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Structured light enables biomimetic swimming
and versatile locomotion of photoresponsive
soft microrobots
Stefano Palagi1, Andrew G. Mark1, Shang Yik Reigh2, Kai Melde1, Tian Qiu1,3, Hao Zeng4,
Camilla Parmeggiani4,5, Daniele Martella4, Alberto Sanchez-Castillo1, Nadia Kapernaum6,
Frank Giesselmann6, Diederik S. Wiersma4, Eric Lauga2 and Peer Fischer1,6*

Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial
microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the
wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of
photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic
motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to
self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand.
Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic
metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be
extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced
microrobotic technologies.

Mobile microscale robots might, in the future, navigate
within the human body to perform minimally
invasive diagnostic or therapeutic tasks1,2. Biological

microorganisms represent the natural inspiration for this vision.
For instance, microorganisms successfully swim and move through
a variety of fluids and tissues. Locomotion in this regime, where
viscous forces dominate over inertia (low Reynolds number),
is possible only through non-reciprocal motions demanding
spatiotemporal coordination of multiple actuators3. A variety
of biological propulsion mechanisms at di�erent scales, from
the peristalsis of annelids (Fig. 1a) to the metachrony of ciliates
(Fig. 1b), are based on the common principle of travelling waves
(Fig. 1c). These emerge from the distributed and self-coordinated
action of many independent molecular motors4,5.

Implementing travelling-wave propulsion in an artificial device
would require many discrete actuators, each individually addressed
and powered in a coordinated fashion (Fig. 1d). The integration of
actuators into microrobots that are mobile poses additional hurdles,
because power and control need to be distributed without a�ecting
the microrobots’ mobility. Actuation of existing microrobots
generally relies on applying external magnetic6–10, electric11 or
optical12 fields globally over the entire workspace. However, these
approaches do not permit the spatial selectivity required to
independently address individual actuators within a micro-device.
Nevertheless, complex non-reciprocal motion patterns have been
achieved by carefully engineering the response of di�erent regions
in a device to a spatially uniform external field13,14. The drawback is
that this complicates the fabrication process, inhibits downscaling

and constrains the device to a single predefined behaviour. These
challenges mean that most artificial microrobots actually have no
actuators. Rather, they are inmost cases rigidmonolithic structures,
either pushed by chemical reactions15 or directly manipulated
by torques or forces applied by external magnetic fields16–20.
Alternatively, they consist of flexible materials embedding, at best, a
small number of passive degrees of freedom21,22 (DOFs).

In macroscale robots, one approach to increase the number
of DOFs has been to adopt soft bodies, capable of biomimetic
actuation23–28. However, these approaches have resisted
miniaturization. Soft active materials such as hydrogels29
and liquid-crystal elastomers (LCEs), which exhibit stimuli-
responsive behaviours, represent a potential route towards
advanced biomimetic microrobots. At the microscale, soft active
materials have enrichedmicrorobots with additional functionalities,
for example, on-demand drug release30,31, and LCEs have recently
actuated a walking microrobot32. Nevertheless, despite their soft
bodies, these microrobots have each a unique function, predefined
by its form, and few DOFs.

Here we present the use of structured light to power and
control intrabody shape changes in microrobots. The technique
enables fully artificial, self-propelled microswimmers. Indeed, they
are true swimmers, because they move by deforming their soft
body in a periodic way4, and they do so with no forces or torques
applied by external fields and no embedded biological cells. The
versatility of the actuation mechanism allows a single device to
execute a variety of gaits including propulsive motions that mimic
the symplectic and antiplectic metachrony of ciliate protozoa. We
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Figure 1 | Locomotion based on travelling-wave features, from nature to
technology. a, Peristaltic locomotion of a worm by travelling waves of radial
expansion and longitudinal contraction. b, Propulsion of a ciliate by
metachronal waves emerging from the coordination of the cilia.
c, Abstraction of the concept of travelling waves as a general locomotion
principle. d, The artificial implementation of a travelling-wave propulsion
would normally require the use of a large number of actuators that can be
controlled in a precisely synchronized manner; this is unfeasible at the
microscale. e, Concept of a selectively triggered continuous microrobot
consisting of a soft active material.

describe the system as a new type of continuum actuator having a
function-agnostic structure within which the light field can address
a virtually unlimited number of DOFs (Fig. 1e). This versatility
permits sophisticated and adaptable locomotion behaviours in
submillimetre devices.

System concept
LCE materials exhibit a reversible shape change triggered by
either heat or light33,34. As they can be fabricated at small
length scales35,36 and powered remotely, they are ideally suited
for building mobile active robots with body sizes on the scale of
hundreds of micrometres32. Instead of uniformly illuminating a
complex, carefully engineered device13 or focusing the light onto
a single spot37–39, our approach is to use structured dynamic light
fields to excite sophisticated intrabody deformations within LCE
microrobots with very simple and agnostic designs. In this scheme,
the microrobot is regarded as a continuously addressable body that
acts as an extended array of many infinitesimally small actuators,
each of which can be independently triggered by the local light field.
This makes the remote power, synchronization and control easily
solved macroscale problems. It also has the benefit of transferring
the burden of function from the microrobot’s form into the light

field, thereby simplifying its design and fabrication. Thus, rather
than defining themicrorobot’s action once at the fabrication stage, it
can be dynamically reconfigured in real time through software, with
virtually limitless flexibility.

Selective deformation of soft continuous microscale bodies
We fabricate LCE microrobots in the form of long cylinders (about
1mm in length and 200–300 µm in diameter), and flat discs (50 µm
thick and either 200 or 400 µm in diameter) using the procedures
reported in the Methods. At room temperature, the functional
liquid-crystalline units (mesogens) possess orientational order,
whose local direction and strength are described by the nematic
director n and the order parameter Q (ref. 33). The photoresponse
arises when the covalently bound azobenzene dye in the LCE
absorbs the light, driving the elastomer through the nematic-to-
isotropic phase transition. The mechanism consists of two di�erent,
but concurrent e�ects: the dye’s trans–cis photoisomerization, and
a light-induced thermal e�ect32,33,37. The axial nematic alignment
of our cylinders leads, under homogeneous illumination, to axial
contraction and simultaneous radial expansion (Fig. 2a). By small-
angle X-ray scattering, we estimate a value for Q of 0.38 and axial
contractions of about 30% (see Supplementary Information 4), cor-
responding to radial expansions of more than 18%. The elastomer
formulations that we use possess two key characteristics: first, they
do not require a second wavelength of light to excite relaxation
after excitation; and they possess the fastest responses among LCEs
(ref. 32), a prerequisite for the propulsion that we demonstrate13,40.

Structured light fields are generated by an optical system based
on a digital micromirror device (DMD) with 1,024⇥ 768 mirrors.
The DMD spatially and temporally modulates the intensity of the
laser light field that is projected into the microrobot workspace
through a microscope objective (Fig. 2b; see Methods). Only
those sections of the body that are illuminated are expected to
deform, whereas the remainder will remain relaxed. Inspired by
the locomotion of microorganisms, we implement travelling-wave
body deformations with selectable wave parameters. We have
simulated the response of the cylindrical microrobots to periodic
patterns of light and dark stripes using a finite-element model
(Fig. 2c,f; see Methods). The numerical simulations show that a
localized decrease in the order parameter within the LCE material
indeed results in a selective shape change. However, because of
the material continuity conditions, binary illumination results in
smooth transitions between the relaxed and deformed regions
(Fig. 2c, simulation and 2d, experiment). The continuous actuator
mimics, at microscopic scales, the action of the hydrostatic skeleton
ofworms during peristalticmotion, coupling radial and longitudinal
deformation at constant volume.

