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The total force exerted on a small rigid body by an acoustic field in a viscous fluid is addressed

analytically in the limit where the typical size of the particle is smaller than both the viscous

diffusion length scale and the acoustic wavelength. In this low-frequency limit, such a force can be

calculated provided the effect of the acoustic steady streaming is negligible. Using the Eulerian

linear expansion of Lagrangian hydrodynamic quantities (velocity and pressure), the force on a

small solid sphere free to move in an acoustic field is first calculated in the case of progressive and

standing waves, and it is compared to past results. The proposed method is then extended to the

case of more complex shapes with three planes of symmetry. For a symmetric body oriented with

one of its axis along the wave direction, the acoustic force exerted by a progressive wave is affected

by the particle shape at leading order. In contrast, for a standing wave (with the same orientation),

the force experienced by the particle at leading order is the same as the one experienced by a sphere

of same volume and density. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4942592]

[JFL] Pages: 1081–1092

I. INTRODUCTION

Over the last two decades, there has been a significant

renewed interest in the study of small particles migrating in

acoustic fields because of the wide array of possible applica-

tions at the intersection of medicine, micro-engineering, and

microfluidics.1 Future drug delivery techniques could for

instance involve acoustically propelled vesicles, used as

micro-carriers.2,3 For both medical or engineering purposes,

the use of micro-particles requires the ability to propel or

organize them at a microscopic scale. Both purposes can be

achieved by the mean of acoustic fields, using either progres-

sive or standing waves.4,5

The force experienced by a rigid spherical particle in an

acoustic field is an old problem, first addressed by King6 in

the case of an inviscid fluid. King’s theory has shown good

agreement with experiments,7 but these experiments were

conducted in conditions where viscosity in the fluid and elas-

ticity of the solid where both negligible. The problem of the

force experienced by an elastic particle in an acoustic field

has been extensively investigated (theorically and experi-

mentally) by Hasegawa and Yosioka.8 The effects of viscos-

ity have been first considered by Westervelt.9,10 Westervelt

found that, in the case of a viscous fluid and for a plane

progressive wave, the force was several orders of magnitude

larger than predicted by King. However, as pointed out by

Doinikov,11 Westervelt’s conclusions, although they are cor-

rect, result from two wrong arguments. First, he considered

the case of a fixed particle whereas the motion of the sphere,

which is free to oscillate under the effect of the incident

field, has a decisive contribution to the final value of the

force. Second, Westervelt dealt with the case of large

viscous diffusion lengths (relative to the radius of the sphere)

while King’s approach is valid for inviscid fluids, i.e., in the

limit of asymptotically small viscous lengths. Westervelt’s

results and King’s theory concern thus different physical

regimes.

A number of other studies tackled the problem of the

force experienced on a free sphere placed in a viscous fluid

(kinematic viscosity �) under the effect of an acoustic radia-

tion (frequency f ¼ x=2p). In most of these works, the

effect of the acoustic streaming around the sphere is

neglected.11 For instance, Guz12,13 neglected the acoustic

streaming just in the domain a=d� 1, where a is the sphere

radius and d ¼ ð�=xÞ1=2
is the viscous diffusion length—a

regime in which its contribution steps in at leading order.

Danilov14,15 attempted to fill the gap by taking into account

the acoustic streaming in the case of a fixed sphere and com-

pleted his original work by deriving an expression for the

force in the case of a free solid sphere. Although the method

of derivation is quite involved, some of the conclusions

agree qualitatively with more recent studies on the same

topic. In particular, a change in the sign of the total force

when switching from small to large viscous lengths was pre-

dicted.14,15 Doinikov11,16 then addressed the problem of rigid

and deformable spheres free to move in a viscous fluid. The

method used in each paper is an extension of King’s method,

leading to results valid in all situations where the amplitude

of oscillation of the fluid particles is smaller than the sphere

radius. Thermal effects were later taken into account.17 The

case of a plane progressive wave is treated as an example,

and thermal effects are shown to introduce an additionala)Electronic mail: e.lauga@damtp.cam.ac.uk
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term in the expression for the total force. This term turns out

to be zero in the case when either sphere is rigid or when the

heat capacity ratio of the fluid equals 1 (the speed of sound

is a real constant). Doinikov’s calculation has the advantage

of being very general, but it is difficult to extend it to the

case of more complex geometries.

More recently, Settnes and Bruus18 proposed a method

to derive an analytical expression for the force experienced

by a solid sphere in a viscous fluid valid for any value of

� ¼ a=d. Indeed, Doinikov11 only provides convenient

expressions for the total force that are asymptotically valid

in the limiting cases �� 1 and �� 1. Settnes and Bruus fill

that gap and provide a simple expression of the total force

that should be valid without restriction for any value of the

ratio a=d. Their method consists in solving a problem of far

field (irrotational) scattering and then finding explicitly the

unknown coefficients of the irrotational solution by matching

far field solution to the viscous near field solution (i.e., the

solution valid for r < d). The work is done in a general

framework, without specifying the shape of the incident radi-

ation (progressive or stationary). The general solution is then

applied to the cases of stationary and progressive incident

waves. The solutions obtained by Settnes and Bruus in the

cases of progressive and standing incident waves are com-

pared to the expressions derived in the present article in Sec.

III C [Eqs. (50) and (54)].

In this paper, we propose a method to calculate the total

force experienced by a non-spherical particle of typical size

a (in this case, a can be seen as the radius of the sphere of

equivalent volume) in an incident acoustic field (progressive

or standing wave, see Fig. 1), for a particular class of sym-

metric shapes in the case of large viscous length scales, i.e.,

d=a� 1. Limiting the study to the large-d limit enables us

to evaluate the effect of a change in shape for various object

such as ellipsoids, cylinders, disks, and, more generally, any

shape having three planes of symmetry. We also stay in the

so-called Rayleigh limit (or long-wave limit) where the

acoustic wavelength is larger than the viscous wavelength

and the particle radius, so that, in this hydrodynamic limit,

the effects of fluid compressibility are not taken into account

at leading order, but come in as quadratic corrections.

The paper is organized as follow. In Sec. II we calculate

the first-order acoustic field, i.e., the solution to the inviscid

nonlinear wave equation at first order in Mach number. The

results, which can be found in several articles,9,19,20 are writ-

ten in a dimensionless form and expanded in Mach number.

By doing this, we are able to identify the terms which have to

be retained for the derivation of the total force. The calcula-

tion of the total force experienced by a small solid sphere is

then presented in Sec. III. The first part is devoted to the cal-

culation of the leading-order particle dynamics, required for

the evaluation of the Lagrangian advective terms in the total

force. We then calculate the force in the case of plane progres-

sive and standing waves. The case of symmetric objects is

dealt with in Sec. IV. As in Sec. III, the first part is devoted to

the dynamics of the particle at leading order, and we then

derive the explicit form of the acoustic pressure. Order-of-

magnitude estimates and practical situations in which the limit

d=a� 1 is relevant are discussed in Sec. V. Solutions to the

first-order nonlinear wave equation are given in Appendix A

while acoustic streaming is addressed in Appendix B.

