
Micro-Tug-of-War: A Selective Control Mechanism for Magnetic Swimmers

Panayiota Katsamba* and Eric Lauga†

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, United Kingdom

(Received 4 January 2016; published 30 June 2016)

One of the aspirations for artificial microswimmers is their application in noninvasive medicine. For any
practical use, adequate mechanisms enabling control of multiple artificial swimmers will be of paramount
importance. Here we theoretically propose a multihelical, freely jointed motor as a selective control
mechanism. We show that the nonlinear step-out behavior of a magnetized helix driven by a rotating
magnetic field can be exploited when used in conjunction with other helices to obtain a velocity profile that
is non-negligible only within a chosen interval of operating frequencies. Specifically, the force balance
between the competing opposite-handed helices is tuned to give no net motion at low frequencies (tug-of-
war), while in the middle-frequency range, the magnitude and, potentially, the sign of the swimming
velocity can be adjusted by varying the driving frequency. We illustrate this idea on a two-helix system and
demonstrate how to generalize to N helices, both numerically and theoretically. We then explain how to
solve the inverse problem and design an artificial swimmer with an arbitrarily complex velocity vs
frequency relationship. We finish by discussing potential experimental implementation.
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I. INTRODUCTION

From the beginnings of human intellectual activity, scien-
tists and philosophers have been captivated by the beauty
hidden in the smallest scales. Technologyhas now reached the
point where micro- and nanomanipulation are not as elusive
as they sounded back in Feynman’s 1959 lecture “There's
plenty of room at the bottom” [1].
Engineering at the micro- or nanoscale includes chal-

lenges beyond the mere miniaturizing process, primarily
due to the very physics at these scales [2]. One needs only
to zoom down to micrometer resolution and consider
something as simple as swimming to appreciate the
substantially different physics. In order to self-propel,
natural microorganisms need to employ swimming strat-
egies which allow them to go around the constraints set by
Purcell’s [3] scallop theorem. Examples include the rota-
tion of a helix [4], whose chiral shape couples rotation to
translation, as in most bacteria; the propagation of traveling
waves along flexible flagella [5,6], as in the spermatozoa of
many species; or, the metachronal wave synchronization of
a carpet of cilia on ciliated organisms [6–8].
Researchers have proposed and constructed a variety of

artificial micro- and nanoswimmers often drawing inspira-
tion from natural swimmingmethods [9]. These are powered
either externally [10], often bymagnetic fields, by catalyzing
a chemical reaction [11] or from self-phoretic motion [12].
The externally powered swimmers proposed so far include
helical propellers [13,14] (illustrated in Fig. 1), motors that
use flexible filaments [15–17], and surface walkers [18–21].

Following the success of controlling the motion of single
artificial swimmers, realistic applications now demand the
possibility for multidevice control [9]. Ideally one would
employ the same control inputs to simultaneously move
each of these swimmers in a different way or at least to
select and move only a subset of them at a time.
Many research groups have manufactured artificial

microswimmers that may be selectively controlled. The
stress-engineered MEMS microrobot uses an untethered
scratch drive actuator and a cantilevered steering arm to
move on an electrode-embedded surface [22]. Selective
control of multiple robots is achieved by having different
snap-down and release voltage pairs for each robot. The
Magmite microrobotic platform designed as a system with
intrinsic resonance uses pulsed magnetic fields to operate a
magnetomechanical spring-mass system on a specialized
surface [23]. Selective control is achieved by manufactur-
ing each robot to have a different resonant frequency at
which it can be operated. In the Mag-μBot, pulsed external
magnetic fields induce a stick-slip motion which results in
translation. Electrostatic anchoring on a specialized con-
trolled surface allows selective control among identical
robots by preventing motion [24]. Alternatively, selective
control can be achieved with an ordinary nonspecialized
surface by varying the geometrical and magnetic properties
of the robots. This method exploits the fact that for the
stick-slip motion, in which the rectangular-shaped robot
needs to be lifted on its edge, to be possible, the magnetic
torque must exceed the gravitational rest torque [25].
Propellers driven by external oscillating or rotating

magnetic fields offer possibilities for simpler selective
control strategies that do not require the presence of a
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nearby surface. For the achiral three-bead magnetic chain of
Ref. [26], altering the field’s rotation frequency or strength
changes the rotation axis of themicroswimmer, giving rise to
different modes of motion. Locomotion is only effective for
a given range of frequencies of the rotating magnetic field,
thus, allowing selective control over geometrically similar
microswimmers but with different magnetic properties.
Alternatively, one can use the direction of the magnetic
moment relative to the long axis of a helical swimmer as a
distinguishing control parameter [27]. A multistep algo-
rithm was proposed that allows independent positioning in
which oscillating and rotating fields move a selected motor
to a certain location while the rest still move, but by the time
the selected motor has reached its target, they have returned
to their initial positions [27]. Finally, recent work used
nanohelices with soft-magnetic bar and cross-shaped heads
[28]. The extra magnetization axis in the cross-shaped case
allows selective controlwhen two types of externalmagnetic
field rotations are used suitably.
The nonlinear step-out behavior of a magnetized chiral

structure such as a helix, or screw,which is driven and guided
by an externally applied rotating magnetic field, has been
studied [29–34] and proposed as means of providing some

selective control [32–34].When operated below its critical—
so-called step-out— frequency, the helix rotates synchro-
nously, phase locked to the rotation rate of themagnetic field,
giving rise to a velocity profilewhich is linear in the operating
frequency. At driving frequencies that exceed the step-out
frequency, the speed of the helix decays like the inverse
power of the driving frequency asymptotically. For a col-
lection of such motors with different step-out frequencies,
one can, in theory, switch between modes where all sub-
groups are operated (for driving frequencies lower than the
minimum step-out frequency), to modes with less and less
being operated, by adjusting the driving frequency appro-
priately. However, from a practical standpoint, it is important
to be able to selectively control any of the different groups
operated, if not simultaneously, at least one at a time, so that
they can be allocated to different tasks.
One of the possible applications of artificial micro-

swimmers for which selective control is of paramount
importance, is that of noninvasive medicine [9,35], one of
the greatest aspirations for nanoscience. Whether they are
to access targeted locations in the body to deliver drugs
[36], in which case, large numbers of them will be required,
or to perform various delicate surgical tasks [37], designing
artificial swimmers with adequate multirobot control is of
paramount importance. Other important features that the
design should encompass are simplicity and robustness so
as to cope in complex operating environments and the
possibility of speed adjustment by tuning the control
parameters. Given the future need for manufacturing large
numbers of these motors, it is also important that
the fundamental theoretical analysis is undertaken so that
the relationship between the design-parameter space
and the resulting microswimmer specification be fully
understood. These required design features are not all
possible for the current strategies.
In this paper, a multihelical, freely jointed motor is

