motion in the normal n̂ direction
is larger than that in the T̂ direction, while the t̂t̂ term provides a similar correction to the drag in t̂ to
what it did in the SBT case.

IV. A NUMERICAL IMPLEMENTATION OF SLENDER-RIBBON THEORY

Our final integral formulation, Eq. (47), allows for investigations of the dynamics of slender
ribbons at low Reynolds number. If the force distribution is known along the ribbon plane, it is very
easy to calculate the resultant motion by integration. However, in most cases of practical interest, the
problem requires an inversion: it is the motion which is known and the force distribution f needs to
be computed by inverting the integrals. This is typically done numerically.

Di↵erent computational methods may be used for the inversion, and here, we employ a Galerkin
method.33 The force distribution is expanded in terms of an infinite set of orthogonal functions. The
orthogonality of these functions is then used to reduce the integral equation into an infinite set of
linear equations. Truncating and solving the remaining equations give an approximation to the force
distribution. The Galerkin method allows to employ similar simplifications to those used in SBT.32

The first integral in Eq. (47) must be divided into two parts to implement these simplifications:
one integral which has known eigenfunctions (Legendre polynomials) and the remaining behavior.
With this in mind, we rewrite the integral result as

8⇡U(s1, s2) =
⌅ 1

�1
dt1

"
(I + R̂

0

R̂

0

)
|R0|

� (I + t̂t̂)
|t1 � s1|

#
· ⇢1(t1) hfi (t1)

+ (I + t̂t̂) ·
⌅ 1

�1
dt1

"
⇢1(t1) hfi (t1) � ⇢1(s1) hfi (s1)

|t1 � s1|

#

+ ⇢1(s1)
f
LSRT(I + t̂t̂) � 2t̂t̂ + 2T̂T̂

g
· hfi (s1)

+ ⇢1(I + t̂t̂) ·
⌅ 1

�1
dt2 log

 
1

|t2 � s2|2

!
f(s1, t2), (48)

where LSRT = log


4(1�s2
1)

b2
`
⇢2

1

�
. The second integral in Eq. (48) has eigenfunctions of Legendre polyno-

mials, i.e.,
⌅ 1

�1
dt1

"
Pn(t1) � Pn(s1)

|t1 � s1|

#
= �LnPn(s1), (49)

where Pn(s1) is the Legendre polynomial of order n, L0 = 0, and Ln =
Pn

i=1 1/i for n > 0.32 This
suggests that ⇢1 hfi should be expanded as a series of Legendre polynomials. We define g(s1, s2) =
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⇢1(s1)f(s1, s2) to absorb the ⇢1 dependence into f. Similarly to the choice in s1, the orthogonal func-
tions for the s2 expansion should be chosen to simplify the integrals. Here, again Legendre poly-
nomials are chosen. The Legendre polynomials in s2 simplify the calculation of hfi, the rigid body
motions, the total force, and the total torque on the body. We thus write g(s1, s2) as an infinite sum of
Legendre polynomial in s1 and s2 as

g(s1, s2) =
1X

i=0

1X

j=0

gi, jPi(s1)Pj(s2)

= (P0(s1) P1(s1) P2(s1) · · · ) ·
*......
,

g0,0 g0,1 g0,2 · · ·
g1,0 g1,1 g1,2 · · ·
g2,0 g2,1 g2,2 · · ·
...

...
...

. . .

+//////
-
·
*......
,

P0(s2)
P1(s2)
P2(s2)

...

+//////
-

= S

T
1

(s1) ·G · S2

(s2), (50)

where the gi, j are constant three component vectors, the Latin indices (i, j) represent the Legendre
polynomial order in (s1,s2), respectively, G is a matrix of the gi, j, S

1

is a column vector of the s1
orthogonal functions and S

2

is a column vector of the s2 orthogonal functions.
Since Legendre polynomials satisfy the orthogonality condition

⌅ 1

�1
dt1Pn(t1)Pm(t1) =

2
2n + 1

�n,m, (51)

it is straightforward to show that

⇢(s1) h f⌫i =
⌅ 1

�1
Pj(s2) ds2G⌫; j,kPk(s1) = 2� j,0G⌫; j,kPk(s1), (52)

where the Greek indices, ⌫, correspond to one of the Cartesian components, and repeated indices are
summed over. The slender-ribbon equation can then be rewritten as

8⇡U⌘(s1, s2) = 2� j,0G⌫; j,k

⌅ 1

�1
dt1

266664
(�⌘,⌫ + R̂0;⌘ R̂0;⌫)

|R0|
� (�⌘,⌫ + t̂⌘t̂⌫)

|t1 � s1|

377775 Pk(t1)

+ 2(�⌘,⌫ + t̂⌘t̂⌫)� j,0G⌫; j,k

⌅ 1

�1
dt1

"
Pk(t1) � Pk(s1)

|t1 � s1|

#

+ (�⌘,⌫ + t̂⌘t̂⌫)G⌫; j,kPk(s1)
⌅ 1

�1
dt2 log

 
1

|t2 � s2|2

!
Pj(t2)

+ 2
⇥
LSRT(�⌘,⌫ + t̂⌘t̂⌫) � 2t̂⌘t̂⌫ + 2T̂⌘T̂⌫

⇤
� j,0G⌫; j,kPk(s1). (53)

