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Rotation of slender swimmers in isotropic-drag media
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The drag anisotropy of slender filaments is a critical physical property allowing swimming in low-Reynolds
number flows, and without it linear translation is impossible. Here we show that, in contrast, net rotation can
occur under isotropic drag. We first demonstrate this result formally by considering the consequences of the
force- and torque-free conditions on swimming bodies and we then illustrate it with two examples (a simple
swimmers made of three rods and a model bacterium with two helical flagellar filaments). Our results highlight
the different role of hydrodynamic forces in generating translational versus rotational propulsion.
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Since the 1950s [1,2], a continuous dialogue between theory
and experiments has allowed us to unravel the fundamental
physics of microorganism locomotion [3], and we can now
predict how different organisms swim [4,5], how they move
to favorable environments [6,7], and how they respond to
boundaries [8,9]. The scientific community has also created
its own series of synthetic microswimmers and attempted to
optimize them [10–13].

Our understanding is made possible by our combined
ability to (a) accurately measure the motion of microscale
swimmers [4,7,9] and (b) theoretically describe the motion
of the surrounding fluid through the incompressible Stokes
equations [3,14]. The flow around the swimmer is obtained by
enforcing that the fluid velocity on its surface is the same as the
velocity of the swimmer itself (no-slip boundary condition)
and the swimming kinematics are such that there is no net
force and torque on the swimmer (free-swimming conditions).
Since the Stokes equations are linear and time independent,
net propulsion can only be created by a stroke kinematics,
term nonreciprocal, which breaks the time symmetry of the
system [15]. In the vast majority of cases, microorganisms
generate nonreciprocal strokes by sending bending waves [16]
or rotating [17] slender filaments termed flagella.

Such slender filaments are able to generate net propulsive
forces due to their drag anisotropy at low Reynolds numbers
(so-called drag-based thrust). Specifically, the drag per unit
length acting on the slender filament is smaller for a translation
along its centerline than for translation perpendicular to it.
This is a fundamental property of small-scale fluid mechanics,
which originates from the Green’s function, G(r), for the
incompressible Stokes equations due to a point force f located
at r0 [18],

G(r) = 1

8πμ

I + R̂R̂
|R| · f, (1)

where μ is the dynamic viscosity of the fluid, I is the identity
tensor, and R = r − r0 is the vector pointing from the location
of the point force to the point of interest (R̂ is a unit vector

*lmk42@cam.ac.uk
†e.lauga@damtp.cam.ac.uk

in the same direction). Clearly, the flow resulting from the
Green’s function at any point in which R is parallel to f is
twice as strong as the flow at a point with R is perpendicular
to f for the same |R|.

The resulting modeling approaches to describe the motion
of slender filaments in viscous fluids therefore also display this
feature of drag-anisotropy. The two commonly used theories
are resistive-force (or local-drag) theory, which is analytical
but only logarithmically correct [2,19,20], and slender-body
theory, which has to be implemented numerically in general
but is algebraically correct [12,21,22].

In a number of important situations, the anisotropy of
the drag is less prominent. For example, some eukaryotic
microorganisms have evolved hairs along their flagella called
mastigonemes [23,24]. These change the drag characteristics
of the filament by making the drag parallel to the filament
similar to, or smaller than, the drag perpendicular to the
filament, allowing these swimmers to swim “backwards.”
When these hairs are at the correct length and density, the
drag on the filament therefore becomes isotropic, removing the
anisotropic influence imparted by the Stokes Green’s function.
Similarly in non-Newtonian environments the drag changes
in complex ways [25]. For example, the drag on rods in a
shear thinning fluid was seen to decrease as the non-Newtonian
nature of the fluid was increased [26]. This relative decrease
was seen to be similar for motions parallel and perpendicular,
though if the decrease was different for the two motions
the system may again develop isotropic drag characteristics.
Similarly, if the Stokes Green’s function was made isotropic
(i.e., proportional to the Laplacian Green’s function), the
drag on a filament would arise from a line distribution of
these isotropic Green’s functions and would be isotropic as a
result.