Figure 2d shows a close-up side view of the experimental
deformation of a cylindrical microrobot. A binary periodic light
pattern, with a spatial wavelength of 260 µm, is projected onto the
microrobot (radius of about 100 µm), leading to localized shape
changes in the illuminated regions (seeMethods and Supplementary
Movie 1). Importantly, neither relaxation nor spreading of the
deformation due to heat transfer is observed, rather the shape
changes are localized and stable. The light absorption profile
through the material results in stronger illumination and heating of
the surface that faces the light source compared with the opposite
surface. However, so long as the temperature and illumination are
su�cient to drive the response above the critical point and into
saturation (see Supplementary Fig. 4), there is no strong di�erential
deformation between the upper and lower surfaces.

The dynamic behaviour of a microrobot (length of 1.3mm and
radius of 170 µm) is shown by the sequence of frames in Fig. 2e,
imaged from the top. A binary periodic light field (shown as
the green overlay), travelling from left to right at a frequency of
1Hz, is projected onto the microrobot, which is anchored to the
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Figure 2 | Deformation of microrobots made of soft active materials wirelessly controlled by dynamic light fields. a, Finite-element simulation of a
cylindrical microrobot (length = 1 mm, diameter = 200 µm) at rest (left) and after full deformation (right, emphasized by a 2⇥ factor). The blue and yellow
arrows represent the axial contraction and radial expansion, respectively. b, Concept and main elements of the system. The DMD modulates the incoming
light beam in both space and time. The microscope objective projects the dynamic light field onto the soft microrobot, which deforms in a selective fashion.
c, Results from finite-element simulation showing normalized radius (a/a0) as a function of axial position normalized to wavelength (Z/�) in response to
localized illumination (green): rest configuration (black) and deformed profile (blue). Owing to incompressibility of the material, the discontinuous pattern
of illumination results in a continuous, smooth profile of deformation, and longitudinal displacement of the surface elements (grey lines). d, High-resolution
experimental side-view image of the selective deformation of a microrobot confined to the area of illumination. Scale bar, 100 µm. e, Experimental top-view
images showing the deformation of an anchored cylindrical microrobot under a periodic light pattern travelling from left to right (illuminated area
represented by the green overlay; first frame and yellow dotted line: rest configuration; red dashed line: deformed profile). Scale bar, 200 µm.
f, Corresponding simulations of the behaviour of the microrobot.

lower surface. The portions of the device that are illuminated expand
transversely, and follow the projected pattern as it travels along
the body (see Supplementary Movie 1). For comparison, Fig. 2f
shows the results from the corresponding numerical simulation.
Hence, it is possible to locally address and power an extended
continuous actuator system using light, and thus obtain complex
coordinated motion behaviours such as biomimetic travelling-
wave deformations. Waves not only mimic the behaviours that
many small organisms use for propulsion, but have the benefit of
abstracting a theoretically infinite number of intrinsic DOFs down
to a handful of easily recognized parameters.

Self-propelled biomimetic microswimmers
We exploit these travelling-wave shape changes to achieve fully
artificial self-propelled microswimmers. Like biological
microswimmers, these microrobots propel themselves through
periodic body deformations4, which are generated neither by exter-
nally applied forces or torques, nor by embedded biological cells.

Figure 3a shows how a fiducial point on the top surface of
a microrobot moves in the body frame in response to a light-
induced travelling wave that moves from right to left. Over one
cycle, the point describes an anticlockwise loop, deforming radially
by±5 µm at the peak and trough of the passing illumination. It also
moves longitudinally owing to the contraction of its neighbouring
regions. The trajectory calculated on the basis of themeasured order
parameter and assuming sinusoidal wave deformation (yellow, see
Supplementary Information 9) is in substantial agreement with the
experimental one. The important characteristic for swimming is
that, because of thematerial properties of the soft actuator, any point
on the surface of the body describes an open orbit, meaning that its
trajectory is non-reciprocal.

Figure 3c illustrates the movement of a microrobot (length
of 1,230 µm, radius of 120 µm) freely suspended in a fluid
and undergoing travelling-wave deformations. The microrobot is
suspended within a viscous glycerol–water solution far from any
solid boundary (see Methods), and a periodic binary light pattern
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Figure 3 | Force- and torque-free swimming of a cylindrical microrobot driven by light-controlled travelling-wave deformations. a, Trajectory of a fiducial
point on the surface of a 100-µm-diameter cylindrical microrobot exposed to a periodic travelling light pattern (frequency, f= 1 Hz; duty cycle, dc= 1/3).
Over one cycle, the point displaces radially and longitudinally in response to the passing light field. The colour progression (indicated by the red arrow)
represents di�erent phases within the cycle. The yellow line represents a calculated trajectory based on the measured order parameter for the same
microrobot radius and deformation wavelength, assuming a sinusoidal wave. b, Instantaneous fluid velocity field induced by the deformation of a cylindrical
microrobot in the body frame of the cylinder from the analytical theory. The colour map shows the magnitudes of the fluid velocity v scaled by the wave
velocity U, that is, v/U. The white arrows indicate the direction of the fluid flow. The wave travels from the right to the left. c, Back and forth swimming of a
cylindrical microrobot propelled by travelling-wave deformations (red dashed line: deformed profile). The green overlays and arrows represent the periodic
light pattern and its travelling direction, respectively. Yellow and cyan dashed lines represent the initial and final position of the leading edge of the
microswimmer, respectively. d, Displacements of a microrobot (yellow dashed line: reference position) when travelling light patterns having di�erent
wavelengths (green overlays, direction according to green arrows) are applied. The swimming direction (white arrows) is opposite to the patterns’ travelling
direction for short wavelengths, but is the same for longer ones. e, Velocity (red circles and dash–dot line; average over 8 independent measurements, error
bars: standard deviation), along with the analytical model (blue solid line; light blue area: 95% confidence interval, wave amplitude b and wavelength
constant �c estimated by fitting over experimental data). The three encircled measurements refer to the three images in d. Scale bars, 200 µm.

(pattern wavelength �= 387 µm, frequency f = 2Hz, shown as
a green overlay) is projected onto it to drive wave deformations
along its length. The body undergoes a net displacement of
110 µm at a speed of 2.1 µms�1 in the direction opposite to
that of the wave. Switching the direction of the moving light
pattern reverses the swimming direction. Moving backwards, the
microrobot displaces about 120 µm at a speed of 2.8 µms�1 (see
Supplementary Movie 2). The current propulsion performance
can be enhanced by improving the active response of the soft
materials. For instance, a lower transition temperature leads to a
faster response in the fluid. Moreover, an improved order parameter
enables larger deformation amplitudes.

Distinct from the case of manipulation by magnetic fields, the
external light field only provides power and permits control of
the microrobots. The driving actions are generated by the light-
triggered molecular reorientation within the soft active material, so
that the microrobots’ propulsion is fully remotely controllable.

The self-propulsion of the cylindrical microrobot by travelling-
wave motions closely mimics the propulsion of microscopic
biological swimmers4, particularly ciliates (for example,
Paramecium) that self-propel using metachronal waves. Here,
the directed motion of periodic light patterns drives deformation
waves along the cylinder, thereby dragging the surrounding fluid.
Propulsion, generally in the direction opposite to the waves, arises
because the net hydrodynamic force on the cylinder must be zero.
An analysis similar to that first developed in refs 41,42 can be applied
to the current geometry, with details shown in Supplementary
Information 9. Considering an infinitely long cylinder of radius
a undergoing sinusoidal radial deformation of amplitude b⌧ a,
wavelength � and frequency f , and assuming the cylinder to be
incompressible, we predict the body’s propulsion velocity V to be