Before proceeding, let us focus on the non-

dimensionalization. In the sections where we are primarily

interested in the acoustic field (e.g., in Sec. II), the acoustic

wavelength will be chosen as typical length scale, a choice

which of course impacts the scaling of stresses and forces. In

the section where we focus on the physical processes occur-

ring at the particle scale, which is the case when we are

interested in the dynamics of the particle at leading order

(Secs. III B and IV A), the particle radius (or its typical size)

will be chosen as the non-dimensionalizing length scale, and

the typical force will then scale accordingly. In the whole

article, we use tildes to refer to dimensional field, force, and

displacement variables. Corresponding dimensionless quan-

tities are noted without a tilde while constants are always

noted without a tilde.

II. FIRST-ORDER MEAN ACOUSTIC FIELD

In this section, we first ignore the coupling with the

solid particle and consider a one-dimensional harmonic

acoustic field whose direction of propagation is aligned with

the x-axis. The wavenumber k0 ¼ k0ex satisfies the linear

dispersion relation k0 ¼ x=c0, where x denotes the pulsation

of the source and c0 the speed of sound in the medium. The

imaginary part of k0 is neglected, which means that the influ-

ence of viscosities (shear and bulk) on the incident acoustic

field are not taken into account. For the sake of simplicity,

the speed of sound and the viscosity are both assumed to be

independent from the fluid density. For an ideal gas, the lat-

ter assumptions are equivalent to the condition c ¼ 1, where

c denotes the ratio of the specific heats of the medium. This

assumptions means that the only nonlinearity is the one com-

ing from the compressibility of the fluid (and thus no adia-

batic nonlinearity). We finally assume that the velocity
FIG. 1. Sketch of a particle acted on by (a) a plane progressive wave, (b) a

standing wave. The position of the particle is referred to as ~x0.

1082 J. Acoust. Soc. Am. 139 (3), March 2016 François Nadal and Eric Lauga

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  131.111.184.94 On: Thu, 03 Mar 2016 16:23:23



amplitude of the sound wave, say n0x, is small compared to

the speed of sound in the fluid. This last assumption enables

us to consider the Mach number, M ¼ n0x=c0, as the small

acoustic parameter of the problem.

As we are interested in steady quadratic processes, solu-

tions to the acoustic equations must be sought to the first

order in M, in order to obtain the mean acoustic pressure and

velocity quadratic in the displacements. The objective of this

section is to present in a dimensionless form Westervelt’s

general method9 to access the mean (first order) Eulerian

acoustic field using dimensionless quantities.

Let us denote by ~n the Lagrangian displacement of a

fluid particle. The Lagragian wave equation, written to order

OðMÞ, takes the form9,20

c�2
0

~n~t~t � ~n~x~x ¼ �½~n
2

~x �~x : (1)

This equation can be made dimensionless, by choosing n0,

x�1; and k�1
0 for typical displacement, time, and distance,

which yields

ntt � nxx ¼ �M½n2
x �x; (2)

where n is the dimensionless Lagrangian particle displace-

ment. As expected, the nonlinear term vanishes for c0 !1,

since it originates from the compressible nature of the fluid.

Equation (2) must then be completed by the proper set of

boundary conditions, depending on the practical situation of

interest. We write now the Lagrangian displacement field n
as a perturbation expansion in M, namely,

n ¼ nð0Þ þMnð1Þ þ OðM2Þ: (3)

The leading order solution is the solution to the classical lin-

ear wave equation, whereas the first-order solution nð1Þ is

forced by the nonlinear term, �M½nð0Þx
2�x. Thus, the equa-

tions at order Oð1Þ and OðMÞ are

nð0Þtt � nð0Þxx ¼ 0; (4)

nð1Þtt � nð1Þxx ¼ �½n
ð0Þ
x

2�x: (5)

In principle, once the previous equations are solved, one can

find any Eulerian quantity ~Eð~x; ~tÞ, provided the correspond-

ing Lagrangian quantity is available to order OðMÞ. Indeed,

the Lagrangian representation ~L of a physical quantity (tem-

perature, pressure, velocity, etc.) is specified on a moving

material point. In other words, ~Lð~tÞ is the value of the quan-

tity assessed at the actual position of the material particle at

time ~t. If ~f ð~tÞ denotes the small displacement of such a

particle from a fixed position ~x0, one can write ~Lð~tÞ
¼ ~Eð~x0 þ ~nð~tÞ; ~tÞ. Expanding the latter expression with

respect to ~n yields (the time dependence of ~n has been omit-

ted for notation convenience)

~L ~tð Þ ¼ ~E ~x0;~tð Þ þ ~n~E ~x þ
1

2
~n

2~E ~x~x þ � � � ; (6)

where ~E ~x ¼ @~x
~Ej~x0

and ~E ~x~x ¼ @~x~x
~Ej~x0

. Provided that n is

small enough, only the first-order term can be kept in Eq.

(6), which simplifies to

~Lð~tÞ ¼ ~Eð~x0;~tÞ þ ~n~E ~x : (7)

Denoting by ~E the Eulerian quantity ~Eð~x0;~tÞ and ~L the

Lagrangian quantity ~L ð~tÞ, one gets

~E ¼ ~L � ~n~E ~x ; (8)

which, to first order in ~n can be rewritten as

~E ¼ ~L � ~n ~L~x ; (9)

since from Eq. (8) itself, ~E~n ¼ ~L~n at zeroth-order in ~n.

Equation (9) can be written in the dimensionless form

E ¼ L �MnLx: (10)

By expanding L in a power series of the Mach number, Eq.

(10) eventually takes the form

E ¼ Lð0Þ þM½Lð1Þ � nð0ÞLð0Þx �: (11)

We now use relation (11) to derive the expressions of the

steady Eulerian components for velocity, density, and pres-

sure. Each quantity will be further evaluated in the case of

plane progressive and standing waves.

A. Mean velocity

If u denotes the dimensionless Eulerian velocity, Eq.

(11) takes the form

u ¼ nð0Þt þM½nð1Þt � nð0Þnð0Þtx �; (12)

since nt is the Lagrangian velocity.

The solution to Eqs. (4) and (5) in the case of a standing

wave have been given by Fubini, who used a method due to

Airy.21 A broad outline of classical Fubini’s result is pre-

sented in Appendix A. Using Fubini’s solution for

ðnð0Þ; nð1ÞÞ in Eq. (12) and taking the time average leads to

the following result for the mean velocity in a plane progres-

sive wave:

huipw ¼ Mhu 1ð Þipw ¼ �
1

2
M; (13)

where we used the subscript pw to denote progressive wave.
The counterintuitive minus sign in the mean velocity Eq.