However, drag anisotropy is the critical physical ingredient
to allow motion of the geometric center of a swimmer,
and without it a net translation is impossible [27]. Indeed,
consider an inextensible [28] filament of length L described
by the centerline location r(s,t) and deforming its shape with
the instantaneous velocity U(s,t) in the laboratory frame of
reference (Fig. 1). Under isotropic drag, the hydrodynamic
force density along the filament, at arc length s, scales as
f(s,t) ∝ U(s,t), so that the velocity of the mean filament
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FIG. 1. Diagram showing the slender filament used to prove
the necessity of drag anisotropy. The black line represents the
filaments centerline, r(s,t), and the blue dotted arrows indicate the
instantaneous velocity of the filament at arc length s and time t ,
U(s,t). The mean geometric position, r(t), is also indicated for said
filament.

position, r(t) = (
∫

r(s,t) ds)/L, is given by

dr
dt

= 1

L

d

dt

∫ L

0
r(s,t) ds = 1

L

∫ L

0
U(s,t) ds

∝
∫ L

0
f(s,t) ds = 0, (2)

since the swimmer is force-free at all times. Allowing the
body to be extensible can break this condition, prompting the
creation of many popular theoretical models, like extensible
filament swimming [28] and three sphere swimmers [29,30].
However, for many microswimmers, which are inextensible,
drag anisotropy is a fundamental constraint on whether an
organism can translate at low Reynolds number.

The argument shown in Eq. (2) applies to the swimmer’s
translation. It is unclear if a similar reasoning may be used
to rule out a net rotation. In this paper we show that, in
fact, drag anisotropy is not required to generate rotation.
This is first shown formally by considering the force- and
torque-free condition for the arbitrary deformation of a
swimmer actuating slender appendages. We then illustrate
the generation of rotation using model two swimmers: a
lopsided paddle swimmer composed of three rods and a model
bacterium with two flagellar filaments. Our work demonstrates
that geometry alone can generate the conditions required to
induce rotation and highlights the different role of hydro-
dynamic forces in generating translational versus rotational
propulsion.

Using the notation above to describe the filament, we
employ Udef(s,t) to denote the instantaneous zero-mean
deformation of the body in the laboratory frame. We pick
the instantaneous origin of the frame of reference to be the
center of mass of swimmer and thus write r = 0. The velocity

along the shape of the swimmer is therefore written as

U(s,t) = Udef(s,t) + U(t) + �(t) × r(s,t), (3)

where U(t) and �(t) are the instantaneous translation and
rotational velocities. If motion occurs in a medium with
isotropic drag, then Eq. (2) shows that U(t) = 0 for all times.
Denoting f(s,t) = ζU(s,t) the isotropic relationship between
the hydrodynamic force density acting on the fluid and the
velocity of the swimmer centerline, we can write

f(s,t) = ζUdef(s,t) + ζ�(t) × r(s,t), (4)

where ζ is the isotropic drag per unit length. The form
of ζ depends on the specific situation, whether that be a
non-Newtonian fluid or a complex geometry and it is left
general here to demonstrate this effect in any environment
where isotropic drag on a “filament” is present. From
the isotropic drag condition, the torque density, �(s,t), is
given by

�(s,t) = r(s,t) × f(s,t) + γ t̂t̂ · �(t), (5)

where t̂ ≡ t̂(s,t) is the tangent vector along the body centerline.
The last term in Eq. (5) accounts for the torque generated
from local rotation about the centerline of the filament, with
a rotational drag coefficient denoted γ (in both illustrative
examples below we chose γ = 0, but it has been left here for
completeness). We thus get a torque density given by

�(s,t) = ζr(s,t) × [Udef(s,t) + �(t) × r(s,t)] + γ t̂t̂ · �(t).