proposed and theoretically characterized as a selective
control mechanism that encompasses all these desired
features. The proposed design arose naturally by consider-
ing the main problem of interest. In order to selectively
control two motors that use the same method of swimming
and are powered by the same external signal, they need to
respond differently to it, either because they have some
different properties (control via variation in the receiver
properties) or because they aremanufactured to “listen” only
to particular subsignals, e.g., frequencies, that the external
signal might consist of (control via distributed signal).
Seeking control via variation in the receiver properties is
ultimately a quest of systems or methods with an intrinsic
nonlinearity in the response of the propellers relative to the
control parameter of the external signal. The design needs to
have enough degrees of freedom so that the nonlinearity
manifests a velocity profile that is non-negligible only
within an interval of the control parameter. The control
parameter can be the frequency of the driving field, for

FIG. 1. Experimental realizations of rigid helical swimmers.
(a) Chiral silicon dioxide (SiO2) colloidal propeller. Reprinted
(adapted) with permission from A. Ghosh and P. Fischer, Nano
Lett. 9, 2243 (2009). Copyright 2009, American Chemical Society.
(b) Pick-and-place micromanipulation of a 6-μm-diameter micro-
particle using a helical swimming micromachine fabricated using
3D direct laser writing from S. Tottori, L. Zhang, F. Qiu, K. K.
Krawczyk, A. Franco-Obregn, and B. J. Nelson, Adv. Mater.
24, 811 (2012). Copyright 2012, WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim. (c) SEM of an artificial bacterial
flagellum [13] consisting of a ribbonlike helical tail made of a
ðIn;GaÞAs=GaAs=Cr trilayer and a soft-magnetic head made of
Cr=Ni=Au metal thin films. Reprinted (adapted) with permission
fromL. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochvil,
H. Zhang,C.Bergeles, andB. J.Nelson,NanoLett. 9, 3663 (2009).
Copyright 2009, American Chemical Society.

PANAYIOTA KATSAMBA and ERIC LAUGA PHYS. REV. APPLIED 5, 064019 (2016)

064019-2



example. Then for a collection fS1;…; SNg ofN sets of such
motors with well-separated effective bands of operational

frequencies Bn ¼ ðΩðnÞ
1 ;ΩðnÞ

2 Þ, if the operating frequency
ωh ∈ Bn, the set Sn of robots will be controlled with the rest
being stationary or moving at negligible speed.
The nonlinear profile of the single magnetic helix being

close to the desired one except for the lack of a cutoff for
low driving frequencies has inspired us to add more degrees
of freedom and consider a motor that consists of two helices
of opposite chirality connected in series, which we call a
transchiral (i.e., of different chirality) helical motor. The
desired cutoff at low frequencies is established by tuning
the force balance between the two opposite-handed helices.
In isolation, at low frequencies, the two helices would
rotate in the same sense as the magnetic field but translate
in opposite directions due to the difference in chirality.
Assuming that they are connected by a joint that allows
them to freely rotate relative to one another, the helices will
pull each other in opposite directions, a competition
resembling tug-of-war. The geometric and magnetic char-
acteristics of the two helices can be chosen such that the net
motion of the transchiral helical motor is canceled in the
low-frequency regime. For the range of frequencies
between the two step-out frequencies, the helix with the
highest step-out frequency dominates, giving a net velocity
profile that monotonically increases from zero to a maxi-
mum value, thereby allowing speed adjustment by varying
the driving frequency. Finally, above the maximum step-out
frequency, there is negligible locomotion.
Adding more degrees of freedom by considering a

multihelical motor gives rise to more complex banded
velocity profiles with extra features, such as bands of
negative velocity that enable reversal of the direction of
motion by varying the driving frequency. A simple
approximation allows us to solve the inverse problem
analytically, and find an algorithm that determines the
appropriate design features that would give rise to a
prescribed banded velocity profile.
The paper is organized as follows. After reviewing the

physics for the step-out velocity profile of a single
magnetized helix, we study the mechanics of multibody
and multihelical motors. We derive the different velocity
profiles attainable by a transchiral and a triple-helical
motor. An approximate analytical model is then presented,
which allows us to solve the inverse problem of prescribing
a banded velocity profile and finding the geometrical
design features that give rise to it. We finish by addressing
the issue of experimental implementation and sensitivity of
our design to experimental errors.

II. DESIGN AND LOCOMOTION OF
FIELD-DRIVEN HELICAL SWIMMERS

Magnetized helices guided by a rotating magnetic field
can propel effectively in low-Reynolds-number regimes

using two physical ingredients. First, just like a compass
needle, a permanent magnet subject to an external magnetic
field experiences a torque which tends to align its magnetic
moment with the external field. If the external field is
constantly rotating, it will continuously apply a torque on
the object. The second ingredient is due to the low-
Reynolds-number fluid dynamics around the helix.
Because a helix is chiral, when an external torque is
applied to it, it will not only rotate but also translate along
its axis at a speed which may be found by computing the
full resistance matrix of the helical shape and depends both
on its shape and size.
For driving frequencies lower than the step-out fre-

quency, the rotation of the helix is phase locked to that
of the field. Above the step-out frequency, however, the
helix cannot keep up with the field. The phase difference
between the two increases but nonuniformly. During part of
the cycle, the helix slowly increases its rotation speed,
trying to catch up with the field, then effectively dynami-
cally gives up, slows down, and starts again. The dynamics
of a single magnetized helix giving rise to this nonlinear
profile is well understood [29–31,33,34,38]. Since the
single magnetized helix is the fundamental building block
of our proposed device and it is its nonlinear behavior
which we wish to exploit for multirobot control, we shall
first review its dynamics in detail.