V = (2⇡b)2f
�

G
✓
2⇡a
�

◆
(1)
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Figure 4 | In-plane controlled locomotion of disc-shaped microrobots. The symmetry of the disc means that several di�erent deformation behaviours can
be implemented by the appropriate light fields. a, Finite-element simulation of uniform deformation: thickness contraction (blue arrow) and in-plane
expansion (yellow arrows). Initial diameter, 400 µm; initial thickness, 50 µm. b,c, Translational locomotion by plane travelling waves. b, Simulated
deformation of a disc under a plane-wave light field (wavelength 400 µm); green arrow, travelling-wave direction; black arrow, expected translation. The
disc’s symmetry permits motion in every in-plane direction. c, Two-dimensional translational locomotion along a square path by plane-wave light patterns
travelling in di�erent directions. The green arrows indicate the travelling wave direction, and white arrows the disc’s direction of travel to the next waypoint
(red). The disc’s previous position is outlined in dashed white, and the completed track in dashed blue. The microrobot does not rotate at the vertices, but
only changes its course. d,e, In-place rotation by azimuthal travelling waves. d, Simulated deformation of a disc under an azimuthal-wave light field; green
arrow: travelling-wave direction; black arrow: expected microrobot rotation. e, In-place rotation of the same microrobot driven by azimuthal-wave light
patterns (green overlays) rotating in di�erent directions (green arrows) relative to a reference orientation (dashed line). f,g, Parallel independent control of
multiple microrobots by local light patterns. f, First, two azimuthal-wave light patterns (green overlays) rotating in the same direction are applied, driving
the concordant rotation of the microrobots (white arrows). Then the rotation direction of the left microrobot is changed (cyan arrow) by reversing the
direction of the driving local light field. g, Resulting angle of the two microrobots. Scale bars, 200 µm.

where the function G is given by
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with Ki being the modified Bessel function of the second kind
(i= 0, 1). The predicted fluid velocity field near the swimmer is
shown in Fig. 3b, as observed in the body frame.

According to the numerical simulations and experimental results
reported in Fig. 2c,d, the deformation profile is smoother than
the applied illumination profile, because of the finite elasticity of
the LCE. For this reason, the amplitude of the wave deformation
b exhibits a wavelength dependence, which we describe by the
following empirical relationship

b=b0
⇣
1�e� �

�c

⌘
(3)

where b0 is the maximum amplitude of deformation, which
occurs at long wavelengths, and �c is the critical wavelength

below which the deformation amplitude is attenuated (see
Supplementary Information 7 and 8). In particular, a lower
value of �c implies a lower smoothing e�ect and an improved
ability of the microswimmer to execute deformations with
narrow spatial features. Moreover, the linear dependence of
the swimming speed on the frequency of actuation reported in
(1) is valid only for relatively low frequencies, limited by the
characteristic time of the material response (see Supplementary
Information 10). Nonetheless, for the swimming experiment
reported above, the model predicts a swimming speed of
2.6 µms�1, in very good agreement with the measured speed of
2.1–2.8 µms�1.

Equation (1) predicts a dependence of the swimming velocity on
the deformation wavelength. We investigated this dependence by
driving anothermicrorobot (length of 680 µm, radius of 75 µm)with
patterns of various wavelengths (shown as green overlays in Fig. 3d)
and compared its speed with the model’s predictions (Fig. 3e; see
Methods). Notably, this analysis is possible only because in our
scheme deformation parameters such as the wavelength are not
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pre-programmed in the swimmer’s structure, but can be arbitrarily
controlled by the applied light field.

The most striking feature is the counterintuitive retrograde
swimming that occurs without wave reversal at long wavelengths.
This arises because the amplitude of the longitudinal deformation
increases with wavelength, thus changing its importance relative
to the radial expansion. The microswimmer therefore exhibits
two di�erent swimming modes, one ‘positive’ and one ‘negative’,
dominated by the radial and longitudinal deformations, respectively.
We observe the transition between the two modes at shorter
wavelengths (>425 µm) than predicted by the model (>600 µm).
This is most likely because the theory models an infinitely long
swimmer. For our finite-length swimmer, the e�ects of truncation
become more pronounced at long wavelengths as � approaches the
length of the swimmer.

The positive swimming mode observed at short wavelengths
closely mimics the symplectic metachrony executed by many ciliate
protozoa43. In this mode, the metachronal wave travels in the same
direction as the cilia’s power stroke, opposite to the swimming
direction. Other ciliates use antiplectic metachrony in which the
wave and the swimming directions are the same. As the sense of the
orbit described by a surface point (see Fig. 3a) does not reverse with
respect to the travelling wave, our negative modemimics antiplectic
metachrony by changing the relative amplitude of the longitudinal
versus axial deformation, rather than by reversal of the relative
phase44 (see Supplementary Information 9). This pseudo-antiplectic
behaviour is an unusual mode, predicted by classical models but
so far not seen in nature. True antiplectic metachrony could be
achieved by constructing the swimmer’s body from an auxetic
(negative Poisson’s ratio) material. Passive, microscale auxetic
metamaterials have been fabricated using technology that can be
applied to LCEs (refs 45,46). Nevertheless, our microswimmers are
capable of broader functionality than is found in nature, where any
given species of ciliate exhibits only one mode of metachrony.

Equation (1) suggests that the swimming speed will scale
favourably as the swimmers are made smaller. The frequency is
limited by the material response time; as this is a thermally driven
process it is expected to scale inversely with system size, with
smaller structures heatingmore rapidly. Similarly, the finite-element
results in Supplementary Information 8 indicate that the critical
wavelength �c scales linearly with swimmer radius, so smaller
structures are capable of deforming with smaller wavelengths. On
the other hand, because it is essentially a strain, themaximum radial
deformation scales linearly with radius, and shrinks with the size
of the structure. The net result is that V is expected to remain
unchanged with body size.

Versatile microrobot locomotion on demand
We also fabricated microrobots by photolithographically patterning
discs (400 µm in diameter and 50 µm thick) where the nematic
director n is oriented perpendicular to the disc’s surface. These
simple structures undergo thickness compression accompanied by
in-plane expansion (Fig. 4a). The nematic LCE used for these discs
exhibits typical contractions of about 20% (ref. 32). Crucially, their
axial symmetry means that, within the disc’s plane, there is no
preferential direction of movement. Thus, the disc’s course can be
controlled in two dimensions by the direction of the induced wave
deformations (Fig. 4b).

The disc microrobots are immersed in silicone oil, close to the
bottom of the container, and oriented so that the light patterns are
projected onto their face (see Methods). We direct the locomotion
of a disc microrobot along a two-dimensional 500 µm square path
(Fig. 4c and Supplementary Movie 3). The microrobot’s position is
automatically tracked by closed-loop control software and directed
to the next waypoint (red squares) by the proper travelling-wave
pattern. The direction of motion (white arrows) is opposite to the

travelling-wave direction (green arrows). The average speed of the
microrobot along the path is about 40 µms�1, which corresponds to
about 0.1 bodylengths s�1. Supplementary Movie 3 also shows the
microrobot being guided along a di�erent, diamond-shaped path.
The microrobot does not rotate at the vertices, but only changes its
course according to the applied light pattern.

The high symmetry of the discs means that these microrobots
o�er the possibility of new deformation behaviours in addition to
linear waves. This can be used to generate alternative gaits. As an
example, we project rotating fan-shaped light fields as azimuthal
travelling waves (�=2⇡/3 rad, f =3Hz) centred on the very same
microrobot (Fig. 4d,e). This generates controlled rotation without
translation (see Supplementary Movie 3) with a rotation speed of
about 0.5� s�1.

The high spatial selectively of light fields can also enable
the independent control of multiple microrobots at once47. Here
we simultaneously control two smaller disc-shaped microrobots
(diameter: 200 µm; thickness: 50 µm) executing a rotation stroke
(Supplementary Movie 4 and Fig. 4f). Fan-shaped rotating light
patterns (�=⇡ rad, f =3Hz, shown as green overlays) are projected
onto each of the two microrobots. First, the two light patterns are
both rotated clockwise, so that both of the discs rotate anticlockwise
(white arrows in Fig. 4f left). Then, the left microrobot’s sense of
rotation is reversed (cyan arrow in Fig. 4f right), whereas the right
one continues to rotate anticlockwise (white arrow in Fig. 4f right).
The average absolute rotation speed is about 1� s�1. Independent
control over the rotation of the two microrobots is thus achieved.