(6)

The total force and torque on the body are then given by

0 =
∫ L

0
f(s,t) ds = ζ�(t) ×

∫ L

0
r(s,t) ds, (7)

0 =
∫ L

0
�(s,t) ds = ζ

∫ L

0
r(s,t) × Udef(s,t) ds

+
∫ L

0
(ζ Ir2 − ζrr + γ t̂t̂) ds · �(t),

(8)

where we have used the vector identity a × (b × c) =
b(a · c) − c(a · b). The zeros on the left-hand side of Eqs. (7)
and (8) reflect the fact that the swimmer is force- and torque-
free for all times. The force-free condition is automatically
satisfied since r̄ = 0. The torque-free condition, Eq. (8), leads
to an explicit equation for the rotation rate of the swimmer as

R(t) · �(t) = −ζ

∫ L

0
r(s,t) × Udef(s,t) ds, (9)

where the resistance tensor, R(t), is instantaneously given by

R(t) =
∫ L

0
(ζ Ir2 − ζrr + γ t̂t̂) ds. (10)

Hence, provided the deformation generates a net torque on the
right-hand side of Eq. (9), and since the resistance tensor R
is always positive definite for any finite-length filament, then
�(t) �= 0 without the need for drag anisotropy. Note that this
derivation is independent of the reference frame as it involves
instantaneous velocities (the laboratory frame can be chosen
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FIG. 2. Representation of the lopsided paddle swimmer with
three arms of lengths 2L1, 2L2, and 2L3. The different colored
arms show the swimmer configuration at different times with arrows
indicating their rotation. The frame of reference (x, y, z) rotate with
the swimmer so that the x axis is instantaneously aligned with
rod #2.

to match the swimming frame at the time t , without loss of
generality).

Physically, anisotropy is necessary to create any motion.
In the case of linear velocity this anisotropy must come from
the drag, as demonstrated by Eq. (2). However, in the case
of rotation, the configuration of the centerline, r(s,t), can
generate the required anisotropy, as shown by the nonisotropic
resistance tensor R, even in the presence of isotropic drag. This
instantaneous rotation can then generate a net rotation over a
period if the deformation undergoes a nonreciprocal stroke, as
per the scallop theorem [15].

To provide further intuition, we illustrate this result on
two simple examples exhibiting nonzero angular velocities.
Note that many more examples can be created from existing
calculations that use resistive-force theory by formally setting
the drag to be isotropic [4,31].

First we consider an elementary lopsided paddle swimmer
as shown in Fig. 2. This swimmer consists of three straight
rods of lengths 2L1, 2L2, and 2L3. The first and third rods are
perpendicular to the second rod and both positioned at opposite
ends of the second. The first and third rod then rotate around
the axis of the second rod in opposing directions with period
T = 2π/ω. The centerline of this swimmer is described for
all times and in the (x, y, z) frame rotating with it (see Fig. 2)
as

r + r =

⎧⎪⎨
⎪⎩

{−L2, − s1 sin ωt,s1 cos ωt} −L1 < s1 < L1,

{s2,0,0} −L2 < s2 < L2,

{L2,s3 sin ωt,s3 cos ωt} −L3 < s3 < L3,

(11)

where si describes the configuration of rod i. The origin of
the reference frame is located at the center of the swimmer, r,

which is found by

2(L1 + L2 + L3)r =
∫

(r + r) ds

=
∫ L1

−L1

{−L2, − s1 sin ωt,s1 cos ωt} ds1

+
∫ L2

−L2

{s2,0,0} ds2

+
∫ L3

−L3

{L2,s3 sin ωt,s3 cos ωt} ds3

= {2L2(L3 − L1),0,0}. (12)

Hence, the center of the swimmer is a point on the second rod
closer to the longest rotating rod. The deformation velocity for
this swimmer is given by

Udef = ω

⎧⎪⎨
⎪⎩

{0, − s1 cos ωt, − s1 sin ωt} −L1 < s1 < L1,

{0,0,0} −L2 < s2 < L2,

{0,s3 cos ωt, − s3 sin ωt} −L3 < s3 < L3,

(13)

and it generates an instantaneous net force and torque on the
fluid of magnitudes

F = ζ

∫
Udef ds = {0,0,0}, (14)