(13) comes from the Eulerian nature of u. A comprehensive

explanation of this apparent paradox is provided in Ref. 20.

Note that if the Lagrangian velocity is bounded in time, the

first two terms in Eq. (12) vanish when time-averaged so that

the only contribution to the Eulerian velocity comes from

the convective term.

The case of a plane standing wave can be analyzed in

the same fashion (see Appendix A). For such a wave, the

mean velocity turns out to be zero everywhere, that is,

huisw ¼ huð1Þisw ¼ 0; (14)

where now sw stands for standing wave.
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B. Mean pressure

While the application of Eq. (11) is immediate for the

velocity, the explicit form of the Lagrangian pressure must

be derived to obtain the mean (second order) Eulerian pres-

sure. In order to do so, let us start by writing the dimension-

less Lagrangian density perturbation to the mean fluid

density, ~q, as a function of the Lagrangian displacement ~n.

The continuity relation can be written in a dimensional form

as22

q0 þ ~q ¼ q0ð1þ ~nxÞ�1: (15)

Using again n0 (amplitude of the displacement), k�1
0 ; and

q0M as typical quantities to make dimensionless the dis-

placement ~n, the coordinate ~x, and the density difference ~q,

leads to the following dimensionless form of Eq. (15):

1

M
þ q ¼ 1

M

1

1þMnx
: (16)

Now, expanding the factor 1=ð1þMnxÞ to order OðM2Þ [in

which the expression nx ¼ nð0Þx þMnð1Þx to order OðMÞ has

been first introduced] leads to the dimensionless form of Eq.

(15) as

q ¼ �nð0Þx þM½nð0Þx � nð1Þx �: (17)

This relation enables us to get the expression of the Eulerian

density as

q ¼ �nð0Þx þM½nð0Þ2x þ nð0Þnð0Þxx � nð1Þx �: (18)

Since the sound speed, c0, is a constant, the pressure differ-

ence ~p and the density difference ~q are related to each other

by the simple relation ~p ¼ ~qc2
0. Using the natural quantity

q0c2
0M to non-dimensionalize the pressure difference, one

obtains the expression of the Eulerian pressure to order

OðMÞ as

p ¼ �nð0Þx þM½nð0Þ2x þ nð0Þnð0Þxx � nð1Þx �: (19)

Again, using Fubini’s solution for a plane progressive wave

in the previous equation and taking the average in time, leads

to

hpipw ¼ Mhp 1ð Þi ¼ � 1

4
M: (20)

Thus, the mean Eulerian pressure in a plane progressive

wave is uniform (and negative) throughout the beam.

For a plane standing wave of the form

nð0Þ ¼ sin x cos t; (21)

it can be shown that the steady part of the second-order

solution to the nonlinear wave equation is (see again

Appendix A)

hn 1ð Þi ¼ 1

8
sin 2x: (22)

Taking the time average of Eq. (19), using Eq. (21) and the

previous expression for hnð1Þi leads to the expression of the

mean Eulerian pressure in a plane standing wave as

hpisw ¼ Mhp 1ð Þi ¼ 1

4
M cos 2x: (23)

Even if they are expressed here in a dimensionless form,

the results presented in Sec. II—specifically expressions (13),

(14), (20), and (23)—are all classical. The goal of Sec. II was

to remind to the reader of the expressions of the rectified

(stationary) terms involved in the expression of the total force

derived below for small spheres and more complicated

bodies.

III. TOTAL FORCE ON A SMALL SPHERE

We now consider the case of a small rigid sphere of ra-

dius a free to move in a viscous Newtonian fluid with density

q0, dynamic viscosity g, and kinematic viscosity � ¼ g=q0

(see Fig. 2). The density of the sphere is denoted qs. Here,

and in the rest of the paper, the typical distance ð�=xÞ1=2

over which the vorticity diffuses through the action of

viscous stresses is assumed to be much larger than the parti-

cle size. The dimensionless ratio � ¼ ða2x=�Þ1=2
will thus be

assumed to be small compared to one.

For the incompressible limit to be valid at order Oð1Þ,
the wavelength of the acoustic radiation is assumed to be

much greater than the sphere radius, which can be written as

k ¼ k0a� 1. The location of the particle, with regard to its

equilibrium position ~x0, is denoted ~r and we write its veloc-

ity ~q. The amplitude of the fundamental harmonic response

of the particle to the acoustic field, ~rð0Þ, is also assumed to be

small compared to the particle radius. This condition is auto-

matically satisfied provided that the amplitude of the acous-

tic wave, n0, is also smaller than the particle radius. At order

Oð1Þ, the sphere will have no net motion (i.e., hqð0Þi ¼ 0),

FIG. 2. Local geometry in the case of a sphere of radius a and definition of

the displacement variable ~r . The densities of the particle and the fluid are

denoted by qs and q0, respectively.
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and its net dynamics will result from the balance between

the total force and steady viscous drag at order OðMÞ.

A. Steady pressure-velocity field past the sphere

The total force exerted on small bodies results from two

main contributions. First, the particle experiences the

stresses exerted by the streaming flow. This flow arises from

the coupling of the leading order flow—which results from

the superimposition of the incident and perturbative (or scat-

tered) flows—with itself through the nonlinear term of the

Navier-Stokes equation. The steady streaming flow created

by an oscillating sphere in an infinite medium is a classical

problem.23–25 As shown in Appendix B in the case of sym-

metric bodies which are symmetrically oriented in an acous-

tic field, the contribution of the steady streaming stress to the

final evaluation of the total force can be neglected in the

limit �� 1. The second contribution comes from to the os-

cillatory displacement of the particle in the pressure/velocity

gradient field. This nonlinear Lagrangian effect, which gen-

erally yields steady terms in the expression of the total force,

is what could be properly named “acoustic force” since it is

intimately linked to the acoustic nature of the incident radia-

tion. Note that the acoustic force (as defined above) has a

non-zero contribution in both limits �� 1 and �� 1.6

Here, we focus on the pressure/velocity field experi-

enced by the particle in its own frame of reference, i.e., the

dimensionless fields uðx0 þ r; tÞ and pxðx0 þ r; tÞ, which

would be measured in time at the particle center P (see Fig.