The disc microrobots demonstrate that a single microrobot
can be directed to execute internal wave-like deformations with
a variety of frequencies, wavelengths and symmetries, which
in turn drive a number of di�erent whole-body gaits. For the
motions shown here, we estimate that traditional schemes would
require approximately 100 actuators to be embedded, individually
controlled and macroscopically coordinated within a 400-µm-
diameter untethered device to obtain the same spatial resolution of
actuation achieved in the current implementation.

Outlook
In summary, structured light fields allow us to exercise low-level
control over the local actuation dynamics within the body of
microrobots made of soft active materials. This in turn enables
the high-level control over themicrorobots’ macroscopic behaviour,
such as locomotion, with a level of versatility that is unmatched in
microscale robotics. Even though a light-based approach requires
optical access, whichmay limit the range of applications, such access
is a natural prerequisite in any scheme that requires visualization.
Moreover, although here we focus on bioinspired travelling waves,
our approach is not limited to wave-like motions. In fact, more
complex behaviours can easily be achieved by simply conceiving
the proper structured light fields. Our subject here was generating
sophisticated functions from simple robots by structured light fields,
but even more powerful and exotic behaviours can be expected
when complicated fields are combined with intrinsically functional
microrobot designs48. Although we have focused on metachronal
waves used by ciliates, it should be noted that nematodes, whose
size is comparable to our swimmers, swim by another propulsion
mechanism: undulation49. The implementation of undulation is
in principle possible with the system we describe, but would
require a modified fabrication procedure for the swimmers. The
level of control that we demonstrate represents an essential step
towards sophisticated microrobotic technologies and advanced
microrobotic applications.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Fabrication of the microrobots. The microrobots consist of nematic LCEs based
on either the side-on mesogen M1 (cylindrical microrobots) or the end-on
mesogen M2 (disc microrobots), and containing a custom azobenzene dye
(mesogens and dye synthesized following previously reported procedures, see
Supplementary Information 3).

For the cylinders, a mixture is prepared with 85mol% of mesogen M1, 13mol%
of crosslinker CL1, 1mol% initiator and 1mol% azo dye. A drop of the mixture is
placed on a glass slide and heated to the isotropic phase (T >80 �C). It is then
allowed to cool until it becomes viscous enough to pull a continuous fibre using a
fine tip. The fibre is cured with an ultraviolet lamp during pulling, and then cut
with a scalpel into 1-mm-long cylinders.

For the discs, a mixture is prepared with 77mol% of mesogen M2, 20mol% of
crosslinker CL2, 2mol% initiator and 1mol% azo dye. The mixture is infiltrated
into a glass cell at 80 �C, and then slowly cooled to room temperature. The cell
consists of two glass slides, cleaned by Ar plasma, separated by 50 µm spacers. The
mixture is then ultraviolet-cured through a photo-mask by a mask aligner (MJB4,
SUSS MicroTec) to obtain discs with diameters of either 200 or 400 µm. Once the
cell is opened, the discs are manually detached from the substrate with a
razor blade.

Generation of dynamic light fields. A digital micromirror device (DMD) module
(V-7000, ViaLUX) is addressed by custom software to dynamically modulate the
intensity of a 532 nm laser beam (Verdi G10, Coherent). The beam is expanded
upstream of the DMD, to fully cover the DMD surface. The modulated beam is
then projected through a 4⇥ microscope objective (Nikon) onto the working area
containing the microrobots. The light power onto the microrobots is of the order of
a few hundred milliwatts. A CMOS camera (resolution 1,280⇥1,024—Thorlabs)
images the workspace through the same objective. Details of the set-up are
reported in Supplementary Information 2.

Finite-element models. The numerical simulations are performed in COMSOL
Multiphysics (COMSOL). For the cylinders a two-dimensional (2D)-axisymmetric
stationary analysis is performed, whereas a 3D stationary analysis is done for the
discs. The models simulate the solid mechanics of the microstructures and do not
take into account the absorption of light, the conduction of heat through the
material, or the hydrodynamic response of the surroundings. Strains arise in
proportion to a locally imposed reduction of the order parameter Q. For additional
details refer to Supplementary Information 5.

Deformation experiments. For the top-view experiments, an LCE cylinder is
positioned on a glass covered with polytetrafluoroethylene (PTFE) tape. The
sample is excited with a linear periodic binary light pattern (rectangular wave:

frequency f =1Hz, e�ective pattern wavelength �=950µm, and duty cycle
dc=1/3; see Supplementary Information 6).

For the side-view experiments, an LCE cylinder is positioned on a glass covered
with a thin layer of silicone oil to avoid adhesion. An additional camera
(Dragonfly 2 HIBW, Point Grey Research) is placed to the side of the workspace
where it images the cylinder through a 10⇥ microscope objective (Nikon). A linear
periodic binary light pattern (rectangular wave: f =1Hz, �=260µm, dc=1/3) is
projected onto the sample.

Swimming experiments. In the first swimming experiment, a cylindrical LCE
sample is suspended far from any solid surface in a solution of glycerol and water,
in which a density gradient is established. A linear periodic binary light pattern
(rectangular wave: f =2Hz, �=390µm, dc=1/3) is projected onto the sample.
First, the light pattern travels from left to right for about 50 s, then the LCE is
allowed to relax for about 10 s, and then a light pattern travelling from right to left
is projected for another 50 s.

In the wavelength-dependence analysis, linear periodic binary light patterns
with varying wavelengths (f =3Hz, dc=0.3) are projected onto the sample for 10 s
each. After each projection, the sample is allowed to relax for 5 s. The swimming
speeds are evaluated from the displacements estimated by automatic thresholding
and particle analysis (ImageJ).

2D-locomotion and rotation experiments. A disc is immersed in silicone oil close
to the bottom of a Petri dish covered with a thin layer of polydimethylsiloxane
(PDMS). For the 2D-locomotion tests, a closed-loop control algorithm tracks the
microrobot’s position and projects a bounded linear periodic light pattern onto it
(square wave: f =3Hz, �=650µm). The travelling direction of the wave pattern is
automatically calculated to drive the disc towards the next target position in the
route. The rotations are driven by azimuthal square waves (f =3Hz, �=2⇡/3 rad,
see Supplementary Information 6) centred on the disc. The light pattern is rotated
clockwise for 60 s, and then anticlockwise for another 60 s. The rotation of the disc
is estimated by measuring the position of a small defect on its edge, used as fiducial
mark, with respect to its centre.

Multiple microrobots experiments. The two small discs are immersed in silicone
oil, close to the bottom of the PDMS-coated Petri dish, and close enough to each
other to fit within the workspace. Independent periodic binary light patterns are
projected onto the two discs (azimuthal square waves: f =3Hz, �=⇡ rad). In the
first 60 s, both light patterns are rotated in an anticlockwise direction; for the next
60 s, the pattern on the left disc is reversed.

Code availability. The custom code for DMD control is available on request by
contacting the corresponding author.

© 2016 Macmillan Publishers Limited. All rights reserved
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S1. Supplementary Movies Description  

1) Travelling-wave deformation of cylindrical LCE microrobots.  

Top view. The LCE cylinder (length of about 1.3 mm and radius of about 170 µm) is 

positioned on a glass slide covered with PTFE tape and excited with a linear periodic binary 

light pattern (frequency f = 1 Hz, wavelength λ = 950 µm and duty cycle dc = 1/3).  

Side view. The LCE cylinder (radius of about 100 µm) is positioned on a glass slide covered 

with a thin layer of silicone oil to avoid adhesion and excited with a linear periodic binary 

light pattern (frequency f = 1 Hz, wavelength λ = 260 µm and duty cycle dc = 1/3). 

2) Forward and reverse swimming of a cylindrical LCE microrobot (speed: 2X).  

The cylindrical LCE sample (length of about 1.2 mm, radius of about 120 µm) is suspended 

in a solution of glycerol and water, in which a density gradient is established. A linear 

periodic binary light pattern (frequency f = 2 Hz, λ = 390 µm and duty cycle dc = 1/3) is 

projected onto the sample. First the light pattern travels from left to right, then it is turned off 

to let the LCE relax for about 10 s, and then turned back on with a travelling direction from 

right to left. 