L = ζ

∫
r × Udef ds =

{
−2

3

(
L3

3 − L3
1

)
ζω,0,0

}
, (15)

where the integrals are taken over all three rods as in Eq. (12).
Assuming for simplicity that γ = 0, then the resistance matrix
from Eq. (10) is instantaneously

R(t) = ζ

⎛
⎜⎝

2
3

(
L3

1 + L3
3

)
0 0

0 2
3A(t) B(t)

0 B(t) 2
3C(t)

⎞
⎟⎠, (16)

where the coefficients A, B, and C are given by

A(t) = L2
2[4L1(L2 + 3L3) + L2(L2 + 4L3)]

L1 + L2 + L3

+ (
L3

1 + L3
3

)
cos2 ωt, (17)

B(t) = −1

3

(
L3

3 − L3
1

)
sin 2ωt, (18)

C(t) = L2
2[4L1(L2 + 3L3) + L2(L2 + 4L3)]

L1 + L2 + L3

+ (
L3

1 + L3
3

)
sin2 ωt. (19)

Inverting R, we obtain that the instantaneous rotation rate of
the lopsided paddle swimmer is constant and given by

� = R(t)−1L =
{
−L3

3 − L3
1

L3
3 + L3

1

ω,0,0

}
, (20)

which has a nonzero angular velocity provided L1 is not equal
to L3. Clearly, if both rods have finite sizes, then the rotation
rate of the whole swimmer is not equal to minus the rotation
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FIG. 3. Rotation of a model bacterium under isotropic drag.
(a) Geometry of the swimmer composed of two identical helices
of perpendicular axis, amplitude b, and wave number k, and rotate
with frequency ω. The cell body is small compared to the helices and
can thus be ignored. (b) Components of the angular velocity of the
swimmer in the swimmer frame, � (scaled by ω), as a function of
dimensionless time. For all figures b = 0.05 and k = 4π .

rates of each rod and indicates that a net rotation of the whole
swimmer body can be induced purely from geometry.

As a second example, we consider a model for a bacterium
with two flagellar filaments, as illustrated in Fig. 3(a). The
swimmer is composed of two identical rigid helices attached
at one end to a cell body and oriented with their helix
axes perpendicular to each other. Each helix rotates around
its axis with period T = 2π/ω. For simplicity we ignore
hydrodynamically the presence of the cell body, which is
correct in the limit where the helical flagella are much
longer than the body. In the frame of reference attached to
the swimmer [see Fig. 3(a)], the location of each helix is
given by

r1 + r = {αs,b sin(kx − ωt),b cos(kx − ωt)}, (21)

r2 + r = {b cos(kx − ωt),b sin(kx − ωt), − αs}, (22)

where r1 and r2 denote, respectively, the centerlines of the first
and second helices, 0 < s < 1, k = 2nπ is the wave number
of the helix for a positive integer n, b its amplitude, and α is
the cosine of the helix angle which satisfies α2 + b2k2 = 1 for

inextensible helices. This swimmer rotates about the center r
defined as

r = 1

2

∫ 1

0
(r1 + r) ds + 1

2

∫ 1

0
(r2 + r) ds

= α

4
{1,0,−1}, (23)

which is the origin for both r1 and r2. The deformation velocity
for for each helix, Udef,i , is then obtained by computing ∂tri

(i = 1,2). We obtain that the rotation of the helices around
their axes generates net forces and torques on the body of
magnitude

F(t) = ζ

∫
Udef ds = {0,0,0}, (24)

L(t) = ζ

∫
r × Udef ds (25)

= bζω

2nπ
{2bnπ + α sin ωt,α cos ωt,α sin ωt − 2bnπ}.