A. Single helix

The notation for the helix is shown in Fig. 2. In the
frame of a helix, the geometry of its centerline is para-
metrized by its arc length x given by

x ¼ ½R cosðks cos θÞ; hR sinðks cos θÞ; s cos θ�: ð1Þ

The long axis of the helix is assumed to be aligned with the
z axis. The main geometrical characteristics are the
following: the helicity index h, which takes the value
þ1 or −1 according to whether the helix is right or left
handed, respectively, the angle θ between the local tangent
and the helix axis (which is constant), the radius R of the

FIG. 2. Geometry of a right-handed helix of wavelength λ, helix
angle θ, radius R, diameter of cross section 2r, and number of
wavelengths n. The magnetic field rotates about the z axis with
rotation rate ωh. The helix rotates about the z axis with rotation
rate ωm and translates in the z direction with velocity U.
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helical body (i.e., the radius of the cylinder on which the
helix is drawn), the radius r of the cross section of the wire
(we assume it is a circular cross section), and the number of
turns of the helix n. The wave number k of the helix is given
by k ¼ 2π=λ, where λ is the wavelength along the helix
axis. The values of R, k, and θ are related via the
relationship cos2 θ ¼ ð1þ R2k2Þ−1. The arc length along
a single turn of the helix is given by Λ ¼ λ= cos θ; hence, a
helix with n turns will have a total length Δz ¼ nλ along
the z axis and total arc length Δs ¼ nΛ ¼ 2πnR= sin θ.
The helix is taken to be a permanentmagnet,with constant

magnetic dipolemomentmwhich is fixedwith respect to the
helix geometry and perpendicular to its long axis. We write
jmj ¼ MV, where M is the remanent magnetization of the
helix, andV ¼ πr2Δs is the volume of the magnetized wire.
When placed in an external magnetic field denoted h, it will
experience a magnetic torque Tm ¼ μ0m ∧ h. If the exter-
nal magnetic field is rotating about the z axis with angular
frequency ωhez and assuming that the helix is long enough
to not wobble [38], but instead to remain aligned with the z
axis, the applied magnetic torque on the helix will also point
along the z axis, and the helix will rotate in the x-y plane
about the z axis with angular frequency ωm. If we use Θ to
denote the angle between the x axis and m, which rotates
with the body, then we have ωm ¼ dΘ=dt, and the angle
between m and h is equal to ωht − Θ, so that we have the
torque given by

TmðtÞ ¼ μ0jmjjhj sinðωht − ΘÞez: ð2Þ

Because of the hydrodynamic rotation-translation
coupling property of the helix, it will also translate with
velocity U along the z axis.
Resistive-force theory [39,40] may be used to determine

the approximate hydrodynamic forces and torques exerted
on the helix. In that framework, the force per unit length
δfhydr exerted by the helix on the fluid is given by

δfhydr ¼ c⊥u − ðc⊥ − c∥Þðt:uÞt; ð3Þ

where u ¼ Uez þ ωmez ∧ x is the local velocity, and c⊥
and c∥ are the resistance coefficients for motion in the
directions perpendicular and parallel to the local tangent t
of the centerline. Their ratio ρ ¼ c∥=c⊥ ≈ 1=2, not being
unity, manifests drag anisotropy, which is crucial for
propulsion in the zero-Reynolds-number regime [40].
One can obtain the force per unit length exerted by the
helix on the fluid along the z axis δfhydr:ez, and the torque
per unit length δThydr · ez ¼ ðx ∧ δfÞ · ez exerted by the
helix on the fluid along the z axis as

δfhydr · ez ¼ Uðc∥cos2θ þ c⊥sin2θÞ
− hðc⊥ − c∥ÞRωm sin θ cos θ; ð4Þ

δThydr · ez ¼ R2ωmðc∥sin2θ þ c⊥cos2θÞ
− hðc⊥ − c∥ÞRU sin θ cos θ: ð5Þ

Since these expressions are uniform along the helix, the
total force and torque exerted by the helix on the fluid along
the z axis are obtained by multiplying the above by the total
arc length, i.e., nΛ ¼ 2πnR= sin θ.
In the absence of gradients in the external magnetic field,

there are no external forces acting on the helix, and, thus,
the total hydrodynamic force on the swimmer must be zero,
thereby linearly relating U to ωm. The magnetic torque
must balance the hydrodynamic torque exerted by the fluid
on the helix due to its motion, leading to the governing
equation for the rotation rate.
In its nondimensionalized form, the governing equation

for the phase difference between the external field and the
helix ΔΘ ¼ ωht − Θ is

dΔΘ
dτ

¼ ωh

ΩSO
− sinðΔΘÞ; ð6Þ

where ΩSO is the step-out frequency given by

ΩSO ¼ μ0jmjjhj
c⊥R3

sin θðρcos2θ þ sin2θÞ
2πnρ

; ð7Þ

and τ is the nondimensionalized time, τ ¼ ΩSOt.
Equation (6) is the well-known Adler’s equation, which,

in its more general form, governs the synchronization
behavior in a multitude of systems across the spectrum
of natural sciences. A simple example in mechanics is the
overdamped pendulum driven by a constant torque [41].
More sophisticated systems include the synchronization of
the flagella of microorganisms such as Chlamydomonas
[42], heart pacemaker cells, oscillating neurons, fireflies
flashing in unison, and applauding crowds [41,43]. In our
case, Eq. (6) captures the synchronization dynamics
between the magnetized helix and the driving magnetic
field. The phase difference between the two evolves
dynamically as a nonuniform oscillator.
The nondimensional time Δτ for the phase difference

ΔΘ to change by 2π is given by

Δτ ¼
Z

2π

0

�
dΔΘ
dτ

�
−1
dΔΘ: ð8Þ

Writing the average angular frequency as hωmi ¼ 2π=Δτ,
one obtains

hωmi ¼
�
ωh if ωh ≤ ΩSO;

ωh½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΩSO=ωhÞ2

p
� if ωh > ΩSO:

ð9Þ

The mean velocity profile being a scalar multiple of hωmi
follows the same trend, as shown in the top dashed line
(black) in Fig. 3 (top curve): It starts off linear and then
decays algebraically above the step-out frequency.
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B. Multibody motor

