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Texture perception of foods is a common yet remarkably unstudied biophysical problem.

Motivated by recent experiments reporting the presence of corpuscular endings in tongue

filiform papillae, we develop in this work a mechanical model of the human tongue

covered with filiform papillae in the form of elastic beams. Considering the typical flows

that occur in the mouth during oral evaluation of Newtonian liquids, we suggest that

filiform papillae may act either as direct strain sensors and/or as indirect strain amplifiers

for the underlying mucosal tissue. Application of this model may also be valid for other

biological appendages, such as primary cilliae and superficial neuromasts.
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1. INTRODUCTION

Food perception is based on the interaction between the human physiology and physical and
chemical characteristics of food [1]. Molecular scale interactions between chemical compounds
and receptors are usually responsible for taste, aroma and chemesthesis. Taste and chemesthesis
pertain to the tongue [2–4] and the cells hosting taste receptors are located in onion-like structures
called taste buds, located in circumvallate, foliate, and fungiform papillae. A fourth type of papilla,
filiform papillae, are devoid of taste buds and are believed to be involved in texture perception,
but the details of both the mechanical and molecular aspects of filiform papillae in encoding food
texture are still unknown.

One important avenue of research consists in deciphering how the topological features of the
tongue, mainly covered by filiform papillae, support the biological function of texture perception
of foods—originally coined as psycho-rheology [5]. The particularly high sensitivity of the tongue
in detecting small changes in stresses applied to the tissue remains to be conclusively linked to a
physiological mechanism. Low yet perceptible stress changes can proceed from viscosity changes
due to enzymatic [6], mechanical [7], or thermal breakdown of food structures, or due to the
presence of micron-sized rigid particles in an otherwise homogeneous visco-elastic fluid such as
glass beads in yogurt [8] or more universally a grain of sand in an oyster.

In this work, motivated by recent experiments reporting the presence of corpuscular endings
in filiform papillae of mice tongues [9], we make the assumption that the origin of the high
tactile acuity of the human tongue is the sum of mechanosensitive innervation [10], favorable
transmission due to tissue mechanical properties and surface topology. Structures of similar aspect
ratio to filiform papillae used to sense external fluid stresses have already been described in the
animal kingdom. Theses include primary cilia at the cellular level [11] or superficial neuromasts
in the fish lateral line [12, 13]. To function in a similar manner filiform papillae would need to
bend significantly under typical in-mouth flows. Supporting the latter, we derive a coupled bio-fluid
mechanical model of the mechanical advantage lying in the presence of filiform papillae.
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This study is organized as follows. In Section 2 we introduce
our modeling assumptions, including the geometry of papillae
andmouth, their mechanical characteristics, the sensory function
of the tongue and further physical assumptions. In Section 3
we then describe the flow as the tongue is moving and derive
the scalings for the deformation strains of the papillae induced
by the viscous fluid forces in Section 4. The scalings for the
resulting elastic deformation of the tongue due to the bending
of the clamped papillae are derived in Section 5 where we show
that papillae are able to act as strain amplifiers by more than two
orders of magnitude.

2. MODEL

2.1. Morphology
Over the last 60 years, a number of groups have investigated
the morphology of filiform papillae (oftentimes motivated with
associated diseases). Detailed studies exist on rats [14, 15], mice
[16], porcupine [17], wild boar and pig [18], and humans [19,
20]. An overview of evolution in papilla morphology among
vertebrates was detailed in Iwasaki [21]. An overview of the
literature indicates the following morphological characteristics.
In small vertebrates, individual papillae have a typical width
ranging from 15 to 20µm, and often taper conically at their
tip. This width corresponds to the size of two to three epithelial
cells, and is about the same order as the typical distance between
papillae on the tongue. Their length can vary greatly between
the anterior and posterior parts of the tongue and range from
50 to 100µm. A precise set of measurements for humans
were reported in Yamashita and OdDalkhsuren [22] where a
distinction is made between the wide papillae body, which is
anchored in the tongue, and the hairs on the papillae which do
protrude upward from the tongue and deform under flow. Their
size is reported to be 34± 16 µm in width and and 250± 62 µm
long. Other measurements reports significantly larger sizes, with
widths that can range 100–300 µm and length 200–500µm
[21, 23, 24]. Given the wide range of measured values among
all the gathered papers, we will consider a half-width (radius)