3) Versatile locomotion of LCE disk-shaped microrobots (diameter of 400 µm). The disk is 

immersed in silicone oil and allowed to settle close to the bottom surface, which is covered 

with polydimethylsiloxane (PDMS). 

Square path (closed loop control with automatic tracking; speed: 4X). Linear periodic light 

patterns (square waves with frequency f = 3 Hz and wavelength λ = 650 µm) with proper 

travelling direction are projected onto the disk to drive it towards the next target position in 

the route. 

Diamond-shaped path (closed loop control with automatic tracking; speed: 4X). Linear 

periodic light patterns (square waves with frequency f = 3 Hz and wavelength λ = 650 µm) 

with proper travelling direction are projected onto the disk to drive it towards the next target 

position in the route. 
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In-place rotation (closed loop control with automatic tracking; speed: 10X). Azimuthal 

periodic light patterns (square waves with frequency f = 3 Hz and wavelength λ = 2π/3 rad) 

rotating first clockwise and then counter-clockwise are projected onto the disk. 

4) Independent control of two disks (diameter of 200 µm). The disks are immersed in silicone 

oil and allowed to settle close to the bottom surface, which is covered with 

polydimethylsiloxane (PDMS).  

Independent in-place rotation (closed loop control with automatic tracking; speed: 10X). 

Azimuthal periodic light patterns (square waves with frequency f = 2 Hz and wavelength  

λ = π/2 rad) rotating first both clockwise and then one (right) clockwise and one (left) 

counter-clockwise are projected onto the disks. 

Independent horizontal translation (closed loop control with automatic tracking; speed: 

10X). Linear periodic light patterns (square waves with frequency f = 3 Hz and wavelength 

λ = 200 µm) are projected onto the disks to drive them in opposite directions. As they 

approach, the disks experience an attractive hydrodynamic interaction. 
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S2. Description of the optical setup 

The system for generating dynamic light fields is represented in Fig. S1. The laser beam is first 

expanded (expansion factor changed according to needs: typically, a 5X expansion was used for 

deformation and swimming experiments, 8X for disks’ locomotion experiments) and then directed 

on the Digital Micromirror Device (DMD; Vialux V-7000). We use an angle of incidence of 32°, 

rather than the conventional 24° to achieve optimal blazing for coherent 532nm light. The pattern 

generated on the DMD by the control software is imaged by the tube lens L3 (focal length: 300 

mm) and the light field is projected onto the microrobots by means of a 4X microscope objective. 

The workspace is imaged through the same objective and the lens L4 (focal length: 200 mm) by a 

CMOS camera. To collect the light to the camera, a beam splitter is inserted in the main optical 

path. An additional short pass filter is added in front of the camera to filter out any residual 

reflection of the laser beam. Typical laser illumination powers, with all DMD pixels in the on state, 

are up to 2.5 W distributed over the entire workspace and depend on experimental conditions 

(mainly beam expansion, fluid surrounding the microrobots).  

 
Figure S1. Schematic of the optical setup for the generation of dynamic light fields 
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S3. Chemicals compounds composing the LCEs 

Preparation of LCEs by photopolymerization of acrylate moieties requires monomeric mixtures that 

contain, at least, a mesogenic monomer (M1 or M2), responsible for the alignment inside the 

material, and a cross-linker (CL1 or CL2) which determines the mechanical properties of the 

polymer. A photo-initiator is also required to synthesize the polymeric network in one step allowing 

the simultaneous grown of the polymeric chains and their crosslinking. Moreover, adding an azo-

dye in such mixtures leads to a photosensitive material. Monomers M1 and M2 and azo dye were 

prepared by some of us as previously reported1,2. The cross-linker CL1 and the photo-initiator are 

used as purchased from Sigma-Aldrich, Germany. The cross-linker CL2 is used as purchased 

from Synthon Chemicals, Germany. 

The azo-dye embedded within the LCEs has a strong absorption in the visible and a push-pull 

electronic structure, because of which we expect the thermal reconversion from the cis to the trans 

state to be in the millisecond range3. This timescale is further decreased as the azo-dye is 

chemically bonded to the polymer backbone4. Under light excitation, the crosslinked dye 

molecules inside the LCE network absorb photons and undergo trans to cis isomerization acting 

as a non-mesogenic impurity. However, due to the low dye concentration and to the fast thermal 

relaxation, which transfers energy into the network, we assume the LCEs' phase transition to be 

mostly achieved by a light-induced thermal effect. 
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S4. Small Angle X-ray Scattering 

Small angle X-ray scattering measurements are conducted on a Bruker AXS NanoStar 

diffractometer using Cu Kα radiation at 1.54 Å. A cylindrical fibre is clamped in a temperature 

controlled sample holder leaving a roughly 2 mm length unconstrained and free-hanging. The 

temperature is ramped through the nematic to isotropic transition from 70°C to 120°C over 

approximately 7 hrs. At each temperature, two measurements are made. First, an X-ray 

nanography image is acquired giving a detailed measurement of the longitudinal contraction; 

second, a 2D diffractogram with 30 min integration time is collected to identify the mesogen 

alignment (Fig. S2). A background subtraction to correct for inelastic scattering was performed on 

the diffraction patterns before further analysis. The orientational order is quantified by first fitting 

the azimuthal intensity profile (Fig. S3) with the expression5,6 

 𝐼𝐼(𝜒𝜒) =�𝑓𝑓2𝑛𝑛
2𝑛𝑛𝑛𝑛!

(2𝑛𝑛 + 1)‼ cos
2𝑛𝑛 𝜒𝜒 ,

𝑁𝑁

𝑛𝑛=0
 (S1)  

where χ is the azimuthal angle, and f2 n  are the expansion coefficients. Limiting the summation to  

N = 4 is sufficient for convergence. The orientational order parameter is calculated from the 

expansion coefficients according to 

 
Figure S2. SAXS Diffraction Patterns Cylindrical fibre samples in the nematic (70°C, left) 

and isotropic phases (120°C, right). The fibre axis is oriented vertically. 
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 𝑄𝑄 =< 𝑃𝑃2 >=  
∑ 𝑓𝑓2𝑛𝑛 2𝑛𝑛

4(𝑛𝑛 + 1)2 − 1
𝑁𝑁𝑛𝑛=0

∑ 𝑓𝑓2𝑛𝑛 𝑓𝑓2𝑛𝑛
2𝑛𝑛 + 1

𝑁𝑁
𝑛𝑛=0

. (S2)  

At 70°C, this gives < 𝑃𝑃2 > = 0.376 ± 0.007 and at 120°C < 𝑃𝑃2 > = 0.000 ± 0.004. The temperature 

dependent results (Fig. S4) show a close correlation between the longitudinal deformation (red) 

and the degree of orientational order (blue) through the phase transition.  

  

 
Figure S3. Radially integrated SAXS diffraction intensity for 70°C. The red line is a fit to 
the data based on equation (S1) with N = 4. The radial limits to integration are indicated by 

the annulus in Fig. S2 (left).  
 

 
Figure S4. Correlation between the orientational order parameter and fibre 

deformation. 
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S5. Modelling the LCEs’ deformation 

The deformation of LCEs is associated with changes in the nematic order and can thus be 

expressed as a function of the order parameter Q. This synthetically describes the orientation of 

the liquid crystalline molecules with respect to the nematic director and assumes values ranging 

between 0 (disorder, random orientation) and 1 (perfect order, all molecules perfectly aligned 

along the director). Across the transition from the nematic, ordered phase (Q = QN ) to the isotropic, 

disordered phase (Q ≈ 0), the material undergoes a contraction Λ along the nematic director such 

that 

 Λ = 𝐿𝐿
𝐿𝐿𝑁𝑁

= �1 +  2𝑄𝑄𝑁𝑁
1 ‒  𝑄𝑄𝑁𝑁

�
‒ 13

 (S3)  

where L and LN  represent the length of the elastomer along the nematic director in the deformed 

and relaxed (nematic) configurations, respectively7. Simultaneously, the elastomer experiences an 

expansion corresponding to Λ-1/2 in the two orthogonal directions, so that the volume is constant 

through the transition. The deformation tensor Λ can thus be expressed as 

 𝚲𝚲 =  �
Λ‒ 12 0 0

0 Λ‒ 12 0
0 0 Λ

� (S4)  

where the reference frame is defined such that the z-axis corresponds to the nematic director 𝒏𝒏. 