Multiplying the above equation by Pm(s1) and Pn(s2) and integrating over all of s1 and s2, the equation
reduces to

8⇡⇠⌘;n,m = G⌫; j,k
f
4� j,0�n,0

⇣
�a
⌘,⌫;k,m + �b

⌘,⌫;k,m + �d
⌘,⌫;k,m

⌘
+ �c⌘,⌫;k,m⌥n, j

g
, (54)

where

⇠⌘;n,m =

⌅ 1

�1
ds1

⌅ 1

�1
ds2Pm(s1)Pn(s2)U⌘(s1, s2), (55)

�a
⌘,⌫;k,m =

⌅ 1

�1
ds1Pm(s1)

⌅ 1

�1
dt1 *,

(�⌘,⌫ + R̂0;⌘ R̂0;⌫)
|R0|

� (�⌘,⌫ + t̂⌘t̂⌫)
|t1 � s1|

+
- Pk(t1), (56)

�b
⌘,⌫;k,m =

⌅ 1

�1
ds1(�⌘,⌫ + t̂⌘t̂⌫)Pm(s1)

⌅ 1

�1
dt1

Pk(t1) � Pk(s1)
|t1 � s1|

= �Lk �
c
⌘,⌫;k,m, (57)

�c⌘,⌫;k,m =

⌅ 1

�1
ds1Pm(s1)(�⌘,⌫ + t̂⌘t̂⌫)Pk(s1), (58)
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�d
⌘,⌫;k,m =

⌅ 1

�1
ds1Pm(s1)

�
LSRT(�⌘,⌫ + t̂⌘t̂⌫) � 2t̂⌘t̂⌫ + 2T̂⌘T̂⌫

�
Pk(s1), (59)

⌥n, j =

⌅ 1

�1
ds2Pn(s2)

⌅ 1

�1
dt2 log

 
1

|t2 � s2|2

!
Pj(t2). (60)

The integrals listed above involve known functions and therefore are easily computed using MAT-
LAB.34 Care must be taken with �a

⌘,⌫;k,m and ⌥n, j as the individual terms in the integrand blow up
at t = s, though the full integrals are non-singular. MATLAB handles this using quadrature methods
and so approximates the integral without experiencing sampling issues. Interestingly, the ⌥n, j is the
only integral relating to s2 and it has no explicit dependence on the shape of the ribbon. It is therefore
possible to evaluate ⌥n, j once and use it for many di↵erent shape configurations.

For the ⇠⌘;n,m integral, further simplifications are possible in the case of rigid-body motions.
In that situation, the body translates at constant velocity, u, and rotates with constant angular ve-
locity, !. Since the equations are linear, translation and rotation can be treated separately and com-
bined at the end. Separating ⇠l ;n,m into rigid translation, ⇠u

⌘;n,m, and rigid rotation, ⇠!⌘;n,m, the integral
becomes

⇠u

⌘;n,m =

⌅ 1

�1
ds1

⌅ 1

�1
ds2Pm(s1)Pn(s2)u⌘, (61)

⇠!⌘;n,m =

⌅ 1

�1
ds1

⌅ 1

�1
ds2✏⌘⌫�Pm(s1)Pn(s2)X⌫(s1, s2)!�, (62)

where ✏⌘⌫� is the levi-civita symbol and X⌫(s1, s2) is the ⌫th component of the ribbon plane position
vector. Using Eq. (7) and evaluating these integrals as far as possible, they become

⇠u

⌘;n,m = 4�m,0�n,0u⌘, (63)

⇠!⌘;n,m = ✏⌘⌫�!�

"
2�n,0

⌅ 1

�1
ds1Pm(s1)r⌫(s1) +

2
3

b`�n,1
⌅ 1

�1
ds1Pm(s1)⇢1(s1)T̂⌫(s1)

#
. (64)

This significantly simplifies the integrals which need to be computed to obtain ⇠. Similarly, the total
force and torque can be simplified to

F = 4g0,0, (65)

L =
X

i, j

⌅ 1

�1
dt1

⌅ 1

�1
dt2

⇣
r(t1) + b`t2⇢1(t1)T̂(t1)

⌘
⇥ gi, jPi(t1)Pj(t2)

=
X

i

 
2
⌅ 1

�1
dt1Pi(t1)r(t1) ⇥ gi,0 +

2
3

b`
⌅ 1

�1
dt1Pi(t1)⇢1(t1)T̂(t1) ⇥ gi,1

!
. (66)

The Galerkin system, Eq. (54), leads to an infinite set of linear equations. For numerical work,
these equations need to be truncated. The number of orthogonal functions kept in s1 and s2 will be
denoted as N1 and N2, respectively. The g coe�cients can then be solved for by representing the
tensors in Eq. (54) by vectors and matrices and using standard matrix inversion. To do this, the vector
structure is divided into two levels: outer and inner. The full vector is divided into N2 outer levels,
and each outer level is further divided into N1 inner levels. These levels are formatted such that the ith
inner level in the jth outer level contains gi, j. Therefore, subsequent inner levels, in a certain outer
level, represent the di↵erent Legendre polynomials in s1 (changing i), while the subsequent outer
levels represent the di↵erent Legendre polynomials in s2 (changing j). These vectors are of length
3N1N2. Thus, the corresponding matrices are of size 9N2

1 N2
2 . This can be very large; however, the

terms needed to construct these matrices are defined by the integrals above and so can be evaluated
separately and stored in small matrices rather than one large matrix.