2). So, let us consider the dimensional velocity ~uð~x0 þ ~r; tÞ
“seen” by the particle in its own frame of reference. The pre-

vious expression can be expanded to first order in ~r and one

gets

~u½~x0 þ ~rðtÞ; t� ¼ ~uð~x0; tÞ þ ~rðtÞ~u~xð~x0; tÞ: (24)

As the velocity field, the distance ~x and the displacement ~r
are made dimensionless using n0x, k�1

0 and n0, respectively,

Eq. (25) can be written in the following dimensionless form:

u½x0 þ rðtÞ; t� ¼ uðx0; tÞ þM rðtÞuxðx0; tÞ; (25)

since M ¼ n0k0. Thus, expanding u and ux to first order in

Mach number leads to the following expression, valid to first

order in M:

uðx0þ r; tÞ¼ uð0Þðx0; tÞþM½uð1Þðx0; tÞþ rð0ÞðtÞuð0Þx ðx0; tÞ�:
(26)

The order OðMÞ expansion for the pressure gradient can be

derived in the same way and one obtains

pxðx0þr; tÞ¼pð0Þx ðx0;tÞþM½pð1Þx ðx0; tÞþrð0ÞðtÞpð0Þxx ðx0; tÞ�:
(27)

In Eqs. (26) and (27), the Oð1Þ terms are purely harmonic of

pulsation 1 (i.e., x if we use dimensional quantities) while

all OðMÞ quadratic terms contain a double harmonic and a

mean contribution. So, the Oð1Þ harmonic term will deter-

mine the leading order dynamical response of the particle,

rð0Þ, whilst steady components of each OðMÞ term, namely,

huð1Þi, hpð1Þx i, hrð0Þuð0Þx i, and hrð0Þpð0Þxx i will be involved in the

calculation of the total force.

B. Dynamical response at leading order

First, let us derive the dimensionless form of relation-

ship between velocity and pressure for the incident field.

Whereas the relevant quantity for pressure and distance were

q0c2
0M and k�1

0 in Sec. II, here we choose instead the viscous

steady stress gn0xa�1 and the size a of the particle, since we

perform a local analysis (i.e., at the particle scale). Using the

same typical velocity as the one used in Sec. II (for the parti-

cle displacement is a priori of the same order as the fluid dis-

placement), namely, n0x leads to

pð0Þx ¼ ��2u
ð0Þ
t ; (28)

which is the dimensionless form of the linearized Euler

equation

q0~u
ð0Þ
t ¼ �pð0Þx : (29)

Now, in order to derive the dynamic response of the par-

ticle at leading order, let us first consider the force experi-

enced by a particle oscillating in a uniform oscillating

Stokes flow field. If we neglect the compressibility of the

fluid, the perturbed flow resulting from the presence of the

sphere is ruled by the unsteady Stokes’s equations. Choosing

a, x�1, n0x as typical length, time, and velocity scales, the

dimensionless unsteady Stokes’s equations are

�2 @v

@t
¼ �$-þr2v; $ � v ¼ 0; (30)

where ðv;-Þ denote the velocity and pressure disturbance

field in the reference frame of the laboratory. For a particle

moving at velocity q ex in a uniform field uðtÞex, the previ-

ous set of equations is completed by the boundary

conditions

v ¼ u ex at infinity; and v ¼ q ex on S: (31)

The problem can be formulated in a similar fashion in

the frame of reference of the surrounding fluid (i.e., where

the fluid is motionless at infinity). In such a frame, the

Stokes equation keep their original form but an extra inertial

force density, ��2 _uex, must be added on the right-hand side

of the first equation. This force density can be written as the

gradient of an additional inertial pressure field, pi ¼ �2 _u x ex,

and can be integrated in the global pressure gradient term. If

then ðvu;-uÞ denotes the global disturbed field in the frame

of reference of the surrounding fluid, we get

�2 @vu

@t
¼ �$-u þr2vu; $ � vu ¼ 0; (32)

with the new set of boundary conditions

vu ¼ 0 at infinity; and vu ¼ ðq� uÞex onS: (33)
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In the following, we use the subscript u to refer to a situation

where the fluid velocity vanishes at infinity.

If we assume that both the sphere and the surrounding

fluid oscillate in the laboratory frame at the same pulsation,

the second problem is formally the same as the one of a

sphere oscillating in a quiescent fluid, the solution to which

is given in number of works (see, e.g., Ref. 26). The sur-

rounding uniform velocity field and the particle velocity take

the form ûe�itex and q̂e�itex. The integration of the stress

tensor corresponding to the field ðvu; -uÞ over the particle

surface leads to the classical expression of the hydrodynamic

force exerted on the particle in the reference frame of the

surrounding fluid, Fu, non-dimensionalized by gan0x,

as26,27

F̂u ¼ 6pXs �ð Þðû � q̂Þex;

with Xs �ð Þ ¼ 1þ e�p=4�� i

9
�2: (34)

In order to obtain the force experienced by the particle

in the reference frame of the laboratory, F, one must add to

the right-hand side of the previous equation an extra term

corresponding to the integration of the inertial pressure field,

pi ¼ �2 _uxex, over the surface of the particle. Since the pres-

sure field p is linear, this term can be written in a convenient

form �Vdpi=dx, where V is the volume of the particle. For

the sphere, V ¼ ð4=3Þp, so the additional term leads to the

force

F̂ ¼ 6pXs �ð Þ û � q̂ð Þex þ i
4

3
p�2ûex; (35)

which can be re-written in the condensed form

F̂ ¼ 6p Ks �ð Þ û � Xs �ð Þq̂
� �

ex;

with Ks �ð Þ ¼ 1þ e�ip=4�� i

3
�2: (36)

This relation was first given in a more general frame-

work by Mazur and Bedeaux28 and re-derived by Kim and

Karrila.26 The method above demonstrates a straightforward

route to obtaining the total force on a particle oscillating in a

uniform Stokes flow, itself oscillating at the same frequency.

Note that this method still holds for any oscillating flow (uni-

form or not), provided the terms quadratic in space can be

neglected in the surrounding flow—in other words, as long

as the Faxen’s terms can be neglected in the expression of

the force. The final formula makes clear the double origin of

the force exerted on the particle. The first term comes from

the velocity of the particle relative to the fluid. The second

one is related to the pressure field that makes the surrounding

fluid flow (whether the particle is present or not). If the parti-

cle is following the oscillating fluid and q̂ ¼ û, the only

force comes from the external pressure field (i.e., the term

�Vdpi=dx) since the particle does not disturb the flow.

We now return to our main problem of interest, namely,

the spherical particle moving under the effect of the acoustic

field. The Oð1Þ displacement of the spherical particle mov-

ing in an acoustic field must satisfy the Newton’s law as

4

3
p a3 qsn0x

2 _q ¼ 6pgan0x Ks �ð Þû 0ð Þ � Xs �ð Þq̂ 0ð Þ
h i

;

(37)

where _q is the derivative of the velocity with respect to the

dimensionless time. This can be rewritten in the more con-

densed form

_̂q
0ð Þ ¼ 9

2
b ��2 Ks �ð Þû 0ð Þ � Xs �ð Þq̂ 0ð Þ

h i
; (38)

where b ¼ q0=qs is the ratio between fluid and particle den-

sities. In Eq. (38) the velocity field û and the particle veloc-

ity q̂ involved in Eq. (36) have been replaced by the Oð1Þ
quantities ûð0Þ and q̂ð0Þ, which simply means that Faxen’s

term are neglected at this order, which is justified as long as

the Mach number is small as compared to 1.