From this we can derive, in the same reference frame, a strain tensor ε as follows 

 𝜀𝜀 =  

⎣
⎢
⎢
⎢
⎢
⎡1‒Λ2Λ 0 0

0 1‒Λ
2Λ 0

0 0 1
2 (Λ2‒1)⎦

⎥
⎥
⎥
⎥
⎤

 (S5)  

The numerical simulations were performed in COMSOL Multiphysics using the Solid Mechanics 

module. The LCEs are modelled as nearly incompressible (Poisson’s ratio ν ≈ 0.5) linear elastic 

materials. A scalar field Q describes the spatial distribution of the liquid crystalline order parameter. 

In particular, the local value of Q was assumed to be directly related to the imposed light 
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distribution, such that Q = QN  where the light is off and Q = 0 where the light is on (see Fig. S5). 

The corresponding strain distribution is then applied to the material according to the strain tensor 

defined in equation (S5). In this way, the macroscopic shape change of the material is simulated 

starting from a pre-defined light distribution, mediated by the order parameter.  

For the cylindrical microrobots, we set QN  = 0.376, according to the experimental results from X-

ray scattering, and we assumed an elastic modulus of 1 MPa. For the disks, we assumed QN  = 

0.25 (corresponding to the reported 20% maximum strain) and we set the elastic modulus to 1.3 

MPa as reported in Ref 8. 
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S6. Definition of the features of the projected patterns 

The projected light patterns are defined starting from a rectangular wave function of this kind: 

 rect(𝑤𝑤) =  �
1 �𝑤𝑤 − 1

2� ≤
𝑑𝑑𝑑𝑑
2

0 �𝑤𝑤 − 1
2� > 𝑑𝑑𝑑𝑑

2
 (S6)  

where dc is the duty cycle (ratio between on-time and period, see Fig. S5) and 

 𝑤𝑤 = mod �𝑥𝑥𝜆𝜆 − 𝑓𝑓𝑓𝑓�. (S7)  

The variables x and λ represent the spatial coordinate and the wavelength, respectively (both can 

be either linear or angular – see Fig. S6). 

 

  

  

 
Figure S5. Typical binary light distribution (left) and corresponding theoretical value of 

the order parameter Q (right). 
 

 
Figure S6. A linear (left) and an azimuthal (right) binary patterns. 
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S7. Dependence of deformation amplitude on wavelength 

The expression and parameters presented in equation (3) in the main text were derived from side-

view videos acquired from anchored cylinders of liquid crystal elastomer (Supplementary Movie 1). 

We have experimentally observed that when a binary light pattern (rectangular wave) is applied, 

the material deforms in a similar fashion, but rather than exactly matching the abrupt, 

discontinuous transition between light and dark regions the deformation profile is smoother. This 

arises from the material’s continuity conditions and finite Young’s modulus: the radial expansion of 

illuminated regions is restricted in the vicinity of undeformed dark areas. Because of this 

smoothing effect, when the wavelength of the illumination profile decreases, the peaks of the 

deformation profiles get closer, superpose and cancel out (because of volume conservation). 

Therefore, the amplitude of the wave deformation shows a dependence on the wavelength, which 

we describe by the empirical equation (3). 

We have developed an analytical model to represent deformation profiles like the one extracted 

from the frame in Fig. S7. We have assumed that each discontinuity in the binary intensity profile 

results in a continuous sigmoidal transition in the actual material deformation. In particular, 

 
Figure S7. Deformation of a cylindrical sample of LCE under a binary light pattern 

imaged from the side. Frame from a video showing the deformation of a cylinder of LCE 
under a binary light pattern (rectangular wave, dc = 0.3) travelling from left to right. The 

cylinder is 100 µm in radius. 
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referring to the rectangular wave defined above, the function describing the deformation is 

assumed to be of the following form 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓(𝑤𝑤) = �1 + e− λ𝛾𝛾 �𝑤𝑤− 1+𝑑𝑑𝑑𝑑2 ��
−1
− �1 + e− 𝜆𝜆𝛾𝛾 �𝑤𝑤− 1−𝑑𝑑𝑑𝑑2 ��

−1
, (S8)  

where γ is the smoothing parameter. By fitting this smoothing function to the experimental profile, 

we obtain the smoothing parameter γ, which describes the steepness of the transitions (Fig. S8). 

We further assume that γ is characteristic of the material and sample under consideration, and that 

it is independent of the wavelength of the applied profile. Then we simulate what happens at other 

wavelengths while keeping γ fixed (Fig. S9).  

Finally, we have extracted the amplitude of radial expansion at different wavelength (Fig. S10), 

which can be expressed as  

 𝑏𝑏𝑟𝑟 = 𝑏𝑏𝑟𝑟0 �1 − 𝑒𝑒−  𝜆𝜆𝜆𝜆𝐶𝐶�. (S9)  

where we have introduced the empirical constant λC , which characterizes the cutoff wavelength 

below which the deformation amplitude becomes attenuated. Smaller λC  implies a lower 

smoothing effect and a better spatial resolution of the material. The value of λC  that we have 

 
Figure S8. Fitting of the smoothing function on the experimental profile. Data on the 

deformation profile, along with the fitting result and the ideal rectangular profile. Experimental 
data taken from the 100 µm radius fibre shown in Fig. S7 with binary light pattern f = 1 Hz,  

λ = 260 µm, dc = 1/3 
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estimated according to this analysis for this specific cylindrical microrobot is about 80 µm.  

  

 
Figure S9. Smoothing at different wavelengths. The imposed illumination profile (blue) 

compared with the resulting material deformation (red) calculated using Eqn. S8. The graphs 
show how the deformation profile, and especially its amplitude, changes at various 
wavelengths. Model parameters were derived from the experimental fit in Fig. S8. 

 

 
Figure S10. Simulated deformation amplitude (b) as a function of illumination 
wavelength. The red points were derived from simulated deformation profiles like those in 
Fig. S9 using model parameters derived from the experimental fit in Fig. S8. The blue line is 
a fit in the form of Eqn. S9 yielding a critical wavelength of 80 µm.  
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S8. Finite element model analysis of the dependence of deformation 

amplitude on wavelength 

To further illuminate this behaviour, we have also investigated it using the finite element model 

previously described. The deformation profiles of a 100 µm radius cylinder were simulated for a 

range of illumination wavelengths. The structure was modelled using the same parameters 

described in S5: Young’s modulus 1 MPa, Poisson’s Ratio 0.5, order parameter QN  = 0.376. 

Figure S11 shows the deformation profile in terms of the wavelength reduced longitudinal 

coordinate in response to a square-wave illumination profile. Consistent with the empirical model 

in Section S7, the deformation amplitude dramatically decreases (Fig S12, green curve) with 

wavelength below the critical wavelength.  

We have also addressed how the size of the cylinder affects the critical wavelength. The results, 

shown in Fig. S12, indicate that λC  depends linearly with the cylinder radius (λC  = 1.15 r). This 

means that small cylinders can resolve narrower spatial features, so that deformation profiles with 

shorter wavelengths can in principle be obtained. This is important in view of down-scaling of the 

swimming microrobots (shorter wavelengths correspond to higher swimming speed). 