V. VALIDATION OF SLENDER-RIBBON THEORY: PLATE ELLIPSOIDS

The simplest structure with known mobility coe�cients which can be modeled using SRT is a
thin flat ellipsoid (plate ellipsoid). The resistance matrix for an arbitrary ellipsoid is known exactly35,36
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and when said ellipsoid is su�ciently flat and long, it approaches the slender-ribbon limit. We use
these exacts results to validate our SRT approach.

The force F applied by an arbitrary ellipsoid, with semi-axis lengths {k,m,n}, on the fluid when
translating at speed U in the k direction, is given by

F
⇡µU

=
16

� + ⇣kk2 , (67)

while the torque applied on a fluid due to rotation with rate ⌦ around the k direction is

L
⇡µ⌦

=
16
3

m2 + n2

m2⇣m + n2⇣n
, (68)

where we have

� =

⌅ 1

0
dx

1
p
(k2 + x)(m2 + x)(n2 + x)

, (69)

⇣k =

⌅ 1

0
dx

1

(k2 + x)
p
(k2 + x)(m2 + x)(n2 + x)

, (70)

⇣m =

⌅ 1

0
dx

1

(m2 + x)
p
(k2 + x)(m2 + x)(n2 + x)

, (71)

⇣n =

⌅ 1

0
dx

1

(n2 + x)
p
(k2 + x)(m2 + x)(n2 + x)

. (72)

These integrals can be easily evaluated using MATLAB.
The parametrisation of a flat ellipsoidal ribbon has a straight centerline, r(s1) = s1x̂, a constant

plane vector, T̂ = ŷ, and ⇢1 =
q

1 � s2
1. The ribbon plane obtained from this parametrisation is shown

in Fig. 9(a). For the plate ellipsoid, many of the integrals simplify analytically and only the ⌥n, j and
⇠l ;n,m integrals need to be computed numerically. Two parameters may be varied to compare SRT to
the exact solution: b` and a`/b`.

We plot in Fig. 3 iso-contours for the ratio between the hydrodynamic resistances obtained using
SRT to the exact resistances of a plate ellipsoid, for both translation and rotation in all three direc-
tions. The figure shows that SRT converges to within 1% of the exact solution rapidly as both b` and
a`/b` decrease. Recall that the asymptotic limit in which SRT is expected to be valid is b` ⌧ 1 and
a`/b` ⌧ 1. We note that the value of b` tends to have a larger a↵ect on the accuracy than that of a`/b`.
The convergence rate di↵ers for the di↵erent force and torque components but all have converged to
within 1% error by b` = a`/b` = 10�2. The plots also reveal that the torque terms converge without the
need for rotlet singularities (which would be needed, for example, for the rotation of a spherical body).
In the ribbon case, the rotation of a sheet of Stokeslets can thus adequately capture the leading-order
torque.

VI. COMPARISON WITH COMPUTATIONS FOR RIBBON HELICES

The dynamics of thick ribbons twisted into helices has been explored numerically previously
using a boundary integral method.15,16 These ribbons were unfortunately not slender, and the thinnest
ribbon studied had b` = 1/25 and a`/b` = 1/4. From Sec. V and Fig. 3, we see that the error in the
resistance coe�cients obtained using SRT for a plate ellipsoid with the same dimensions is up to
10%, and thus, we should expect results with errors of a similar order of magnitude when comparing
SRT with the work in Refs. 15 and 16.

In Fig. 4, we show a sample of the shapes explored in Ref. 16. The parametrisation used in that
paper was

rh(s1) = {�h cos(ks1), �h sin(ks1),↵hs1} , (73)
T̂h(s1) = cos(�)b̂h � sin(�)n̂h, (74)

where rh(s1) is the centerline, �h is the helix radius, k is the wavenumber, ↵h is the cosine of the
helix angle, � is the angle between the central axis and the ribbon plane (illustrated in Fig. 4), and n̂h
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FIG. 3. Rigid-body motion of a plate ellipsoid: Ratio between the net force or torque computed using SRT and the exact
solution. The figures show contour levels of the ratios for di↵erent values of b` and a`/b` in six distinct cases: (a) ratio for
the force in the a direction from translation in the same direction; (b) ratio for the torque in the a direction from rotation in
the same direction; (c) ratio for the force in the b direction from translation in the same direction; (d) ratio for the torque
in the b direction from rotation in the same direction; (e) ratio for the force in the ` direction from translation in the same
direction; (f) ratio for the torque in the ` direction from rotation in the same direction. The SRT computations were carried
out using N1= 15 and N2= 15.

and b̂h are the normal and bi-normal vectors to the helix centerline. This helix parametrisation relates
↵h, �h, and k, through ↵2

h
+ �2

h
k2 = 1, and the length measured along the helix axis is related to the

centerline length by 2Laxis = 2↵h`. In the work from Ref. 16, ⇢1 was taken to be
q

1 � s2
1 and the

cross-sectional shape was an ellipse with T̂

h

pointing to the major axis. The simulations in Ref. 16
considered ribbons with cross-sectional aspect ratios of 1, 2, and 4 while keeping the cross-sectional
area constant. The computational results showed that the ribbon propelling the quickest for a set
external torque (velocity per unit torque) is similar to an Archimedean screw (� = ⇡/2, Fig. 4(c)),
while the slowest is the structure shown in Fig. 4(a) (� = 0).
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FIG. 4. A sample of the helical ribbon-like structures explored computationally in Ref. 16. The parameter � measures the
relative angle between the ribbon plane and the central axis of the helix. These helices have a cross-sectional aspect ratio of 4.