Assuming γ = 0 for simplicity, the resistance matrix relating
torque and rotation for this bacterial configuration can be
computed exactly and we obtain

R(t) = ζ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

36b2 + 5α2

24

bα cos ωt

2nπ
−α2

8
bα cos ωt

2nπ
b2 + 5

12
α2 −bα cos ωt

2nπ

−α2

8
−bα cos ωt

2nπ

36b2 + 5α2

24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(26)

and the torque-free condition then gives the swimmer an
instantaneous angular velocity of

�(t) = −6bω{A2(t) + B2(t),C2(t),A2(t) − B2(t)}, (27)

where

A2(t) = α sin ωt

nπ (18b2 + α2)
, (28)

B2(t) = 2bn2π2(12b2 + 5α2) − 6bα2 cos2 ωt

n2π2(108b4 + 69b2α2 + 10α4) − 36b2α2 cos2 ωt
,

(29)

C2(t) = 2nπα(3b2 + 2α2) cos ωt

n2π2(108b4 + 69b2α2 + 10α4) − 36b2α2 cos2 ωt
.

(30)

We plot in Fig. 3(b) all the components of �, nondimension-
alized by ω, for the values b = 0.05 and k = 4π (i.e., n = 2).
We see that the instantaneous rotational velocity is nonzero for
all body directions and oscillates sinusoidally around a mean
value of

ω

2π

∫ 2π/ω

0
� dt = ω

[
(1−

√
W )+ 6r2

h

9r2
h + 2α2

√
W

]
{−1,0,1},

(31)
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FIG. 4. Trajectories of the body vectors (ê1(t), ê2(t), ê3(t)) on the surface of a unit sphere (rh = 0.05, k = 4π ). (a) The trajectory of ê1(t)
(blue); (b) The trajectory of ê2(t) (red); (c) The trajectory of ê3(t) (green). The paths over the sphere represent the motion with the initial (solid)
and final (dashed) vectors clearly labeled. In the above T = 2π/ω.

where

W = 108r2
h + α2

(
69 − 108r2

h

) − α4(69 − 10n2π2)

108r2
h + α2

(
69 − 72r2

h

) − α4(69 − 10n2π2)
· (32)

The angular displacement experienced in the laboratory frame
can be found from

d êi

dt
= �(t) × êi , (33)

where êi is the body frame vector i = 1, 2, 3. We take ê1(t) to
be the body vector aligned with the helix axis of r1, ê3(t) to be
the body vector aligned with the helix axis of r2, and ê2(t) to
be the body vector perpendicular to the helix axes. The above
equations were solved numerically for a bacterial swimmer
with rh = 0.05 and k = 4π [32]. In this configuration, the
body vectors, after one period of rotation, become

ê1

(
T = 2π

ω

)
= {0.989. − 0.149,−0.003}, (34)

ê2

(
T = 2π

ω

)
= {0.148,0.9778,0.149}, (35)

ê3

(
T = 2π

ω

)
= {−0.020,−0.148,0.989}, (36)

where we have assumed ê1(0) = {1,0,0}, ê2(0) = {0,1,0}, and
ê3(0) = {0,0,1}. These vectors are written in terms of the x,
y, and z coordinates of the laboratory frame. Figure 4 plots

the trajectories of these vectors on the surface of a unit sphere.
Hence, under isotropic drag, this model bacterium undergoes
a nontrivial net rotation in the laboratory frame due solely to
the anisotropy of its shape.

Anisotropy in their linear drag is a requirement for
microorganisms using filamentous appendages to undergo net
translation through viscous fluids. By extension one may think
that such drag anisotropy is also required to generate rotation.
In this paper we showed that in fact rotation was possible in
a system with isotropic drag. This result was evident when
considering the force- and torque-free conditions directly and
allowed us to demonstrate that in such a fluid the rotation
is physically generated by the anisotropy in the shape of the
swimmer (specifically, the centerline of the slender filaments
it actuates). We derived this rotation for an arbitrary slender
body and then illustrated it on two model swimmers, a lopsided
paddle swimmer and a multiflagellated model bacterium,
which both exhibit nonzero rotation within an isotropic-drag
medium. Other examples may also be created by making the
drag isotropic in existing resistive force theory studies [4,31].
Our results highlight the different role of hydrodynamic forces
in generating translational versus rotational propulsion and
may change our understanding of the physical requirements
for rotational motion in complex environments.

This research was funded in part by the European Union
through a Marie Curie CIG grant (E.L.) and by the Cambridge
Trust (L.K.).
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