 
Figure S11. Numerically calculated normalized deformation profiles for different 

wavelengths of a square wave illumination profile. At short wavelengths the deformation 
profile is almost flat (small wave amplitude). The radius of the simulated cylinder is 100 µm. 
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Figure S12. Normalized wave amplitude dependence on the wavelength from 

numerical simulations for different radii of the cylinder. Small cylinders have smaller λC  
and can therefore resolve narrower spatial features. Fits are based on Eqn. S9.  
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S9. Derivation of analytical model for cylinder swimming 

We now detail the mathematical model for the propulsion of the cylindrical elastomer, 

with notation shown in Fig. S13. The wave on the cylindrical surface is assumed to 

undergo both axial and transverse deformations. In the frame of reference moving with 

propulsion velocity V, the axisymmetric wave may be described in cylindrical coordinate 

(r,ϕ,z) as the  material positions ( rS , zS )  on the surface of the cylinder given by 

 𝑝𝑝𝑆𝑆 = 𝑎𝑎 +  𝑏𝑏 sin𝑘𝑘(𝑧𝑧 + 𝑈𝑈𝑓𝑓)
𝑧𝑧𝑆𝑆 = 𝑧𝑧 +  𝑑𝑑 cos𝑘𝑘(𝑧𝑧 +𝑈𝑈𝑓𝑓) (S10)  

where t is time, a the equilibrium radius of the cylinder, b the amplitude of the deformation in the 

radial (er ) direction, d the amplitude of the deformation in the axial (ez ) direction, z the Lagrangian 

rest position of the cylinder (i.e. before deformation), k the wave number (k = 2π/λ where λ is the 

wavelength), and U = λf the velocity of the wave in the moving frame. 

Assuming the cylinder to be incompressible, the value of d may be evaluated in terms of 

that of b. Consider a cylindrical section with of small thickness dz in an undeformed body 

 
Figure S13. Model for light-induced deformation of elastomer. Infinite cylinder 

undergoing axial and transverse deformations in the cylindrical coordinate system (r,ϕ,z). 
The radius of the cylinder is a, b is the amplitude of the transverse deformation, d is the 

amplitude of the axial deformation, and λ is the wavelength. The wave travels at velocity U in 
the frame of the moving cylinder, which is propelled at velocity V in the laboratory frame. 
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which is extended in the r direction and contracted in the z direction. Given the 

sinusoidal deformation assumed in equation (S10), the deformed volume of the cylindrical 

section is approximately given by 

 𝜋𝜋𝑝𝑝𝑠𝑠2𝑑𝑑𝑧𝑧𝑠𝑠  ≈ 𝜋𝜋𝑎𝑎2𝑑𝑑𝑧𝑧 �1 + 2𝑏𝑏
𝑎𝑎  sin 𝑘𝑘(𝑧𝑧 + 𝑈𝑈𝑓𝑓) −  𝑑𝑑 𝑘𝑘 sin 𝑘𝑘(𝑧𝑧 + 𝑈𝑈𝑓𝑓)� (S11)  

and the volume remains constant and first order in the amplitude provided that d = αb with  

α = 2/(ka). 

The propulsion velocity of the cylinder and the fluid velocity at low Reynolds number are 

determined by solving the incompressible Stokes equations i.e. 

 ∇𝑝𝑝 = 𝜇𝜇∇2𝒗𝒗,  ∇ · 𝒗𝒗 = 0 (S12)  

where p is the dynamic pressure, µ the dynamic viscosity, and 𝒗𝒗 the fluid velocity. In 

cylindrical coordinates, the fluid velocity field 𝒗𝒗 = (𝑣𝑣𝑟𝑟 ,𝑣𝑣𝜑𝜑,𝑣𝑣𝑧𝑧) is axisymmetric and its velocity 

components satisfy 

 

1
𝜇𝜇
𝜕𝜕𝑝𝑝
𝜕𝜕𝑝𝑝  =  ∇2𝑣𝑣𝑟𝑟  − 𝑣𝑣𝑟𝑟

𝑝𝑝2 ,
1
𝜇𝜇
𝜕𝜕𝑝𝑝
𝜕𝜕𝑧𝑧 =  ∇2𝑣𝑣𝑧𝑧,              

𝜕𝜕𝑣𝑣𝑟𝑟
𝜕𝜕𝑝𝑝 + 𝑣𝑣𝑟𝑟

𝑝𝑝 + 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝑧𝑧 =  0.

 (S13)  

Using the notation y ≡ kr and s ≡ k(z + Ut), the solutions to equation (S13) are given by linear 

combinations of following general solutions for various integer numbers n 

 
𝑝𝑝 = 𝜇𝜇𝑘𝑘𝑝𝑝𝑛𝑛  cos(𝑛𝑛𝑛𝑛),
𝑣𝑣𝑟𝑟 = 𝑢𝑢𝑛𝑛  cos(𝑛𝑛𝑛𝑛),     
𝑣𝑣𝑧𝑧 = 𝑤𝑤𝑛𝑛  sin(𝑛𝑛𝑛𝑛),    

 (S14)  

where 

 
𝑝𝑝𝑛𝑛 = 2𝐴𝐴𝑛𝑛𝑛𝑛𝐾𝐾0(𝑛𝑛𝑛𝑛),                                         
𝑢𝑢𝑛𝑛 = 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝐾𝐾0(𝑛𝑛𝑛𝑛) + 𝐵𝐵𝑛𝑛𝐾𝐾1(𝑛𝑛𝑛𝑛),                 
𝑤𝑤𝑛𝑛 = (𝐵𝐵𝑛𝑛 − 2𝐴𝐴𝑛𝑛)𝐾𝐾0(𝑛𝑛𝑛𝑛) + 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝐾𝐾1(𝑛𝑛𝑛𝑛),

 (S15)  

with Ki  denoting the modified Bessel function of the second kind (i = 0,1), and with the 

unknown constants An  and Bn  to be determined by the boundary conditions9. 

In the frame moving with the cylinder at velocity V, the boundary conditions on the 
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surface of the elastomer are given from equation (S10) by 

 
𝑣𝑣𝑟𝑟  (𝑝𝑝𝑠𝑠, 𝑧𝑧𝑠𝑠) =    𝑈𝑈𝑏𝑏𝑘𝑘 cos 𝑘𝑘(𝑧𝑧 + 𝑈𝑈𝑓𝑓),
𝑣𝑣𝑧𝑧  (𝑝𝑝𝑠𝑠, 𝑧𝑧𝑠𝑠) = −𝑈𝑈𝑑𝑑𝑘𝑘 sin 𝑘𝑘(𝑧𝑧 +𝑈𝑈𝑓𝑓). (S16)  

Assuming that the transverse deformation of the cylinder is small, we may obtain the 

leading-order approximate solution for the velocity field by evaluating u1  and w1  at r = a 

in equation (S16). Then, the unknown constants A1  and B1  are easily found as 

 
𝐴𝐴1 = 𝑈𝑈𝑏𝑏𝑘𝑘

𝜙𝜙(𝑛𝑛1) {𝐾𝐾0(𝑛𝑛1) + 𝛼𝛼𝐾𝐾1(𝑛𝑛1)},                     

𝐵𝐵1 = 𝑈𝑈𝑏𝑏𝑘𝑘
𝜙𝜙(𝑛𝑛1) {(2 − 𝛼𝛼𝑛𝑛1) 𝐾𝐾0(𝑛𝑛1) − 𝑛𝑛1𝐾𝐾1(𝑛𝑛1)},

 (S17)  

where 𝜙𝜙(𝑛𝑛) = 𝑛𝑛𝐾𝐾02(𝑛𝑛)− 𝑛𝑛𝐾𝐾12(𝑛𝑛) + 2𝐾𝐾0(𝑛𝑛)𝐾𝐾1(𝑛𝑛) and 𝑛𝑛1 ≡ 𝑘𝑘𝑎𝑎. 