We compare the computational results of Ref. 16 with aspect ratio 4 with those of SRT. The
parametrisation above is used with k = 4⇡, b` = 1/25 and ↵h = 0.5, 0.75, and 0.9. A net torque, L,
is applied along the axis of the helix and we compute the resulting translational velocity, U. The
comparison is shown in Fig. 5 with SRT results in solid lines, while the computational results from
Ref. 16 are plotted in dashed lines. Qualitatively, the results display the same dependence on �. When
� = ⇡/2, the velocity per unit torque is at a maximum, while when � = 0, it is at a minimum. Quantita-
tively, SRT overestimates the results near � = ⇡/2 and underestimates them near � = 0. The increase
in propulsion at � = ⇡/2 is likely to be due to the body being thinner in the SRT framework, and
thus experiencing less drag. The cause of the decrease at � = 0 is unknown but is consistent with the
behaviour of � = 0 found in Ref. 16 as the aspect ratio increased.

VII. COMPARISON WITH EXPERIMENTS FOR RIBBON MICROSWIMMERS

Slender ribbons have been used to devise micron-scale artificial swimmers termed artificial
bacterial flagella.6,7 These swimmers consist of a magnetic head and a thin ribbon tail twisted into a

FIG. 5. Scaled force-free velocity per unit torque for a ribbon helix with di↵erent values of �. The SRT results are displayed
in solid lines, while the numerical results of Ref. 16 are shown in dashed line. The SRT numerics are done with N1= 35 and
N2= 15.
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FIG. 6. A scanning electron microscope micrograph of an artificial bacterial flagellum with a diameter of 2.8 µm.6 Adapted
with permission from Zhang et al., “Characterizing the swimming properties of artificial bacterial flagella,” Nano Lett. 9,
3663 (2009). Copyright 2009 American Chemical Society.

helical shape similarly to what would be formed by a straight ribbon twisted around a pencil (Fig. 6).
These microswimmers are then rotated through the use of an external rotating magnetic field, which
leads to forward propulsion. The ribbons used in these studies were typically tens of µm long, a few
µm wide, and tens of nm thick, leading to b` = O(0.1) and a`/b` = O(0.01), an appropriate dimen-
sionless limit to address using slender-ribbon theory. This application is done with some caution as
Fig. 6 suggests that the radius curvature of the ribbon may be of a similar order to b`.

Specifically, the swimmers in Ref. 6 were made with a ribbon with dimensions 2b = 1.8 µm and
2a = 42 nm together with a square magnetic head with dimensions of 4.5 µm ⇥ 4.5 µm ⇥ 200 nm.
At the time of the experiment, the swimmer has 4.5 wavelengths along its body and a length relative
to the helix axis of Laxis = 38 µm. Before twisting, the ribbon was 49.7 µm long, and the swimmer
had a helix diameter of 2.8 µm immediately after fabrication. However, these helical dimensions are
inconsistent with each other, which is likely to be due to the swimmers slowly changing dimensions
for a few weeks after fabrication (Zhang and Nelson, private communication and Ref. 37). There-
fore, the helix diameter and centerline length at the time of the experiment are not exactly known.
To address this issue, we run two di↵erent simulations, one where the centerline length is taken to
be 2` = 49.7 µm and one where the helix diameter is taken to be 2�h = 2.8 µm. We expect the true
dimensions to be somewhere in between these two values.

FIG. 7. Shape of the ribbon used to model the artificial micron-scale swimmer from Ref. 6. In this case, 2�h has been taken
to be 2.8 µm. All lengths are scaled by the half centerline length `.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  131.111.185.9
On: Thu, 25 Feb 2016 11:08:30



013101-19 L. Koens and E. Lauga Phys. Fluids 28, 013101 (2016)

TABLE II. Hydrodynamic resistance coe�cients for ribbon microswimmer. Left: Experimental measurements;6 middle-left:
SRT results assuming 2�h = 2.8 µm; middle-right: SRT results with 2` = 49.7 µm; right: the model swimmer results from
Ref. 15. See the text for the definitions of the resistance coe�cients A, B, and C . The SRT computations are done with
N1= 35 and N2= 15.

Experiments6 SRT (2�h = 2.8 µm) SRT (2` = 49.7 µm) Ref. 15’s model

A (10�7 N s m�1) 1.5 1.04 0.973 0.937
B (10�14 N s) �1.6 �1.32 �0.997 �1.63
C (10�19 N m s) 2.3 6.81 4.94 10.1
B/A (10�7 m) �1.07 �1.27 �1.02 �1.74

The head and the twisted ribbon are treated separately in our model of the microswimmer, with no
hydrodynamic interactions. The resistance coe�cients of the full swimmer are then the sum of resis-
tance coe�cients on the head and the ribbon. This leaves the coupling coe�cient as that of the helical
ribbon while changing the other coe�cients. The head is modeled as an oblate spheroid aligned such
that the shortest direction is perpendicular to the helix axis of the body. The resistance coe�cients on
this spheroid can then be calculated using Eqs. (67) and (68). Assuming a dynamic viscosity of water
of 10�3 Pa s, the drag from translation on the head is found to be 2.49 ⇥ 10�8 N s m�1 and the torque
from rotation is 1.22 ⇥ 10�19 N s m. The ribbon is assumed to have the form given by Eqs. (73) and
(74), where � has been set to 0. This description is then used to compute the resistance coe�cients
for helices with 4.5 waves along their length and an axial length of 2Laxis = 38 µm. As mentioned
above, two separate cases are considered: one where 2` = 49.7 µm and one where 2�h = 2.8 µm.