Having reviewed the dynamics of a single helix, we now
turn to the coupled motion of multiple bodies and show
how to exploit and modify this nonlinear step-out profile to
the desired banded profile in a more general setting.
Consider a motor that consists of N magnetized compo-
nents that are connected in series along their long axis by
joints, so that neighboring magnetized components interact
with each other by exerting equal and opposite interaction
forces and torques to each other, according to Newton’s
third law of motion. We assume neighboring magnetized
components are at large separations to neglect hydrody-
namic interactions (see Sec. II E for a discussion) and that
the joint connecting them is negligible in size, not mag-
netized, and allows free relative rotation about the long
axis.
Each component is taken to be a permanent magnet, with

magnetic dipole momentmi of magnitudeMiVi, whereMi
is the remanent magnetization, and Vi is the volume of the
magnetized material (no summation convention is used
here). The vector mi is taken to be fixed and perpendicular
to the long axis of the motor.
When placed in an external magnetic field h rotating

with angular velocity ωhez, each component of the motor

will experience a magnetic torque TðiÞ
magn ¼ μ0mi ∧ h and

will rotate about the z axis with angular frequency ωmi
. As

before, we have

TðiÞ
magn ¼ μ0jmijjhj sinðωht − ΘiÞez; ð10Þ

where Θi is the angle between mi and the x axis,
and ωht − Θi is the angle between mi and h.
In practice, the components we are thinking of, and will

consider below, are helices, but there is no reason not to
generalize to a general chiral geometry when formulating
the kinematics of our multibody motor. Assuming that our
magnetized component also translates with velocity U
along the z axis, then by linearity, the hydrodynamic forces
and torques are related to the velocities and rotation rates as 

FðiÞ
hydr

TðiÞ
hydr

!
¼
�

AðiÞ BðiÞ

BðiÞT DðiÞ

��
UðiÞ

ΩðiÞ

�
; ð11Þ

where FðiÞ andMðiÞ are defined as the force and torque that
the ith component exerts on the fluid when it is translating
at velocity UðiÞ ≡Uez common for all components and
rotating at angular velocity ΩðiÞ. Along the z axis, we, thus,
have the linear relationships

FðiÞ
hydr ¼ AðiÞU þ BðiÞ dΘi

dt
; ð12Þ

TðiÞ
hydr ¼ BðiÞU þDðiÞ dΘi

dt
: ð13Þ

The force of interaction between neighboring compo-
nents is not necessarily zero; however, in the overall force
balance, all interaction forces will cancel out and the total
force will be zero. Our assumption about the free rotational
joint allows us to consider the torque balance for each of the
components separately. The system is, thus, subject to

XN
i¼1

FðiÞ
hydr ¼ 0; TðiÞ

hydr ¼ TðiÞ
magn ∀i: ð14Þ

We proceed by nondimensionalizing the problem.
Nondimensional quantities are denoted by hat and non-
dimensionalized time by τ. Let M be some typical mag-
netization and V a typical volume of magnetized material
and write MðiÞ ¼ MM̂ðiÞ and VðiÞ ¼ VV̂ðiÞ. Using a typical
length scale R and time scale Ω−1 given by

Ω ¼ μ0jhjM
c⊥

V
R3

; ð15Þ

we have that U ∼ RΩ, Fhydr ∼ c⊥R2Ω, Thydr ∼ c⊥R3Ω,
hence, A ∼ c⊥R, B ∼ c⊥R2, and D ∼ c⊥R3.
The force balance in its nondimensionalized form gives

Û ¼ −
1P
kÂ

ðkÞ
XN
j¼0

B̂ðjÞ dΘj

dτ
; ð16Þ

where the angles Θi obey the coupled dynamics

D̂ðiÞ dΘi

dτ
−

B̂ðiÞP
kÂ

ðkÞ
XN
j¼1

B̂ðjÞ dΘj

dτ

¼ M̂ðiÞV̂ðiÞ sin
�
ωh

Ω
τ − Θi

�
: ð17Þ

This can be written in matrix form as

XN
k¼1

αik
dΘk

dτ
¼ M̂ðiÞV̂ðiÞ sin

�
ωh

Ω
τ − Θi

�
; ð18Þ

where the matrix α is defined as

αik ¼
8<
:

D̂ðiÞ − B̂ðiÞ2P
lÂ

ðlÞ if k ¼ i;

− B̂ðiÞB̂ðkÞP
lÂ

ðlÞ if k ≠ i:
ð19Þ

C. Multihelical motor

Having formulated our model in terms of a general chiral
structure, we now focus on multihelical motors in which the
magnetized components are helices.

1. Equations

Let R be a typical helical radius and use this length scale
to nondimensionalize the problem, and r a typical radius of
the cross section of a filament so that the typical wire
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volume is V ¼ πr2R. The ith helix has helicity index hi,
angle θi, radius R̂iR, wave number ni, and is made out of a
wire of cross-sectional radius r̂ir and of total nondimen-
sionalized arc length Δŝi ¼ 2πniR̂i= sin θi and magnetized
volume V̂ðiÞ ¼ r̂2iΔŝi. The helix is assumed to have drag

coefficient cðiÞ⊥ ¼ c⊥ĉ⊥i
, where c⊥ is a typical resistance

coefficient and ρi ¼ c∥i=c⊥i
≈ 1=2.

For a helix, we can use Eqs. (4) and (5) to directly quote
ÂðiÞ, B̂ðiÞ, and D̂ðiÞ as

ÂðiÞ ¼ Δŝiĉ⊥i
ðρicos2θi þ sin2θiÞ; ð20Þ

B̂ðiÞ ¼ −ΔŝiR̂iĉ⊥i
hið1 − ρiÞ sin θi cos θi; ð21Þ

D̂ðiÞ ¼ ΔŝiR̂2
i ĉ⊥i

ðρisin2θi þ cos2θiÞ: ð22Þ

Substituting these into Eq. (16) for a multihelical motor
gives

Û ¼
XN
j¼0

Aj
dΘj

dτ
; ð23Þ

Aj ¼
ĉ⊥j

Δŝjhjð1 − ρjÞsjcjR̂jP
kĉ⊥k

Δŝkðρkc2k þ s2kÞ
; ð24Þ

and the matrix α in Eq. (18) is given by

αik
Δŝi

¼
�
R̂2
i ðρis2i þ c2i Þ − hið1 − ρiÞsiciR̂iAi; if k ¼ i;

−hið1 − ρiÞsiciR̂iAk; if k ≠ i:

ð25Þ

Note that the repeated indices in the above equation do not
imply Einstein summation, and we use the shorthand
notation si ≡ sin θi, ci ≡ cos θi.