From Eq. (38), the displacement r̂ð0Þ ¼ �iq̂ð0Þ is given by

r̂ð0Þ ¼ Csð�Þûð0Þ; (39)

where

Cs �ð Þ ¼ � 9bXu �ð Þ
2�2 þ 9ibX �ð Þ : (40)

Our result must be compared to the solution proposed

by Doinikov11 in the general framework of arbitrary � and

Mach number. The difference between our results and

Doinikov’s solution is shown in Fig. 3 with the parameters

c0 ¼ 103 m s�1 and a ¼ 10�6 m. Specifically, in Figs. 3(a)

and 3(b) we plot the quantities DR and DI defined as

DR ¼ 2
Re r̂ 0ð Þ
� �

� Re r̂ 0ð Þ
D

h i
Re r̂ 0ð Þ
� �

þ Re r̂ 0ð Þ
D

h i (41)

and

DI ¼ 2
Im r̂ 0ð Þ
� �

� Im r̂ 0ð Þ
D

h i
Im r̂ 0ð Þ
� �

þ Im r̂ 0ð Þ
D

h i ; (42)

FIG. 3. Comparison between expression (40) and Doinikov’s solution. The

difference is small provided compressibility effects are negligible. In the

present case, DR and DI have been plotted for c ¼ 103 ms-1 and a ¼ 10�6 m.
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where r̂
ð0Þ
D is the displacement computed from Doinikov’s ar-

ticle. The divergence between the two solutions occurs as

soon as the particle does probe the compressibility of the

fluid, namely, beyond xa=c0 � 1, and the difference

between the solutions becomes large beyond

� ’ ðac0=�Þ1=2 ’ 30. To conclude, we note that we can

derive the expressions of the real and imaginary parts of Cs

in the limit �� 1, as we need them to calculate the asymp-

totic expansion of the total force. They are

Re Cs½ � ¼ 2

9

b� 1

b
�2 � 2

9
ffiffiffi
2
p b� 1

b
�3 þ O �5ð Þ; (43)

Im Cs½ � ¼ 1þ 2

9
ffiffiffi
2
p b� 1

b
�3 þ O �4ð Þ: (44)

C. Expression of the total force

Considering the analysis of the local steady field experi-

ence by the sphere presented in Sec. III A, the total dimen-

sional force experienced by the particle balancing the steady

drag at quadratic order in n0 is given by

~Ftot ¼ 6pgaðh~r ð0Þ~uð0Þx i þ h~uð1ÞiÞ � ~Vðh~pð1Þx i � h~rð0Þ~pð0Þxx iÞ;
(45)

where the subscript tot stands for total. By choosing k�1
0 ,

x�1, n0x, and q0c2
0M, F? ¼ q0ðn0c0Þ2ðk0aÞ3 as typical

length, time, velocity, pressure, and force scales, the previ-

ous expression now takes the form

Ftot¼
4

3
p

9

2
��2 hr 0ð Þu 0ð Þ

x iþhu 1ð Þi
� �

�hp 1ð Þ
x i�hr 0ð Þp 0ð Þ

xx i
� �

:

(46)

The latter expression is what is called total force in the pres-

ent article, that is the sum of all the forces experienced by

the particle which counter-balance the steady viscous drag at

order OðMÞ.

1. Progressive wave

In the case of a plane progressive wave, the O(1) quanti-

ties involved in expression (46) take the form

uð0Þx ¼ i eiðx�tÞ and pð0Þxx ¼ �eiðx�tÞ: (47)

Using expressions (13), (20), (40), and (47) in the gen-

eral expression for the force, Eq. (46), yields

Ftot;pw ¼
4

3
p

9

2
��2 1

2
Im Cs½ � � 1

2

	 

� 1

2
Re Cs½ �

� �
; (48)

which, using Eqs. (43) and (44), can finally be transformed

into

Ftot;pw ¼
2

3
p

b� 1

b
�=

ffiffiffi
2
p
þ O �2ð Þ; (49)

valid in the limit �� 1. Its dimensional form is given by

~Ftot;pw ¼
2

3
pF?

b� 1

b
�=

ffiffiffi
2
p
þ O �2ð Þ: (50)

This result has to be compared to the one given by

Doinikov11 in the relevant limit. Our result and the one in

Ref. 11 are identical to within a prefactor of 11/5. We

believe that this difference might be due to the truncations

made in Ref. 11 in order to approximate the Di functions in

the original article. These truncations would give only an

approximate result for the Oð�3Þ terms in Cs which are

required to obtain the final Oð�Þ result, Eq. (50).

The general trends of the present theory are also consist-

ent with the result derived by Settnes and Bruus.18 In partic-

ular, both expressions are proportional to F?. The main

difference comes from the dependence of the prefactor with

regard to vðb; �Þ ¼ ½ð1� bÞ=b��. Settnes and Bruus find a

total force proportional to ½vðb; �Þ�2 whereas we/Doinikov

find a linear dependence in vðb; �Þ. This has two mains

implications. First, in Settnes and Bruus’ article, no sign

reversal of the force is observed when the particle density

becomes lower than the fluid density. Second, the force goes

faster to zero, as the frequency decreases. We think that the

difference of scaling in vðb; �Þ arises from the lack of Basset

term in matching inner and outer solutions, forcing Settnes

and Bruus to go further in the expansion to get a non-zero

term.

2. Standing wave

In the case of a plane standing wave, the Oð1Þ quantities

involved in expression (46) take the following form:

uð0Þx ¼ sin x eit and pð0Þxx ¼ i cos x e�it: (51)

Using expressions (14), (23), (40), and (51) in the gen-

eral expression (46) yields a dimensionless force

Ftot;sw ¼
4

3
p sin 2x

9

8
��2Re Cs½ � þ 1

2
� 1

4
Im Cs½ �

� �
; (52)

which, using Eqs. (43) and (44), can finally be transformed

into

Ftot;sw ¼
1

3b
p sin 2x 2b� 1ð Þ þ 1� bð Þ�=

ffiffiffi
2
ph i

þ O �2ð Þ;

(53)

which is valid for small �. Its dimensional form is

~Ftot;sw¼
1

3b
pF?sin2k~x0 2b�1ð Þþ 1�bð Þ�=

ffiffiffi
2
ph i
þO �2ð Þ:

(54)

Again, this result has to be compared to the one given

by Doinikov11 in the same limit, and we see that both

expressions are equivalent at leading order. They also agree

qualitatively to order Oð�Þ to within the same 11/5 prefactor

as discussed above.