In Fig. 7, we show the parametrization of the ribbon plane used in the case 2` = 49.7 µm. In
Ref. 6, the coe�cients of the resistance matrix for such a helical swimmer were characterized exper-
imentally, with values listed in the first column of Table II, while the results for both cases 2�h
= 2.8 µm and 2` = 49.7 µm are shown in the second and third columns, respectively. In this table,
A denotes the hydrodynamic resistance coe�cient relating the drag force experienced parallel to the
helical axis from translation in the same direction, which is therefore composed of the drag on the
helix and the drag on the head; B is the hydrodynamic force experienced parallel to the helix axis
from rotation around the helix axis; finally, C is the hydrodynamic torque experienced around the
helical axis from rotation around said axis of both the head and the helix. We also give the value of the
ratio B/A, which is important in the context of the locomotion. Indeed, since the swimmer must be
force free, the translational velocity per unit angular velocity is given by the negative of the coupling
divided by the translational drag (�B/A), the values of which are displayed in the last row of Table II.

Inspecting the results in Table II, we see that both cases give results close to the experimental
measurements of Ref. 6. The geometry with 2�h = 2.8 µm gives results closer to the experiments
for force due to translation (A) and due to rotation (B), while the ratio B/A and the torque resis-
tance to rotation (C) are best approximated by the geometry with 2` = 49.7 µm. Therefore, slender-
ribbon theory, despite the fact that it is only valid asymptotically in the mathematically slender limit,
can be used as an accurate predictive tool to design microscopic swimmers similar to those from
Refs. 6 and 7.

Table II shows that the drag force, A, and the coupling force from rotation, B, of the model
swimmer are smaller than the experimental values. This is likely due to the ellipsoidal cross section
used to model the ribbon and head and the asymptotic treatment of the ribbon. The ribbon and head
of the swimmer in Ref. 6 are more square and have finite thickness (Fig. 6). Therefore, they will have
larger values of A and B.

Furthermore, for both geometrical models, the torque from rotation around the helix axis, C, is
larger than that measured in Ref. 6. This increase probably arises from the chose parametrization for
the ribbon. As can be seen in Fig. 7, the edges of the ribbon curve slightly. This curving is due to
the twisting of the helix centerline. As the centerline curves around, the lines along s2 fall such that
when cut down the helix axis (not down T̂) the cross section appears curved. We anticipate that this
curving of the edges only significantly changes the value of C. Indeed, as the slender-ribbon equations
assume that the system consists of locally flat segments, this curving has essentially no influence on
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the value of A. Similarly because B quantifies the torque induced by a translation, it follows roughly
a linear surface dependence thereby giving B a linear dependence on s2. The integration of s2 over
even bounds therefore removes any a↵ect of said curving in B. In contrast, the torque from rotation,
C, has quadratic dependence on the surface, and integration of an even function over even bounds
does not cancel out. Hence, this curving could significantly increase the value of C. Unfortunately,
because the current form of SRT requires T̂ · t̂ = 0 for all s1, a parametrisation where the curving does
not occur is not possible. But with a di↵erent mathematical approach to slender ribbons, this could
perhaps be tackled.

Previously these artificial bacterial flagella have been modelled using a boundary integral formu-
lation,15 with results given in the fourth column of Table II. This model included interactions between
the head and the tail and set ↵h = 0.7. However, like the boundary integral work in Ref. 16, b`/a` = 4
and there was only four waves along the body centerline (including the head). Though the results
of Sec. VI show strong dependence on the configuration and b`/a`, the model of Ref. 15 closely
replicated the coupling coe�cient for the swimmer, B. This value is much closer than either SRT
model. However, the SRT models have closer values for the linear drag, A, the torque from rotation,
C, and the velocity per unit angular velocity �B/A.

VIII. COMPARISON WITH SLENDER BODY THEORY

There are, of course, many shapes and configurations that slender-ribbon theory can model which
cannot be tackled using slender-body theory. For example, SBT cannot replicate the behavior of a
plate ellipsoid (Sec. V) or the behavior created by a twisted ribbon (Sec. IX). However, for example,
for ribbons with a helical centerline, one may ask how accurately the system could be represented by a
slender body with the same centerline but a di↵erent e↵ective thickness? Or how does the swimming
speed of a slender body compare to that of a slender ribbon?

In this section, we use a numerical implementation of SBT25 to compare ribbons twisted into
helices to slender bodies with the same centerline. The comparison focuses on two features: (1) for
what e↵ective filament radius does SBT best replicates the resistance coe�cients, A, B, and C, of the
slender ribbon? (2) How does the velocity per unit rotation and the velocity per unit torque of a ribbon
compare with slender bodies of di↵erent radii? We take the slender body that best replicates each
individual coe�cient as the body which minimizes the relative di↵erence squared between SRT and
SBT results, defined as (1 � ↵SBT/↵SRT)2 for any computed quantity of interest ↵. Similarly, the one
that the best replicates the total (the “All” test) and both A and B (the “A and B” test) is the filament
radius that minimizes the sum of the relative di↵erence squared. For the velocity per unit rotation,
or per unit torque, the di↵erence between the velocities from SRT and SBT is used, and a negative
value indicates faster propulsion for a slender body than a slender ribbon.