2. Numerical results

The system of N-coupled ordinary differential equations
of Eq. (18) can be first solved numerically to obtain the
average velocity as a function of the driving frequency.
Illustrative results are shown in Fig. 3 in the case of a
transchiral motor with two helices, where we pick the
parameters θ1 ¼ θ2 ¼ π=4, m1 ¼ 6, m2 ¼ 3, r̂1 ¼ r̂2 ¼ 1,
R̂1 ¼ R̂1 ¼ 1, and show the frequency vs velocity relation-
ship for five different helices characterized by ðn1; n2Þ ¼
ð1 − p=4; p=4Þ, with p ¼ f0; 1; 2; 3; 4g. Note that, in
principle, the drag coefficients depend on the dimensions
of the helices and can, thus, vary; however, the dependence
is only logarithmic [39,40] and requires the dimensions of
different helices to be orders of magnitude different. We,

thus, assume a constant value of the drag coefficients,
which is taken out in the nondimensionalization process
and take ĉ⊥i

¼ 1∀i.
Clearly, the addition of one more helix provides extra

degrees of freedom for the transchiral motor by altering the
standard single-helix step-out profile, and the computational
results confirm our original intuition to exploit the competi-
tion between the two opposite-handed helices. In Fig. 3, we
observe the velocity profile transitions from that of a single
right-handed helix (top dashed line, black) to that of a single
left-handed helix (bottom dashed line, green), via a series of
intermediate stages. In all cases, the swimming speeds always
start off proportional to the driving frequency before reaching
each of the step-out frequencies consequently. Varying
ðn1; n2Þ alters the initial slope—most notably, there is a
special combination that gives rise to zero slope, and, hence,
the banded profile (middle solid line, red). In that case, the
transchiral motor has a clear band of operating frequencies
outside of which it either does not move (low frequencies) or
is very inefficient (high frequencies).
For a triple-helical motor with ðh1;h2;h3Þ¼ðþ1;−1;þ1Þ,

as shown in Fig. 4, varying the relative dominances of the
helices using different combinations for the number of
turns n1, n2, n3 gives rise to various velocity profiles,
including a banded velocity profile with frequency ranges

FIG. 3. Mean swimming velocity of two-helix transchiral motor
hUi as a function of dimensionless frequency ωh=Ω obtained
numerically for the combinations ðn1; n2Þ ¼ ð1 − p=4; p=4Þ,
p ∈ 0; 1; 2; 3; 4. All other parameters are kept fixed: θ1 ¼ θ2 ¼
π=4, M̂1 ¼ 6, M̂2 ¼ 3, r̂1 ¼ r̂2 ¼ 1, and R̂1 ¼ R̂1 ¼ 1. We ob-
serve the transition from the dynamics of a single right-handed
helix (top dashed line, black) to that of a single left-handed helix
(bottom dashed line, green) via a series of intermediate stages,
including the banded profile (middle solid line, red).
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with both directionalities (middle solid line, red), thereby
allowing reversal of the direction of motion by shifting the
driving frequency instead of reversing the direction of
rotation of the magnetic field. The general velocity profile
for a triple-helical motor has three transition points at which
each of the helices steps out with an initial linear increase in
the speed before the first transition point and a step-out
decay after the last one. The limits of a single, right-handed
helix n2, n3 → 0 (top dashed line, black) and of a single,
left-handed helix n1, n3 → 0 (bottom dashed line, green)
are also shown.

3. Analytical model

Having characterized our proposed swimmer numeri-
cally, we now show how to use a decoupling approximation
to model the dynamics analytically, which we will then
exploit to theoretically predict the parameter space for
motor design.
Inverting Eq. (18), the system of equations takes the form

dΘi

dτ
¼ fi sinΔΘi þ

X
j≠i

Iij sinΔΘj; ð26Þ

with Iij the coupling coefficients (note that Iij ¼ Iji since
αij is symmetric). Noting that the off-diagonal components
of α are much smaller than the diagonal ones, we

approximate αij as diagonal and neglect the coupling
terms. The system of equations then decouples, and we
get the approximate system for all values of i,

dΔΘi

dτ
¼ ωh

Ω
− fi sinΔΘi; ð27Þ

fi ¼
M̂ðiÞr̂2i

R̂2
i ðρis2i þ c2i Þ − hið1 − ρiÞsiciR̂iAi

; ð28Þ

�
dΘi

dτ

�
¼
8<
:

ωh
Ω if ωh=Ω < fi;

ωh
Ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωh
Ω Þ2 − f2i

q
if ωh=Ω > fi;

ð29Þ

¼ ωh

Ω
− 1ωh

Ω>fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ωh

Ω

�
2

− f2i

s
ð30Þ

hÛi ¼
X
j

Aj½f − 1f>fj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − f2j

q
�; ð31Þ

where f ¼ ωh=Ω is the nondimensional driving frequency,
and 1 denotes the indicator function (1P equals 1 if the
statement P is true and 0 otherwise).
Under these assumptions, the phase difference between

each helix and the magnetic field obeys the nonuniform
oscillator equation Eq. (27) that gives a step-out profile
Eq. (29) with a net velocity which is just the linear
superposition of the step-out profiles for each of the
rotation rates of the helices, Eq. (31). The quantity Ωfi
is the value of ωh at which the ith helix will step out as part
of the multihelical configuration. Importantly, this quantity
is different from the step-out frequency for that helix in
isolation since all other helices appear in the sum in the
denominator of Ai.
Let us now assume that our N helices are numbered in

order of increasing values of fi. Then the behavior of the
multihelical motor will be determined by the N transition
points ðfi; ÛiÞ of the hÛi vs f plot at which the ith helix
steps out, where Ûi is given by

Ûi ¼
�XN

j¼1

Aj

�
fi −

X
j<i

Aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2i − f2j

q
: ð32Þ

The set fðfi; ÛiÞg then fully determines our design-
parameter space. Noting that the average nondimensional
velocity increases linearly with the operating frequency
until we reach the point

�
f1; Û1 ¼ f1

XN
j¼1

Aj

�
ð33Þ

FIG. 4. Propulsion velocity hUi as a function of ωh=Ω
obtained numerically for a triple-helical motor with helicities
ðh1; h2; h3Þ ¼ ðþ1;−1;þ1Þ for various combinations of the num-
ber of turns, whose values given up to one decimal place are
ðn1; n2; n3Þ ¼ fð8; 0; 0Þ; ð6; 2.8; 1Þ; ð4; 4.2; 1Þ; ð2; 6; 1Þ; ð0; 8; 0Þg
from top to bottom. All other parameters are kept fixed:
ðθ1; θ2; θ3Þ ¼ ðπ=4; π=6; π=5Þ, ðM̂1; M̂2; M̂3Þ ¼ ð6; 5; 3Þ, r̂i ¼ 1,
and R̂i ¼ 1 for all i.
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allows us to choose the geometrical parameters of our
helices such that

XN
j¼1

Aj ¼ 0: ð34Þ

With this choice, the motor stays stationary when operated
at frequencies below Ωf1 and is effectively operated within
the band f ∈ ðf1; fNÞ of width fN − f1. Furthermore, its
velocity at the transition points is simply given by