FIGURE 1 | (A) Schematic representation of mouth model used in this work. The palate and the tongue are assumed to be smooth, rigid, flat surfaces. The tongue is

located at a distance H from the palate and the total width of the fluid region in the anterior-posterior direction is denoted W; (B) Schematic representation of papilla

model: a straight elastic rod of length L, radius a, clamped on the tongue.

of 50 µm and length 250µm in this paper as representative
numbers.

2.2. Mechanics
No measurements of the Young’s modulus of filiform papillae
is available in the literature. A measure of E = 15 kPa of
the pig’s tongue modulus was obtain on fresh pig tongues [24].
That number in the range which would have been obtained by
focusing solely on the elasticity of epithelial cells, for example
E ≈ 1 − 10 kPa for monkey kidney epithelial cells [25] while
E ≈ 0.1 − 300 kPa for human foreskin epithelial cells, with an
average of 14 kPa for young cells and 33 kPa for old cells [26]. In
light of these published data, we will use a value of E = 25 kPa in
this study.

2.3. Mathematical Model
Based on the previous section, we can now put forward themodel
considered in this work, illustrated in Figure 1. We consider the
fluid-solid interactions in a model mouth. The palate is modeled
as a smooth, rigid, flat surface, at a distance H from the tongue.
The tongue is assumed to be a smooth, rigid, flat surface on
which filiform papillae are distributed. The total length of the
flow region from the anterior to the posterior side of the mouth
is denoted W. The focus of the work is on the deformation of
the filiform papillae. Each papilla is modeled as a straight elastic
rod of length L, radius a, clamped on the tongue. The Young’s
modulus of the rod is denoted E. As discussed above, we take
E ≈ 25 kPa as a representative value.We also assume a = 50µm,
leading to a bending modulus B = πa4E/4 ≈ 1.2× 10−13 J.m.

2.4. Sensory Function of the Tongue
As stated in the introduction, the bovine tongue sensory
innervation has already been partially described [10]. In addition
to this, a recent study carried out in mice reported the presence
of corpuscular endings innervating each filiform papillae [9],
confirming a similar finding from previous work also describing
innervation of filiform papillae in cats [27]. Since those endings
do not project to the surface of the oral epithelium, we can
hypothesize that they are mechanosensitive in nature and do
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not pertain to chemical stimulation. Our motivation to study
the deformation mechanics of filiform papillae under flow lies
in the fact that applied macroscopic strains will cascade into
microscopic cell and transmembrane protein deformations and
lead to somatosensory sensing as already known in themamallian
skin [28]. This should thus open a window for biophysicists
regarding the levels of stresses that are likely to be applied to
mechanosensory cells when mammals probe food for its texture.

3. FLOW INDUCED BY THE MOTION OF
THE TONGUE

3.1. Parameters
As we are interested in the interactions between deforming
papillae and the flow of the food product, it is important to
accurately model the driving of the flow between the palate and
the tongue. During tasting and swallowing the palate is stationary
and the tongue moves horizontally parallel to and vertically
toward the palate driven by the action of lingual muscles. The
typical setup is therefore that of (1) a squeeze flow driven by
the vertical motion of the bottom surface (so-called transverse
motion in the literature [29]) and (2) a shear component also
present during tasting (referred to as longitudinal motion [29]).
The shear component of the tongue movement can play an
important role when acting alone, but as we see below the stresses
it creates can safely be neglected when a transverse flow is present.