We carry out these comparisons for the experimental and simulated results of the microscopic
swimmer discussed in Sec. VII6 and for our simulations of helical ribbons with↵h = 0.75 and � = ⇡/2
discussed in Sec. VI. The experimental configuration was assumed to have a centreline length of
49.7 µm. Furthermore, since the experimental results includes the head, the drag and torque of the
equivalent oblate spheroid is removed from the resistance coe�cients.

In Table III, we list the values of the best (as defined above) radii for the slender-ribbon shapes,
while Fig. 8 shows the relative di↵erence squared, the di↵erence in the velocity per unit rotation, and
the di↵erence in the velocity per unit torque. The radii of the slender bodies are always scaled by
half the centerline length. Sharp peaks in Figs. 8(a) and 8(b) correspond to points where the match
between the slender body and slender ribbon is exact. The minima for the “All” and the “A and B”
cases are not sharply peaked, indicating that one slender body cannot exactly match the full dynamics
of the ribbon. In the “All” test, the average percentage error for each coe�cient at the best slender
body radius is 20%, 7.9%, and 4%, for the swimming experiments of Refs. 6 and 7, the correspond-
ing SRT results, and the SRT simulations of the twist ribbons with ↵h = 0.75, � = ⇡/2. Hence, the
slender-ribbon behavior is only poorly replicated by a single slender body. Interestingly, the coupling
coe�cient, B, has no peak when � = ⇡/2, indicating that the coupling for the Archimedean screw
cannot be replicated by a slender body with the same centerline. In Figs. 8(c) and 8(d), we measure
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TABLE III. Radii of a slender body (normalized by half its centerline length) which best replicates the slender-ribbon
coe�cients with a helical centerline for three cases: the microswimming experiments,6,7 the SRT simulations for the same
experiments, and the SRT simulations of a twisted ribbon with ↵h = 0.75, � = ⇡/2. The resistance coe�cients considered are:
A, drag along the helix axis from translation along the same direction; B, torque around the helix axis from translation along
the helix axis; C , torque around the helix axis from rotation around the helix axis. The “All” case considers the configuration
which minimizes the sum relative di↵erence squared for the three terms, while “A and B” minimizes the sum of the relative
di↵erence squared for both A and B. When there is more than one radii which replicates a given coe�cient the largest is
listed followed by the others in brackets. Note that the centerline and ribbon width are di↵erent between the experimental
models and the ↵h = 0.75 case.

Coe�cients
Microswimming
experiments6,7

SRT simulations of
experiments6,7

SRT simulations for
twisted ribbon

All 8.80⇥10�4 0.0192 0.0284
A and B 0.0418 0.0395 0.0241
A 0.0800 0.0147 0.0262
B 0.0389 (4.37⇥10�4) 0.0411 (4.23⇥10�4) 0.0126
C 4.80⇥10�4 0.0190 0.0287

the di↵erence between the velocity per unit rotation, U/!, and the velocity per unit torque, U/L,
respectively. For the velocity per unit rotation, there is a sharp decrease and then an approach to an
asymptote as the body gets logarithmically thinner. In contrast, for the velocity per unit torque, the
di↵erence decreases linearly as the body gets logarithmically thinner. For the twisted ribbon with
� = ⇡/2, the di↵erence in U/! is never negative showing that, at a given angular velocity, no slender
body can propel faster than a slender ribbon with an identical centerline.

FIG. 8. Comparisons between a slender ribbon and a slender body with the same helical centerline as a function of the radius
of the slender body scaled by half the centerline length. Results are shown for the microswimming experiments6,7 (dashed),
the SRT results of the same experiments (solid), and the SRT results for a twisted ribbon with ↵ = 0.75 and � = ⇡/2 (dotted).
The plotted results are (a) the sum of the relative di↵erence squared for all coe�cients A, B, and C (blue) and A and B

(green) with inset depicting the best radii in the microswimmer cases; (b) the relative di↵erence squared for A, B and C

individually; (c) the di↵erence between the velocity per unit rotation; (d) the di↵erence between the velocity per unit torque.
Numerical results obtained with N1= 35 and N2= 15.
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FIG. 9. Images of the ribbon plane for the twisted ellipsoidal swimmer with di↵erent number of twists, Q: (a) Q = 0;
(b) Q = 0.5; (c) Q = 1; (d) Q = 2. The di↵erent color shadings correspond to di↵erent heights along the z direction.

IX. HYDRODYNAMICS OF A THIN TWISTED PLATE ELLIPSOID

The slender-ribbon formulation allows us to investigate how twisting a ribbon changes its hydro-
dynamics. The behavior of a twisted plate ellipsoid, with aspect ratio b` = 0.01, is considered here
in order to investigate this e↵ect. The parametrization for such a body is given by

r(s1) = s1x̂, (75)
T̂ = cos(Q⇡s1)ŷ + sin(Q⇡s1)ẑ, (76)

where Q determines the number of twists over the length of the body and x̂, ŷ, and ẑ are orthogonal
unit vectors. The ribbon planes for some of these shapes are illustrated in Fig. 9.