Since this solution at first order in bk does not contribute the propulsion of the cylinder9,10, 

we next consider the solutions at order (𝑏𝑏𝑘𝑘)2 using a Taylor expansion as 

 𝑣𝑣𝜈𝜈(2)(𝑝𝑝𝑠𝑠, 𝑧𝑧𝑠𝑠) =  𝑣𝑣𝜈𝜈(1)(𝑎𝑎, 𝑧𝑧) + 𝜕𝜕𝑣𝑣𝜈𝜈(1)

𝜕𝜕𝑝𝑝 �
𝑎𝑎,𝑧𝑧

(𝑝𝑝𝑠𝑠 − 𝑎𝑎) + 𝜕𝜕𝑣𝑣𝜈𝜈(1)

𝜕𝜕𝑧𝑧 �
𝑎𝑎,𝑧𝑧

(𝑧𝑧𝑠𝑠 − 𝑧𝑧) , (S18)  

where ν denotes r or z, 𝑣𝑣𝜈𝜈(1)is the solution at first order (i.e. 𝑣𝑣𝑟𝑟(1) = 𝑢𝑢1(𝑛𝑛) cos(𝑛𝑛) and 

𝑣𝑣𝑧𝑧(1) = 𝑤𝑤1(𝑛𝑛) sin(𝑛𝑛)), and 𝑣𝑣𝜈𝜈(2) the solution at second order. The boundary conditions, 

equation (S16), for the velocity of the fluid at the surface of the cylinder may be satisfied 

by choosing the solution at order two among the general solutions from equation (S15) 

and equation (S18) at r = a. 

In the moving frame of reference with the propulsion velocity V, the conditions are written 

by 

 
   𝑈𝑈𝑏𝑏𝑘𝑘 cos(𝑛𝑛) = �𝑢𝑢1 cos(𝑛𝑛) + 1

2 𝑏𝑏𝑘𝑘(𝑢𝑢1′ − 𝛼𝛼𝑢𝑢1) sin(2𝑛𝑛) + 𝑢𝑢2 sin(2𝑛𝑛)�
𝑦𝑦=𝑦𝑦1

,                                          

−𝑈𝑈𝑑𝑑𝑘𝑘 sin(𝑛𝑛) = �𝑤𝑤1sin (𝑛𝑛) + 1
2 𝑏𝑏𝑘𝑘{(𝑤𝑤1′ + 𝛼𝛼𝑤𝑤1) − (𝑤𝑤1′ − 𝛼𝛼𝑤𝑤1) cos(2𝑛𝑛)} + 𝑤𝑤2 cos(2𝑛𝑛)�

𝑦𝑦=𝑦𝑦1
− 𝑉𝑉,

 (S19)  

where the derivatives are calculated with respect to y. Equating powers of bk at order two 

between both sides of this equation leads to 

6



20 
 

 

𝑉𝑉 =  1
2 𝑏𝑏𝑘𝑘{𝑤𝑤1′(𝑛𝑛1) + 𝛼𝛼𝑤𝑤1(𝑛𝑛1)},            

𝑢𝑢2(𝑛𝑛1) = − 1
2 𝑏𝑏𝑘𝑘{𝑢𝑢1′ (𝑛𝑛1) − 𝛼𝛼𝑢𝑢1(𝑛𝑛1)},

𝑤𝑤2(𝑛𝑛1) =  1
2 𝑏𝑏𝑘𝑘{𝑤𝑤1′(𝑛𝑛1) − 𝛼𝛼𝑤𝑤1(𝑛𝑛1)}.  

 (S20)  

Hence, we obtain the propulsion velocity of the cylinder as 

 𝑉𝑉 = 𝑈𝑈(𝑏𝑏𝑘𝑘)2
2 �(1 + 2𝛼𝛼 𝑛𝑛1⁄ )𝐾𝐾12(𝑛𝑛1)−𝐾𝐾02(𝑛𝑛1)

𝜙𝜙 (𝑛𝑛1) 𝑛𝑛1⁄ − 𝛼𝛼2�. (S21)  

When 𝑛𝑛1(≡ 𝑘𝑘𝑎𝑎) → ∞, the propulsion velocity of the cylinder reduces to the velocity of the 

infinite waving sheet, 𝑉𝑉 = 𝑈𝑈(𝑏𝑏𝑘𝑘)2(1 + 2𝛼𝛼 − 𝛼𝛼2) 2⁄ , a classical result11. As one sets α = 0, 

that result further reduces to the velocity of the in finite waving sheet with no axial 

contraction, 𝑉𝑉 = 𝑈𝑈(𝑏𝑏𝑘𝑘)2 2⁄ , the classical formula from Taylor's original work10. 

In the case where the elastomer is assumed to be incompressible, such as in the current 

experiments, we have to pick α = 2/(ka) and given that U = λf and k = 2π/λ, the propulsion 

velocity is given by equations (1)–(2) in the main text.  

 

  

 
Figure S14. Predicted instantaneous fluid velocity field near the cylinder in the 

laboratory frame. The colour map shows the magnitudes of the fluid velocity 𝑣𝑣 scaled by the 
wave velocity U, i.e. 𝑣𝑣/𝑈𝑈 . The white arrows indicate the direction of the fluid flow. Note the 

appearance of the circulating flow regions. 
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S10. Frequency dependence of swimming speed for cylinders 

The response of one of the cylinders to wave patterns with different characteristics was also 

investigated. In particular, we tested rectangular wave patterns with dc = 0.3, to understand the 

dependence of the locomotion speed on frequency. The analytical model predicts that the 

swimming velocity is proportional to the frequency of the travelling wave deformations. However, 

in our experimental system the response time of the material is finite and limited by the heat 

transfer to the liquid. Moreover, the stress that the material can exert on the highly viscous fluid is 

also finite. For this reason the swimming speed may have a non-trivial dependence on the 

frequency of the illumination wave pattern. 

All tests were performed in a glycerol-water density gradient, in the same conditions as for the 

experiments reported in the main text. We set the wavelength to 200 px in the camera coordinates 

(1 px = 1.29 µm) and we varied the frequency from 1 to 10 Hz. Each pattern was applied for 5 s, 

and then the cylinder was allowed to relax for 10 s in between. The net displacement for each 

actuation period was measured by image analysis. The results are shown in Fig. S15.  

The trend reported in the graph shows that the swimming speed initially increases with frequency 

 
Figure S15. Frequency-dependence of the swimming of a cylinder. The wavelength was 

fixed to 200 px (258 µm) and the average and standard deviation reported were estimated 
over 2 independent tests. 
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up to an optimal frequency of 2 Hz. Then it starts decaying slowly as the frequency is further 

increased. While at low frequencies the material has enough time from one cycle to the next to 

fully execute its deformation stroke, at higher frequencies this is not possible and the resulting 

amplitude of cyclic deformation is smaller. Since the dependence of the swimming speed on the 

amplitude of the wave deformation is quadratic while that on the frequency is linear, the former 

has a larger effect, leading to the decrease in swimming speed observed in the graph. 
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S11. Frequency and wavelength dependence of locomotion speed for 

disks 

The response of one of the disks to wave patterns with different characteristics was also 

investigated. In particular, we tested square wave patterns (dc = 0.5) to understand the 

dependence of the locomotion speed on both wavelength and frequency. All tests were performed 

in silicone oil, in the same conditions as for the experiments reported in the main text. 

For the wavelength-dependence tests, we fixed the frequency to 2 Hz and we varied the 

wavelength from 100 to 800 px in the camera coordinates (1 px = 1.29 µm). For the frequency-

dependence tests, we fixed instead the wavelength to 500 px in the camera coordinates and we 

varied the frequency from 1 to 10 Hz. Each pattern was applied for 5 s, and then the disk was let 

relax for 10 s in between. The net displacement for each actuation period was measured by image 

analysis. The results are shown in Fig. S16. 

 

  

 
Figure S16. Wavelength- (left) and frequency-dependence (right) of the locomotion of a 

disk. In the wavelength analysis the frequency was set to 2 Hz and the average and 
standard deviation reported were estimated over 10 independent tests. In the frequency 

analysis the wavelength was fixed to 500 px (645 µm) and the average and standard 
deviation reported were estimated over 8 independent tests. 
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