The study is motivated by the measurements of textures on
complex fluids such as ice cream. Rheological measurements
for 38% fat cream show a viscosity of about 20 mPa.s, hence
approximately 20 times that of water [30]. Ice-creams typically
have a viscosity in the range 20–300 times that of water
[31], with strong variation with temperature and fat content.
Recent measurements for ice cream with fat, fat replacers, and
sweeteners indeed confirm this showing viscosities O(100mPa.s)
[32, 33]. In this study we pick a reference viscosity of µ =

100 mPa.s, equivalent to 100 times that of water at room
tenperature.

It is also necessary to account for typical velocities in mouth
during food consumption. Detailed measurements of movement
in the mouth during swallowing in show velocities ranging
from 1 to 15 cm/s, with an average around 10 cm/s Shawker
et al. [29]. This is consistent with results from computational
simulations [34]. For a tongue-palate distance of H ≈ 5 mm, a
papilla size L ≈ 250 µm, and a viscosity µ = 100mPa.s, this
leads to Reynolds numbers O(1 − 10) in the mouth while the
flows around the papillae are characterized by Re ∼ 10−1 or even
smaller due to the no-slip boundary condition near the papillae.
Given that the relevant Reynolds number in narrow geometries
is the regular Reynolds number times the channel aspect ratio,
we are in the low-Reynolds number regime and can neglect the
influence of inertia on the dynamics of the fluid in the mouth
[35, 36].

3.2. Newtonian Fluid Flow
For the flow in the mouth we consider the basic setup illustrated
in Figure 2. The tongue is assumed to move both in the
longitudinal (horizontal) direction, with a typical velocity U, and

FIGURE 2 | Setup for the flow induced between the tongue and the

palate. We denote by U the longitudinal velocity of the tongue (leading a shear

flow) and V its vertical upward velocity (leading to a squeeze, pressure-driven

flow).

in the transverse (vertical) direct with typical velocity V . We use
x and y to denote the directions along and perpendicular to the
tongue (see Figure 2), with the tongue located at y = 0 and the
palate at y = H.

The longitudinal motion leads to a shear flow in the fluid. The
solution of Stokes equations in this case is simply u = u‖ex with
a linear profile [37]

u‖ = U
H − y

H
, (1)

where we use the subscript ‖ to indicate that the flow is driven by
motion parallel to the tongue. The typical shear rate acting on the
tongue in this case is on the order of γ̇‖ = O(U/H).

The transverse motion leads to a pressure-driven (squeeze)
flow in the thin gap between the tongue and the palate. Assuming
unidirectional flow, we have in this case u = u⊥ex with u⊥
satisfying

µ
d2u⊥

dy2
=

dp

dx
, (2)

and where we use the subscript ⊥ to indicate that the flow is
driven by motion perpendicular to the tongue. The solution to
Equation (2) is the standard parabolic flow

u⊥(y) =
1

2µ

dp

dx
y(y−H). (3)

The pressure gradient is found using conservation of mass.
Indeed, the flow rate along the tongue,Q, needs to the equal to the
flow rate induced by the motion of the tongue, and so Q = VW.
Integrating Equation (3) across the gap we obtain the scaling

Q ∼ −
H3

µ

dp

dx
, (4)

and therefore

1

µ

dp

dx
∼ −

VW

H3
, (5)

leading to a flow profile scaling as

u⊥(y) ∼ V
Wy(H − y)

H3
· (6)
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The typical shear rate on the tongue in this case is therefore
given by γ̇⊥ = O(VW/H2) and the ratio between the typical
longitudinal and transverse shear rates is thus given by

γ̇‖

γ̇⊥
∼

U/H

VW/H2
∼

(

U

V

) (

H

W

)

. (7)

Detailed measurements on tongue movement during swallowing
shows that U is usually inferior to V and, in the rare cases where
it is above, at most a factor of 2 larger [29]. Given that we are
in a very high aspect-ratio geometry, H ≪ W by about one
order of magnitude, and thus we obtain the result that γ̇‖ ≪ γ̇⊥.
The shear flow induced by the tongue in the anterior-posterior
direction leads to stresses on the tongue which are smaller in
comparison with the stresses induced by the tongue motion in
the superior/inferior direction and the resulting squeeze flow. In
summary, when a squeeze flow is present, the shear flow is small
and can be safely ignored.