We use SRT to compute the resistance matrix for such shapes. In Fig. 10, we display the values
of the matrix coe�cients for the twisted ellipsoids as a function of the number of twists, Q. The
calculations were carried out in the center of resistance frame where the coupling matrices are sym-
metric. This frame is convenient as each of the sub-matrices, the force from translation, the force
from rotation, and the torque from rotation, have only three terms. Also, wherever appropriate, the
resistance coe�cients for a prolate ellipsoid with aspect ratio 1/b` (dashed) and 2/b` (dotted) are
plotted in Fig. 10.

We first observe that the components of the resistance matrix relating to force or torque parallel to
the centerline remain constant as the number of twists increases while the other components display
decaying oscillations. At leading order, the parallel force and torque are thus that of a plate ellipsoid
and interactions between the twists are a higher-order e↵ect.

The non-parallel terms are then seen to oscillate. This oscillating behavior can be attributed to
which direction, ŷ or ẑ, contains most of the ribbon plane. When more of the plane sits in ŷ the resis-
tance to motion in ŷ is less than it is in ẑ. At each Q ⇡ 0.5 interval, equal amounts of the plane are in
ŷ and ẑ and so there is no di↵erence in the drag between these two dimensions. Further twisting again
puts one direction ahead and so creates the observed oscillations. Note that the oscillations do not have
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FIG. 10. Axial resistance coe�cients of a twisted ellipsoid (computed in the center of mobility frame) as the number of
twist, Q, increases: (a) force from translation; (b) force from angular rotation; (c) torque form angular rotation. Solid lines
are the SRT results, while the dashed and dotted lines are the resistance coe�cients for a prolate ellipsoid with aspect ratios
b�1
` and 2b�1

` , respectively. Numerical results for SRT were obtained using N1= 20 and N2= 35.

an exact Q = 0.5 periodicity because of the ellipsoidal cross section of the ribbon. The reduction in
the oscillation amplitude is due the relative proportion of the helix plane producing the relative drag.
Only the “extra ribbon” beyond half integer multiples contribute to the amplitude of the oscillation.
As more twists occur over the length of the ribbon, less of the total length of the ribbon is occupied
by this “extra ribbon.” Therefore, less of the ribbon is contributing to the di↵erence in the resistances.

Eventually after enough twists, one may suspect that the ribbon would begin to behave hydro-
dynamically like a prolate ellipsoid. The decreasing oscillations supports this idea. Naively, one may
expect that the limiting ellipsoid would have an aspect ratio of b�1

` . However Fig. 10 shows that the
resistance of the twisted ellipsoid is closer to a prolate spheroid with aspect ratios 2b�1

` (dotted) than
one of the aspect ratios b�1

` (dashed). This factor of two could be considered as an average of the
dimensions of the ribbon along T̂ and t̂ ⇥ T̂. It is possible that non-asymptotically thin ribbons would
approach a prolate ellipsoid with aspect ratio b�1

` with a su�cient number of twists; however, such
behavior is of higher order in the asymptotic expansion.

Importantly, Fig. 10 shows that the hydrodynamic coe�cient relating the force parallel to the
tangent vector from rotation around the tangent vector is zero at leading order for all values of Q. This
result appears counterintuitive as the edges of the twisted ribbon trace out helices. Since the surface
width of the sheet is of order b` and the rate of twisting along the length is assumed to be much less
than b�1

` in the asymptotic expansion considered in this paper, the contribution to the flow by these
helix edges is of order b` or smaller. Typically, the absence of this coe�cient would not be an issue
as the coupling created by any bending of the centerline would be an order of magnitude larger than
that created by the twisting (see, for example, the twisted ribbon helix addressed above). However, if
the rate of twisting, � = |@sT̂(s)|, reaches order b�1

` (Q ⇡ 30), the force parallel to the tangent from
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rotations around the tangent vector would become significant. In said cases, higher order terms in the
SRT expansion would be needed.

We finally note that past work considered similar twisted ribbons to investigate the di↵usion of
chiral objects in a shear flow.14 The hydrodynamics of these shapes was tackled numerically using a
boundary integral formulation and, though were asymptotically thin (b � a), they typically were very
twisted, � = O(b�1

` ), or very wide ` ⇠ b. Although their ribbons lie outside the asymptotic domain
of slender-ribbon theory, the behavior reported agrees with the results described above.14 The only
resistance coe�cients discussed in Ref. 14 were the average rotational resistance perpendicular to the
centerline tangent and the force from rotation parallel to the tangent. It was seen computationally that
the average rotational resistance was close to that of a rod and had little dependence on the number
of twists. Our results in Fig. 10(c) show that the resistance perpendicular to the centerline (ŷ and ẑ)
oscillates around the behavior of a rod and are out of phase with each other. The average of the two
resistances is therefore close to a rod and does not change with the number of twists, similarly to the
results of Ref. 14. Further, the value of the force from rotation parallel to the centerline was shown
in Ref. 14 to go to 0 when the ribbons were straight or very twisted. The authors commented in this
work that “The e↵ect of the twist is generally weak in the principal part of the mobility tensor.” This
result supports our results that such dynamics is a higher order e↵ect in the expansion of SRT.