The result in Eq. (54) is also in perfect accordance with

the expression of Settnes and Bruus at leading order.
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However, the corrective term from Settnes and Bruus (not

given in their paper) can be shown to be again proportional

to ½vðb; �Þ�2 whereas we/Doinikov obtain a corrective term

linear in vðb; �Þ. Note that it seems to be a general feature of

the low � theory that the force experienced in a progressive

wave is of the same form as the corrective term in the

expression of the force experienced in a standing wave. in

the case of a standing wave, the three expressions (present

approach�Doinikov�Settnes and Bruus) are identical at

leading order but differ by the shape of the corrective term,

which is not problematic except for b ’ 1=2 (when the cor-

rective term becomes dominant).

IV. TOTAL FORCE ON SYMMETRIC BODIES

We now show that the method outlined above can be

generalized to non-spherical rigid bodies with certain sym-

metries in their shapes such that the forces arising from

steady streaming can be neglected. We consider shapes

which are instantaneously invariant under the transformation

PxPyPz, where Px, Py, and Pz are the reflections through

the planes yz, xz, and xy including the origin, respectively.

This invariance is automatically satisfied for bodies possess-

ing three distinct planes of symmetry, including arbitrary

ellipsoids, symmetric dumbells, cylinders, disks, etc. In what

follows, we refer to these bodies as “symmetric.”

A. Dynamical response at leading order

Consider a non-spherical symmetric body of volume ~V .

The typical length scale chosen to non-dimensionalize is the

radius, a, of the equivalent sphere defined by ð4=3Þpa3 ¼ ~V .

The key parameter � is again defined as ða2x=�Þ1=2
, with a

being the equivalent sphere radius.

The problem of computing the instantaneous drag force

experienced by a (non-rotating) particle oscillating in a qui-

escent fluid has been addressed by several authors. Kanwal29

first showed that the instantaneous drag force exerted on an

axisymmetric body oscillating along its axis of symmetry

with a dimensionless velocity q ¼ q̂ e�it, could be written in

the following form:

F̂u ¼ �6pA½1þ Ae�ip=4��q̂ þ Oð�2Þ; (55)

where A denotes the dimensionless steady Stokes drag coef-

ficient. Here the force is made dimensionless using the scal-

ing g a n0x, so that for the sphere, A ¼ 1 and Eq. (55) is

equivalent to the Stokes formula in which only the first two

terms are retained. Williams30 noticed that Kanwal’s expres-

sion was not valid for bodies of arbitrary shapes and derived

the tensorial form of Eq. (55), which holds for all type of

body at arbitrary fixed orientation,26 as

F̂u ¼ �6p½Aþ A2e�ip=4��q̂ þ Oð�2Þ; (56)

where A is the steady Stokes tensor. Both expressions (55)

and (56) are valid to order Oð�Þ only.

Lawrence and Weinbaum31 calculated the expression of

the instantaneous drag on prolate and oblate near-spheres

oscillating along their axis of symmetry, deriving a result

valid for any �. That result was generalized to arbitrary near-

spheres by Zhang and Stone.32 In Zhang’s work, the near-

sphere is defined by its polar equation r ¼ 1þ � f ðh;/Þ, and

the instantaneous drag takes the form

F̂u ¼ �6p Xs �ð Þ d� 3

8p
� e�ip=4�þ 1
� �2

ð
S
f n n dS

� �
q̂;

(57)

valid at order Oð�Þ for any �. Equation (57) and the result

from Ref. 31 for a spheroid are equivalent at order Oð�Þ.33

The previous expressions of the drag are valid either for

near-spheres at arbitrary � or for arbitrary shapes (and aspect

ratios) at small �, and provided the steady drag is known.

Lawrence and Weinbaum34 proposed the following ad hoc
composite formula in order to fill the gap

F̂u’�6p AþBe�ip=4�� iM�2þ A2�Bð Þ e�ip=4�

1þe�ip=4�

� �
q̂;

(58)

where B is Basset’s tensor and M is the added-mass tensor.

Luckily, and as shown below, the expressions of B and M
are in fact not required in order to calculate the total force at

small �.
For small values of �, the previous expression can thus

be approximated by

F̂u ¼�6p AþA2e�ip=4�� iA0�2�A00
X
n>2

ð�e�ip=4�Þn
" #

q̂;

(59)

with A0 ¼ M þ A2 � B and A00 ¼ A2 � B. Following the

same steps as in Sec. III B, the force experienced by the rigid

body oscillating at velocity q ¼ q̂e�it in a uniform oscillating

flow field u ¼ û e�it can be written as

F̂ ¼ 6p½Kð�Þû �Xð�Þ q̂�; (60)

with

Xð�Þ ¼ Aþ e�ip=4�A2 � iA0�2 � A00
X
n>2

ð�e�ip=4�Þn;

(61)
and

Kð�Þ ¼ X �ð Þ � 2

9
i�2d: (62)

For the sake of simplicity, we now assume that there is

no hydrodynamic coupling between translation and rotation.

This is strictly true at order Oð�Þ for a near sphere in an

oscillating viscous flow32 or for an arbitrary spheroid in a

steady uniform creeping flow.26 The expression for the dis-

placement of a sphere at leading order had been obtained

from Eq. (38). Likewise, the displacement of a symmetric

body will obtained by solving the equation (Newton’s law)

_̂q ¼ 9

2
b��2 K �ð Þû �X �ð Þq̂½ �; (63)

which is the tensorial version of Eq. (38). In the natural refer-

ence system of the body ðe1; e2; e3Þ, the symmetric tensors A,

A0; and A00 have diagonal representations ½A1;A2;A3�,
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½A01;A02;A03�, and ½A001;A002;A003�, respectively. Consequently,

tensors X and K also have diagonal representations in this ba-

sis, namely, ½X1;X2;X3� and ½K1;K2;K3� with

Xi ¼ Ai þ A2
i e�ip=4�� iA0i �

2 þ A00i
X
n>2

ð�e�ip=4�Þn

(64)
and

Ki ¼ Xi �
2

9
i�2: (65)

Denoting ei the axis of symmetry oriented along the direc-

tion of the wave vector, Eq. (63) reduces to

_̂qi ¼
9

2
b��2 Ki �ð Þ û � Xi �ð Þq̂i½ �; (66)

the solution of which is formally identical to expression

(40), that is,

r̂
ð0Þ
i ¼ Cið�Þûð0Þ; (67)

where

Ci �ð Þ ¼ �
9bKi �ð Þ

2�2 þ 9ibXi �ð Þ
: (68)

As in the case of a sphere, the real and imaginary parts

of Ci can be expanded in the small parameter �, and one

gets

Re Ci½ � ¼
2

9 Ai

b� 1

b
�2 � 2

9
ffiffiffi
2
p b� 1

b
�3 þ O �4ð Þ; (69)

Im Ci½ � ¼ 1þ 2

9
ffiffiffi
2
p b� 1

b
�3 þ O �5ð Þ: (70)

Notably, the tensors A0 and A00 are not involved in the �-
expansion of Ci at order Oð�3Þ.