Ûi ¼ −
X
j<i

Aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2i − f2j

q
: ð35Þ

4. Double-helical motor

We illustrate the accuracy of our analytical approach
with multihelical motors composed of two and three
helices. With two helices, the motor manifests an effective
band of frequencies ðf1; f2Þ of width f2 − f1. For f < f1,
the artificial swimmer is constructed to be stationary, and
for f ∈ ðf1; f2Þ, it moves at a speed which increases
monotonically with ωh, whereas above f2, since both
helices have stepped out, it moves at a negligible velocity
that decreases as the inverse power of ωh.
The comparison between the full numerics and the

analytical model is shown in Fig. 5. The blue dashed line
shows the profile predicted analytically, while the green
solid line shows the full computational result without the

decoupling approximation. The simple theory is successful
at capturing the dynamics of the system and, more
important, allows us to construct a design-parameter space
for the motor. Indeed, finding the geometrical parameters
that give rise to the banded profile is no longer a “tuning”
process via repeated numerical simulation. Since we have
ĉ⊥j

≈ 1 and ρj ≈ 0.5 (j ¼ 1; 2), one just needs to choose the
geometrical parameters so as to satisfy A1 þA2 ¼ 0,
which reduces to the simple relationship

n1R̂
2
1 cos θ1 ¼ n2R̂

2
2 cos θ2: ð36Þ

Since the denominator in Eq. (28) depends only on ni, Ri,
and θi (i ¼ 1; 2), for any combination of these that satisfies
this criterion, the critical frequencies f1; f2 can be readily
set to any value by choosing M̂i; r̂i accordingly.

5. Triple-helical motor

An additional design feature one might desire is the
ability to reverse the direction of motion of the motor by
changing the operating frequency alone. This can be
achieved with the use of a helical motor composed of
three helices. A suitable choice of parameters allows us to
split the effective frequency band ðf1; f3Þ into two bands
Bþ ¼ ðf1; f0Þ and B− ¼ ðf0; f3Þ of opposite directionality
with hÛi positive in Bþ and negative in B−, where f0 ∈
ðf2; f3Þ is such that hÛijf0 ¼ 0 and is given by

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1f
2
1 −A2

2f
2
2

A2
1 −A2

2

s
· ð37Þ

With these choices, the motor is stationary for f ∈ ð0; f1Þ.
Then for f ∈ ðf1; f2Þ, it moves in the negative direction,
and the speed magnitude increases monotonically from 0 to
jÛ2j as f increases. As f further increases from f2 to f3, the
velocity increases monotonically from its most negative
value Û2 passing through 0 at f0, to its most positive value
Û3 at f3. For f larger than f3, all three helices step out,
giving rise to negligible velocity that decreases as the
inverse of f.
The design-parameter space of a triple-helical motor,

thus, consists of (a) the boundaries f1 and f3 of the
effective frequency band, (b) the widths Δfþ ¼ f0 − f1
and Δf− ¼ f3 − f0 of the positive and negative bands Bþ
and B−, respectively, and (3) the most negative and most
positive velocities Û2 and Û3, which occur at f2 and f3,
respectively.
The parameters fθi; ni; R̂i; r̂i; M̂ig (1 ≤ i ≤ 3) can be

chosen independently and arbitrarily. An example of a
velocity profile obtained by choosing parameters suitable to
enable two opposite directionality bands is shown in Fig. 6.

FIG. 5. Mean swimming velocity hUi as a function of f ¼
ωh=Ω obtained numerically (solid line, green) and predicted by
the theoretical approximation (dashed line, blue) for a double-
helical motor designed to have zero net motion at low frequen-
cies. The helical parameters are θ1 ¼ π=4, θ2 ¼ π=6, n1 ¼ 6.13,
n2 ¼ 5, M̂1 ¼ 6, M̂2 ¼ 5, r̂1 ¼ r̂2 ¼ 1, R̂1 ¼ R̂1 ¼ 1. The two
critical frequencies are f1 ≈ 6 (with Û1 ¼ 0) and f2 ≈ 8.5
(Û2 ≈ 1).
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Here again, the analytical approach compares very favor-
ably with the full numerics.

D. Designing motors with prescribed
response functions

An important question for any engineering system is
whether it is possible to solve the inverse problem and
find the particular design leading to a predetermined
response function. In our case, this consists of finding
the number of helices N and the values of the parameters
fθi; ni; R̂i; r̂i; M̂ig (1 ≤ i ≤ N), which will give rise to a
given banded velocity profile with Û1 ¼ 0 and with
frequencies of the critical transition points fi and the
corresponding average velocities Ûi set arbitrarily by the
designer. We show below that it is possible to construct a
simple algorithm to solve this inverse problem.
For simplicity, we take the helices to all have the same

angle θi ¼ θ and use the approximation ĉ⊥j
≈ 1, ρj ¼

ρ ≈ 0.5 (j ¼ 1; 2). In the analytical model, expression (24)
takes the simpler form

Aj ¼
hjR̂

2
jnjP

kR̂knk

ð1 − ρÞ sin θ cos θ
ρcos2θ þ sin2θ

· ð38Þ

Noting that the coefficients Ai are independent of M̂i,
whereas the fi’s given in Eq. (28) are linear in M̂i, means
that after all the geometrical features are decided, one can
always tune the fi to the desired critical frequencies by
choosing the value of M̂i appropriately. Notably, the
expressions for the critical velocities Ûi given in

Eq. (35) involve only the coefficients Aj with j < i and
the values fi, and, thus, using the chosen values for the fi’s,
one can solve for the coefficients Aj iteratively: the value
of Û2 determines A1, that of Û3 determines A2, etc., until
ÛN which determines AN−1. The iterative formula is
given by

Al−1 ¼ −
Ûl þ

P
l−2
k¼1Ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2l − f2k

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2l − f2l−1

q ; ð39Þ

for l ¼ 2;…; N. Then the value of AN is chosen as

AN ¼ −
XN−1

j¼1

Aj ð40Þ

in order to satisfy Û1 ¼ 0. Once the Ai’s are determined,
one proceeds to invert the expression in Eq. (38) in
order to solve for hj, R̂j, and nj. If we choose njR̂j ¼ a
for all j’s, where a is some constant, then Eq. (38)
reduces to