X. CONCLUSION AND OUTLOOK

In this paper, we have introduced “slender-ribbon theory” and computed asymptotically the
leading-order hydrodynamics of a slender ribbon at low Reynolds number. The ribbon is represented
by a plane of Stokeslet singularities placed strictly inside the ribbon’s body. The resulting kernel is
asymptotically expanded in terms of two dimensionless groups: the ratio width over length, b` = b/`,
and the ratio thickness over length, a` = a/`. This expansion assumed that the curvature and the
rate of twisting in the ribbon are less than b�1

` . The resulting equations have many similarities to the
equations of slender-body theory17 and are seen to accurately determine all resistance coe�cients of
a long flat ellipsoid. Unlike slender-body theory, no additional singularities beyond the Stokeslet are
required at leading order.

Slender-ribbon theory was then used to characterize the behavior of di↵erent setups. First, we
investigated the dynamics of ribbons whose centerline are bent into a helix. The qualitative trends
seen for thicker ribbons remained true in the asymptotically thin limit. We then investigated the
swimming hydrodynamics of an artificial microswimmer recently proposed experimentally, which
exploits the rotation of a helical ribbon to create propulsion. We obtained good quantitative agree-
ment between measurements and theoretical prediction of our asymptotic theory. Comparing slender
ribbons with slender filaments, it was found that no equivalent slender body can accurately replicate
the dynamics of a helical slender ribbon. Finally, an investigation into the dynamics of thin twisted
ellipsoids showed that as the number of twists increased, the hydrodynamics limited towards that of
an equivalent ellipsoid with a counter-intuitive aspect ratio of 2b�1

` . In that case, some of the resistance
coe�cients were seen to oscillate with an increase in twist, which was rationalized.

The asymptotic results derived in this paper could be used in a number of other, more complex,
situations. The dynamics of twisted planes opens up the possibility of exploring the hydrodynamics
of topologically odd objects. Similarly, as slender-ribbon theory only requires the surface to move
rigidly with a corresponding point on the ribbon plane, the theory can handle non-rigid body motions,
like waving, flapping, and twisting. In all these cases, the fluid flow around the body can also be
computed, similarly to what is done in SBT.27,31 This is achieved by plugging the computed force
distribution into

8⇡u(x) =
⌅ 1

�1
dt1⇢1(t1)

⌅ 1

�1
dt2

"
f(t1, t2)
|R0| +

R

0
R

0 · f(t1, t2)
|R0|3

#
, (77)

where u is the velocity of the fluid at x and R

0 is a vector from a point on the ribbon plane to x,
i.e., R

0 = x � X(t1, t2).
Slender-ribbon theory could be further extended to include extensions similar to the ones devel-

oped for slender bodies. This includes the interactions between multiple bodies,26,27 the role of nearby
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TABLE IV. Table of the asymptotic solutions to the integral of the form of Eq. (A1).

j\ i 0 1 2 3

1 ✏ log
✓

4(1�s2)
✏2✓2

◆
+O(✏3) �2 s+ s✓2✏2

1�s2 +O(✏3)

2 ✏⇡
✓ +

2✏2

s2�1 +O(✏3) ✏ log
⇣
s�1
s+1

⌘
+O(✏3) 2�✏⇡✓+O(✏3)

3 2✏
✓2 +O(✏3) 2 s✏2

s2�1 +O(✏3) ✏

log

✓
4(1�s2)
✏2✓2

◆
�2

�
+O(✏3) �2 s+ 3 s✓2✏2

1�s2 +O(✏3)

4 ⇡✏
2✓3 +O(✏3) O(✏3) ⇡✏

2✓ +
2✏2

s2�1 +O(✏3) ✏ log
⇣
s2�1
s2+1

⌘
+O(✏3)

surfaces,38 and the dynamics of elastic shapes.29–31 Furthermore, the practicality of slender-ribbon
theory could be increased by extending the domain of validity of its derivation. For example, extending
the force density in the ribbon plane to higher order would allow to capture the resistance coe�cient
linking the force along the centerline tangent arising from rotation around the tangent. Another useful
extension would be removing the mathematical assumption that T̂ · t̂ = 0 or allowing the ribbon to
be a non-developable surface. This would allow for the parametrization to become similar to the ones
used in solid mechanics,12 setting the stage for the elasto-hydrodynamics of ribbons.
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APPENDIX: ASYMPTOTIC INTEGRALS

As discussed in Sec. III E, many of the integrals inside the Stokeslet kernel take the form
⌅ 1

�1
dt

�i

p
�2 + ✓2 j

, (A1)

where ✏ � = t � s, ✓ is an arbitrary real function that does not depend on t, and ✏ is a small parameter.
These integrals have been evaluated previously by Götz32 and Table IV lists all the relevant integrals
of this form. In addition, the following identities are also needed:

⌅ 1

�1
dt2 log *

,
1

b2
` �

2
2,b`

+
- = 2(2 � (1 � s2) log(1 � s2) � (1 + s2) log(1 + s2)) (A2)

and

⌅ 1

�1
dt2 log

*...
,

1

b2
` �

2
2,b`
+

a2
`
⇢2

2
b2
`
⇢2

1

+///
-
= 2(2 � (1 � s2) log(1 � s2) � (1 + s2) log(1 + s2))

+ 2⇡
a`⇢2

b`⇢1
+O(a`) +O(b2

`). (A3)
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