B. General expression for the total force

Expression (46) can be generalized to the case of a sym-

metric body arbitrarily oriented relative to the direction of

the acoustic radiation and one obtains

Ftot ¼
4

3
p

9

2
��2 A � exð Þ hr 0ð Þu 0ð Þ

x i þ hu 1ð Þi
� ��

� hp 1ð Þ
x i þ hr 0ð Þp 0ð Þ

xx i
� �

ex

i
: (71)

Unlike the case of the sphere, the total force can now have

components in the normal directions relative to the wave

vector.

C. Progressive wave

In the case of a particle with its axis ei oriented along x,

the y and z components of the force vanish and the expres-

sion for Fx
tot simplifies to

Ftot;pw ¼
4

3
p

9

2
��2Ai

1

2
Im Ci½ � �

1

2

	 

� 1

2
Re Ci½ �

� �
: (72)

Using the expressions of real and imaginary parts of Ci, the

previous expression becomes

Ftot;pw ¼
2

3
pAi

b� 1

b
�=

ffiffiffi
2
p

; (73)

which, in a dimensional form, becomes

~Ftot;pw ¼
2

3
pF?Ai

b� 1

b
�=

ffiffiffi
2
p

: (74)

We therefore see that the effect of non-sphericity of the

particle shows up at leading order, which, in the case of a

progressive wave is Oð�Þ. The non-sphericity of the particle

does not modify the direction of the force but it affects its

magnitude. For instance, for a prolate ellipsoid of revolution

(axis e1) of aspect ratio 2, A1 ¼ 0:38 and A2 ¼ 0:43.

Therefore, the radiation force is less efficient on such a

prolate ellipsoid (for any orientation) than on a sphere of

same volume (and density). The OðMÞ steady velocity result-

ing from the balance between total force and viscous drag

will however not be affected since the latter is proportional

to Ai as well.

D. Standing wave

Again, in the case of a particle with its axis ei oriented

along x, the y and z components of the force vanish and the

expression for Fx
tot simplifies to

Ftot;sw ¼
4

3
p sin 2x0

9

8
��2AiRe Cið Þ þ

1

2
� 1

4
Im Cið Þ

� �
;

(75)

which, after using Eqs. (69) and (70), yields

Ftot;sw ¼
1

3b
p sin 2x0 2b� 1ð Þ þ Ai 1� bð Þ�=

ffiffiffi
2
ph i

:

(76)

The dimensional form of the previous equation is

Ftot;sw ¼
1

3b
pF? sin 2k0~x0 2b� 1ð Þ þ Ai 1� bð Þ�=

ffiffiffi
2
ph i

:

(77)

A symmetric particle oscillating along one of its axis

under the effect of a plane standing wave experiences almost

the same force as the equivalent sphere (same volume). It is

only the first correction at order � which is affected by the

difference in shape, as in the case of a progressive wave.

V. DISCUSSION

In the present paper, we derived an expression of the

total force in the limit of small � (i.e., large viscous diffusion

length compared to the particle size), suitable for bodies pos-

sessing three planes of symmetry. The practical use of the

expressions we proposed in the cases of progressive and

standing waves only requires the knowledge of the steady

(Stokes) drag tensor. After outlining a simple method
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applied to the classical case of a sphere, we then showed

how to generalize the results to the case of symmetric bodies

possessing three planes of symmetry. For a plane progressive

wave, the radiation pressure is shown to be equal to the one

experienced by a sphere of same volume and density multi-

plied by the dimensionless viscous drag of the particle. In

the case of a standing wave, there is almost no effect of the

shape and the radiation pressure at leading order is equal to

the one experienced by the equivalent sphere, with a shape-

dependent correction at order Oð�Þ. It is notable that our der-

ivations recover all scalings computed in Ref. 11 and thus

agree with the assumptions therein. This is to be contrasted

with the different approach, and scalings, proposed in Ref.

35. Generalizing the results presented in this paper to the

case of large ratios a=d would be important but difficult

since this would require the calculation of the steady stream-

ing generated by oscillating bodies of arbitrary shape.

For the derivations presented in this article to hold, we

have to be in the asymptotic limit

a� d� k�1
0 : (78)

Equivalently, given a typical size a, and a typical order of

magnitude for the speed of sound c0, the frequency of the

acoustic field must be smaller than min½�=a2; c2
0=��, for the

double inequality to be satisfied. As a practical example,

consider glycerol for which the kinematic viscosity is �
’ 1:4� 10�3 m2s�1, the density q ’ 1:3 kgm�3, and the

speed of sound is c0 ’ 1:9� 103 ms�1 at ambient tempera-

ture. For x ¼ 107 s�1 [for the conditions in Eq. (78) to be

satisfied] and an amplitude of displacement n0 ¼ 10�8 m (so

that n0=a� 1), the maximum force experienced by a spheri-

cal particle of silica with 1 lm radius a (density qs ¼ 2:2
kgm�3) in the case of a progressive wave is Ftot;pw

¼ �7:46� 10�15 N whereas it is Ftot;sw ¼ 1:75� 10�14 N

in the case of a standing wave. The value of Ftot;pw, since it

is proportional to Ai would be affected by a change of the

particle shape. In the case of a progressive incident wave, a

prolate spheroid of aspect ratio 2 (with Ai ¼ 0:38) would-

experience a total force almost three times as small as in the

spherical case. Note that this difference would be of less

practical importance when gravity plays a dominant role

since the weight W ¼ ð4=3Þpa3 qsgð1� bÞ 	 �4:15

�10�14 N is greater than Ftot;pw in magnitude by a factor of

about 5.6. Note also that in a case where the buoyancy plays

no role, the drift velocity induced by a progressive radiation

would not change since the counteracting drag force is pro-

portional to Ai as well. Conversely, the value of the total

force in the case of a standing wave is very slightly affected

by a change of a particle shape, since Ftot;pw does not depend

on Ai at leading order. Only the drift velocity would be

altered since the drag is proportional to Ai. A change in

shape will thus modify the value of the total force experi-

enced by a particle in a progressive wave but will not affect

its drift velocity. By contrast, such a change will have almost

no effect on the total force generated by a standing wave, but

will alter the drift velocity of the particle through its viscous

drag coefficient. From a practical standpoint, the total force

exerted by an acoustic radiation on small symmetric bodies,

that is the ability for an acoustic radiation to levitate, and

allow actuation of particle at the micron-scale, could be sig-

nificantly affected by the shape of the body.
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APPENDIX A: ACOUSTIC FIELD AT ORDER OðMÞ

We review here Fubini’s solution to the nonlinear wave

equation in the case of a plane progressive wave.21 The Oð1Þ
and OðMÞ solutions are the ones to be used in Eqs. (12) and

(19) to get the results Eqs. (13) and (20). The second part of

the appendix is devoted to the case of a plane standing wave

and results Eqs. (13) and (20) are derived.