Aj ¼
hjR̂j

N
ð1 − ρÞ sin θ cos θ
ρcos2θ þ sin2θ

· ð41Þ

The helicity indices are given by hj ¼ signðAjÞ, so we
obtain

R̂j ¼ NjAjj
ρcos2θ þ sin2θ

ð1 − ρÞ sin θ cos θ ; nj ¼ a=R̂j; ð42Þ

and, finally, the values M̂i are chosen to tune the critical
frequencies fi to the desired values

M̂i ¼ fi
R̂2
i ðρis2i þ c2i Þ − hið1 − ρiÞsiciR̂iAi

r̂2i
· ð43Þ

Implementing this algorithm allows the design of almost
any banded velocity profile, as demonstrated in Fig. 7.
Prescribing the positions of the critical transition points
shown as red stars is sufficient to determine the profile
shown in solid blue line, which is plotted according to
Eq. (23). Most notably, three helices allow for profiles with
a banded profile where the last transition point is chosen to
have zero velocity, as shown in Fig. 7(a). Such profiles
allow a better dropoff of the velocity for higher frequencies
compared to that offered by the transchiral motor of Fig. 5.
Four helices combine this advantage with the possibility of
frequency ranges with motion in the opposite direction
[Fig. 7(d)]. With five helices, the crossover frequency
between these two ranges can be prescribed [Fig. 7(i)].
Six helices allow for separated positive and negative bands
with a prescribed separation [Fig. 7(j)].

FIG. 6. Mean velocity hUi as a function of f ¼ ωh=Ω found
numerically (solid line, green) and predicted analytically (dashed
line, blue) for a triple-helical motor. The parameters used
are ðh1; h2; h3Þ ¼ ð1;−1; 1Þ, ðθ1; θ2; θ3Þ ¼ ðπ=4; π=6; π=5Þ,
ðn1; n2; n3Þ ¼ ð4; 4.2; 1Þ, ðM̂1; M̂2; M̂3Þ ¼ ð6; 5; 3Þ, r̂i ¼ R̂i ¼
1∀i, The resulting critical points have ðf1; f2; f3Þ ≈
ð3.7; 6; 8.4Þ and ðÛ1; Û2; Û3Þ ≈ ð0;−0.18; 0.72Þ.
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E. Experimental considerations

In an experimental setup, the velocity profile of a
fabricated multihelical motor varies from the designed
theoretical estimates above due to a number of possible
effects, including errors during the fabrication process,
possible friction from the rotational joint, hydrodynamic
interactions between the helical components within it, and
thermal fluctuations. In this section, we address these
experimental considerations.

1. Hydrodynamic interactions

To discuss some of the implications of hydrodynamic
interactions, we now use the setup of a transchiral motor.
Consider two helices that are actuated by a rotatingmagnetic
field and coupled via a joint that allows free relative rotation
but restricts them to move at the same translational velocity.
Assume the two helices are well separated. The effect of the
joint is that the two helices push or pull each other and,

hence, are not force-free (which would be the case had they
not been coupled by the joint). Thus, each of the helices is
subject to the far-field velocity of the other as a point force,
or Stokeslet, to leading order (had they been decoupled it
would have been a rotlet, or point torque). The far field of the
first helix at a point with position vector y relative to the first
helix is, thus, given by the Stokeslet term

ufar
1 ¼ 1

8πμ

�
1
jyj þ

yy
jyj3
�
:Fhydr

1 ; ð44Þ

whereFhydr
1 is the total hydrodynamic force exerted by helix

1, of total arc length L1 translating at speed U1, to the
surrounding fluid and scales as Fhydr

1 ∼ μU1L1, where μ is
the dynamic viscosity of the fluid. Here we assume that the
helix is long enough L1 ≫ R1, so as not to wobble [38], or,
equivalently, the x, y components of Fhydr

1 to be negligible
compared to the z component (the ratio of these scales as

FIG. 7. Various design profiles with N ¼ 3ða; bÞ; 4ðc; dÞ; 5ðe − iÞ and 6ðjÞ helices. The frequencies fi of the critical transition points
shown in red stars and the corresponding average propulsion velocities Ûi are set arbitrarily by the designer. The design features
fθi; ni; R̂i; r̂i; M̂ig (1 ≤ i ≤ N) are calculated using the analytical algorithm, and the resulting velocity profiles shown as blue solid lines
are plotted according to Eq. (23).
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R1=L1). The induced far-field flow of helix 1 on helix 2,
assuming these are separated by a distance d ≫ R1, R2, L1,
L2, scales as ufar1 j2 ∼U1L1=d. Comparing the velocity field
of helix 2 with no hydrodynamic interactions with the far-
field velocity acting on it due to helix 1, sinceU1 ¼ U2, we
obtain

ufar1 j2
uno hydro
2

∼
U1L1=d

U2

∼
L1

d
; ð45Þ

and similarly for the effect of helix 2 on helix 1, with indices
1 and 2 exchanged. Therefore, the effect of hydrodynamic
interactions can be neglected for d ≫ L1, L2.

2. Thermal fluctuations

The issue of thermal fluctuations affects all micro-
swimmers, both biological and manmade. For any solid
body actuated by means of an external force F and an
external torque T and moving as a result with velocity U
and rotation rate Ω given by

�
U

Ω

�
¼
�

M N

N T O

��
F

T

�
; ð46Þ

the mobility matrix above [which is the inverse of the
matrix in Eq. (11)] also governs the diffusive behavior of
the body via the fluctuation-dissipation theorem. Assuming
thermal equilibrium at temperature T, the translational
diffusion constant of a solid body is given by the
Stokes-Einstein relationship D ¼ kBTM, where kB is
the Boltzmann constant, while the rotational diffusion
constant is given by DR ¼ kBTO. For a body with a
typical length scale L, the constituent submatrices ½M�,
½N �, ½O� of the mobility matrix scale as ½M� ∼ ðμLÞ−1,
½N � ∼ ðμL2Þ−1, ½O� ∼ ðμL3Þ−1 [40].
Comparing the typical time scales for diffusion-induced

motion τD ∼ L2=½D� and diffusion-induced reorientation
τR ∼ 1=½DR� [40] with the locomotion-induced time scales
for translation τtrans ∼ L=U and rotation τrot ∼ 1=ω, the two
ratios of time scales, which have to be small for thermal
fluctuations to be neglected, are

τtrans
τD

∼
kBT
μL2U

;
τrot
τR

∼
kBT
μL3ω

· ð47Þ

At room temperature, kBT ∼ 10−21J; taking the dynamic
viscosity of water μ ∼ 10−3 Pa s and a typical frequency of
10 Hz, if we wish these ratios to be of the order of 10−2 or
10−3, the motors need to be a few micrometers in size,
which is consistent with the size used in current exper-
imental implementations.

3. Collection of motors and fabrication errors

Let us now investigate the effect of fabrication errors,
i.e., the fact that the equipment produces motors with errors
in their design features, and illustrate how robust the
velocity profiles are to such errors.
Assume that one attempted to fabricate a collection of

100 identical multihelical motors with given geometrical
and magnetic features. Such a process is prone to exper-
imental error; hence, as the driving frequency is varied,
each motor follows a slightly perturbed velocity profile.
Hence, if one designs a multihelical motor to obtain a given
velocity profile and fabricates one such motor with his
equipment giving rise to a 5% error to each of the design
features of the motor, the actual velocity profile will deviate
from the designed one.
As an indication of this variation, we simulate this numeri-

cally by considering 100 realizations of the same design,
where the values for the design features are drawn from a
Gaussiandistributionwithmeanμ equal to thedesignedvalue
and standard deviation σ given by 3σ ¼ 0.05 × μ. In order to
make this choice, we have used the fact that for the Gaussian
distribution, the values less than 3 standard deviations
away from the mean account for 99.73% of the set. The
designedparameters,were taken tohave the followingvalues,
shown to one decimal place: ðh1; h2; h3Þ ¼ ð1;−1; 1Þ,
ðn1; n2; n3Þ ¼ ð4; 9.3; 6.5Þ, ðθ1; θ2; θ3Þ ¼ ðπ=4; π=6; π=5Þ,
ðM̂1; M̂2; M̂3Þ ¼ ð18; 9; 4.1Þ, r̂i ¼ 1, and R̂i ¼ 1 for all i.
Ensemble averages of the velocity give us an idea of the

deviations from the designed profile a realistic realization
would have. The average velocity of each of these 100
motors for various frequencies is shown in Fig. 8. The
velocities of 100 motors drawn from the same Gaussian
distribution at a given frequency will have the designed
velocity as their mean. Because of variations from the
mean, the velocity of an individual propeller can have
direction opposite to the expected one, especially for
frequencies for which the designed speed is close to zero,
as shown in Figs. 8(a), 8(b), and 8(d). However, the
important theoretical design features are conserved under
noisy conditions, and with an increase in the frequency, the
swimmers undergo the transitions in the magnitude of the
velocity: small → negative → small → positive → small.
The idea proposed in this paper should, thus, be exper-
imentally robust as far as fabrication errors are concerned.

4. Joints

The basic ingredient of our proposed mechanism is the
competition between the two opposite-handed helices, and
it requires relative rotation between the helices, possibly
with friction. A nonzero rotational friction will perturb the
velocity profiles (hence, we have assumed a friction-free
rotational joint for simplicity), but it will not modify the
basic physical ideas proposed above. As elusive as they
might sound, setups with low rotational friction already
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exist in nature, even below the nanometer scale. In
molecules, single and triple covalent bonds, e.g., between
carbon atoms, do allow free rotation of the parts of the
molecule on either side of the bond if there are no steric
hindrance problems. Perhaps electrostatic interactions
between dipole-charged helices can be used to set up an
equilibrium distance between them, from which they can
rotate relative to each other without contact. Alternatively,
one could use a modified version of the “Christmas”
cracker setup of Ref. [44]. In that context, boron-nitride
nanotubes of different radii with their ends overlapping
exhibit ultrahigh interlayer friction. Graphene sheets, on the
other hand, have extremely low friction when sliding past
each other [45]. A hybrid design with nanotubes that have
frictional anisotropy in rotation (easy) and translation
(difficult) could be a practical solution.

III. CONCLUSION

This paper addresses the problem of selective control of
multiple artificial swimmers. We began by identifying the

need for a design with a suitable intrinsic nonlinearity such
that each device can function only within a given band of
frequencies. Adding more degrees of freedom by extending
the single helix to the multihelical, freely jointed motor
proposed here, enabled us to exploit the step-out feature to
obtain the desired velocity profile.
The velocity profile for a single helix increases linearly

with the rotation rate of the magnetic field until it reaches
the step-out frequency, after which it decays. In our
multihelical motor, choosing the magnetization and geo-
metric parameters suitably, net motion can be canceled for
sufficiently low operating frequencies (micro-tug-of-war)
whereas in the high-frequency regime where all the helices
have stepped out, motion is negligible. In the middle-
frequency range, velocity increases monotonically with the
driving frequency for the transchiral case. The added
degrees of freedom of the triple-helical motor can be used
so that the direction of motion can also be reversed by
altering the frequency within the effective band.
A simple approximation enables us to construct a design-

parameter space to obtain analytical estimates of our

(a)

(b) (c) (d) (e)

(f)

FIG. 8. Simulation of an experiment with experimental errors: The velocities of 100 motors drawn from the same Gaussian distribution
with mean μ equal to the designed value and standard deviation σ given by 3σ ¼ 0.05 × μ. The designed parameters, were taken to have
the following values, shown to one decimal place: ðh1; h2; h3Þ ¼ ð1;−1; 1Þ, ðn1; n2; n3Þ ¼ ð4; 9.3; 6.5Þ, ðθ1; θ2; θ3Þ ¼ ðπ=4; π=6; π=5Þ,
ðM̂1; M̂2; M̂3Þ ¼ ð18; 9; 4.1Þ, r̂i ¼ 1, R̂i ¼ 1 for all i. The important theoretical design features are conserved under noisy conditions
and with an increase in the frequency the swimmers undergo the transitions in the magnitude of the velocity: small (a,b)→ negative (c)
→ small (d) → positive (e) → small (f).
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design’s resulting features. Most notably, these relations are
simple enough so that a simple algorithm can be employed
to solve the inverse problem: We can choose prior to
experimental fabrication or numerical simulation the geo-
metric and magnetic parameters of the design that will give
rise to the desired banded velocity profile, which we design
by prescribing the transition points. With enough helices,
we have enough degrees of freedom to prescribe a banded
velocity profile with “forward” and “reverse” frequency
bands of widths and separation of our choice.
As theorists, we have introduced in this paper the idea of

achieving a selective control mechanism using mechanical
principles alone. By tuning the mechanical balance
between competing helices we use their nonlinear step
out behaviours to compose the desired velocity profile.
We hope that these ideas, along with our discussion on
experimental constraints and how to limit them, will
motivate experimental groups to develop practical realiza-
tions of the transchiral helical motor.
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