We consider first the situation of a semi-infinite pipe

full of fluid closed by an oscillating wall. The boundary con-

dition in displacement imposed at the wall is given by

n ¼ 0; nt ¼ 0 for t ¼ 0; x ¼ 0; (A1)

nðtÞ ¼ 1� cos t for t > 0; x ¼ 0: (A2)

The solution to system (4) and (5) can be shown to be of the

following form:21

nð0Þ ¼ 1� cosðt� xÞ; (A3)

n 1ð Þ ¼ 1

4
x 1� cos 2 t� xð Þ½ �: (A4)

Using the previous forms of nð0Þ and nð1Þ in Eqs. (12)

and (19) and taking the average in time leads to the expres-

sions (13) and (20) of the mean velocity an pressure in the

case of a plane progressive wave.

We consider now a plane standing wave of the form

nð0Þ ¼ sin x cos t: (A5)

As already stated in Sec. II A, as long as the Lagrangian

velocity is bounded (in time), the first two terms in Eq. (12)

vanish when time averaged. The convective term �nð0Þnð0Þtx

has also a zero time average, such that the mean Eulerian ve-

locity is zero until order OðMÞ.
The Eulerian pressure can be calculated by introducing

Eq. (A5) in the nonlinear wave Eq. (5). We consider, as pre-

viously done by Westervelt,9 that the dissipation is large

enough to keep the magnitude of the higher-order solutions

smaller than the magnitude of the O(1) solution. So, intro-

ducing Eq. (A5) in Eq. (2) and taking average in time leads

to

hn 1ð Þ
xx i ¼ �

1

2
sin 2xð Þ: (A6)

After integration, we get
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hn 1ð Þi ¼ � 1

8
sin 2xð Þ: (A7)

Introducing Eqs. (A5) and (A7) in Eq. (19) then leads to the

expression (23) of the Eulerian pressure in a standing wave.

APPENDIX B: ACOUSTIC STREAMING AT SMALL �

The effects of the steady streaming induced by the oscilla-

tions of a symmetric particle of equivalent radius a under the

effect of an acoustic field are investigated in the limit of

small �. The net force acting on the particle is shown to be neg-

ligible at order Oð�Þ, as long as the required criteria of symme-

try are satisfied. Here we address the situation of a particle in a

plane standing wave of the form ~uðxÞ ¼ n0x sinðk0~xÞ, but the

case a progressive wave can be treated similarly.

The incident velocity field can be expanded in the vicin-

ity of the average position x0 of the particle, which yields

~uðxÞ ¼ n0x sin k0~x0 � k0ð~x � ~x0Þ cos k0~x0 þ Oðk2
0Þ:

(B1)

In the frame of reference of the particle, using Eq. (40) and

neglecting the particle displacement relative to the particle

radius, the previous expression transforms into

~uðxÞ ¼ n0x½1þ iCsð�Þ� sin k0~x0

�n0x k0ð~x � ~x0Þ cos k0~x0 þ Oðk2
0Þ: (B2)

In the small � limit, the quantity a ¼ ið1þ iCsÞ is equivalent

to

a ¼ 2

9

1� b
b

�2: (B3)

By taking a, n0x as typical distance and velocity, the

field ~u can be written in the following dimensionless form:

uðxÞ ¼ ia sin kx0 � kðx� x0Þ cos kx0 þ Oðk2Þ; (B4)

where k ¼ k0a. In the reference frame of the particle, the

incident field is the sum of a uniform field of order a (consid-

ering the amplitude n0x chosen for the non-dimensionaliza-

tion), and a linear (compressible) component of amplitude k.

Choosing the quantities q0M and q0n0ax2 as typical

density perturbation and stress and defining the small param-

eter e ¼ n0=a, the Navier-Stokes equations takes the form

1þ ekqð Þ @v
@t
þ e v � $ð Þv

� �
¼ $ � r; (B5)

k
@p

@t
þ $ � vþ ek$ � qvð Þ ¼ 0; (B6)

p ¼ q: (B7)

To quantify the net effect of the steady streaming on the

particle in the limit �� 1, we assume that � is the small pa-

rameter of the problem. So, we seek the perturbation solution

to the previous system by expanding the velocity pressure

and density as powers of �,

v ¼ vð0Þ þ evð1Þ þ Oðe2Þ; (B8)

p ¼ pð0Þ þ epð1Þ þ Oðe2Þ; (B9)

q ¼ qð0Þ þ eqð1Þ þ Oðe2Þ; (B10)

and, as a consequence of Eqs. (B8) and (B9), r ¼ rð0Þ

þerð1Þ þ Oðe2Þ.
At order Oð1Þ, the system (B8) and (B9) yields

@v 0ð Þ

@t
¼ $ � r 0ð Þ; (B11)

k
@q 0ð Þ

@t
þ $ � v 0ð Þ ¼ 0; (B12)

pð0Þ ¼ qð0Þ: (B13)

These equation are the dimensionless forms of those in

Ref. 11. As suggested by Lamb, vð0Þ can be written as the

sum of an irrotationnal and a zero gradient term. We can fur-

ther write vð0Þ as the sum of two flows, each one correspond-

ing to the symmetric and antisymmetric parts of the incident

field (B4):

vð0Þ ¼ a vð0Þa þ kvð0Þs : (B14)

To order OðeÞ, Eq. (B11) yields

q 0ð Þk
@v 0ð Þ

@t
þ @v

1ð Þ

@t
þ v 0ð Þ � $
� �

v 0ð Þ ¼ $ � r 1ð Þ; (B15)

which, when using Eq. (B12) and taking the average in time,

leads to

$ � hrð1Þi ¼ $ � hvð0Þvð0Þi: (B16)

Using Eq. (B14) in the previous equation, and considering

that, due to the global symmetry of the system, only the

crossed products v
ð0Þ
a v

ð0Þ
s will lead to a non-zero net force on

the particle, one can deduce the order of magnitude hrð1Þi of

the steady part of the antisymetric stress tensor, namely,

hrð1Þi � eka. Coming back to dimensional quantities, one gets

h~rð1Þi � e q0n0ax2 ka: (B17)

Multiplying the previous expression by the typical sur-

face a2 provides the order of magnitude of the dimensional

steady streaming force ~FSS:

~FSS � F?
1� b

b
�2; (B18)

where F? ¼ q0ðn0c0Þ2ðk0aÞ3. Therefore, for small values of

�, the steady streaming term steps in the expression of the

total force at order �2. This is why expressions (49) and (53)

are correct at order Oð�Þ.
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