4. DEFORMATION OF SINGLE PAPILLA
INTO NEWTONIAN FLOW

4.1. Dynamical Regime
With the Newtonian flow in the tongue characterized in
Equations (1) and (6), we now consider its effect on a single
papilla. Before computing the shape, and the strain, of a
deforming papilla, a number of questions need to be addressed
in order to properly characterize their dynamic regime.

First, do papilla deform with unsteady dynamics (transient
motion and relaxation) or are the time scales involved sufficiently
long that we can model them as deforming in a quasi-steady
fashion? This is a question in the realm of fluid-structure
interactions of filaments in viscous fluids [38]. With a bending
modulus B and a papilla of length L in a viscous fluid of viscosity
µ, the typical time scale for the deformation to reach its steady-
state shape is given by an elasto-hydrodynamics time scale,
teh, [39]

teh ∼
ξL4

B
, (8)

where ξ is the drag coefficient for flow near the papilla, ξ ≈

4πµ/[ln(2L/a) + 1/2]. With µ = 100 mPa.s, L ∼ 250 µm, and
B = 1.2 × 10−13 J.m, we obtain a typical time scale of teh =

0(10 ms). How does this compare with the typical time scale, T,
for the flow in themouth? This timescale is given byH/V , it is the
time scale over which the flow in the mouth is going to change.
The vertical velocity is on the order of V ≈ 10 cm/s while the
thickness is H ≈ 5 mm and thus T = H/V ≈ 50 ms. Since the
high value forV can be considered an upper bound, the time scale
we obtained of 50 ms should be viewed as a lower bound. Given
thatT & teh we are thus in a regimewhere we expect unsteadiness
to not play an important role and the deformation will be treated
as quasi-static.

The second important question about the dynamics concerns
the issue of small vs. large deformations. Do we expect the
papillae to deform in the nonlinearly geometric regime where
internal tension plays an important role and careful attention

needs to be paid to the extensibility of the papilla, or dowe remain
safely in the linear regime? If we were to remain in the linear
regime, the typical deflection of a linear beam would be scaling in
the following manner. Let us call δ the typical magnitude of the
papilla tip deflection. For a force of magnitude q per unit length, δ
scales as δ ∼ qL4/B [40]. Here the load is due to the fluid drag and
thus q ∼ ξu where we use u to denote the typical velocity of the
fluid relative to that of the papilla, leading to δ ∼ ξuL4/B = tehu.

We need to then consider separately the shear and squeeze
flows. In the case of a shear flow, the typical relative velocity
around the papilla is u‖ ≈ UL/H leading to the scaling δ/L ∼

tehU/H. With teh = 10 ms, H = 5 mm, and U . 10 cm/s we
obtain δ/L = 0(10−1) and remain safely in the linear regime. In
the case of a squeeze flow we have the scaling near the papilla
u ∼ VLW/H2 and thus we obtain δ/L ∼ tehVW/H2. Here again
with teh = 10 ms, H = 5 mm, V . 10 cm/s, and W = 5 cm,
we obtain δ/L = 0(1), which is at the limit but is a regime in
which the linearized equations of solid mechanics will be at least
qualitatively accurate, and approximately quantitatively accurate.

4.2. Mathematical Model
In order to describe the deformation of a papilla in a flow, and the
elastic strain that it applies to the tongue, we use the formulation
for the dynamics of elastic filaments in viscous flows. Let us
denote by r the location of a point along the filament and s the
arc length along the filament (from s = 0 to s = L). We use
u to denote the external flow field located at position r and τ

the tension (force per unit length) enforcing inextensibility of the
filament. The instantaneous balance of forces and moments on
the filament leads then to [38]

ξ (rt − u) = −Brssss + (τrs)s. (9)

In Equation (9) we have used the shorthand notation that (...)s
means a partial derivative along the s direction and (...)t a partial
time derivative (so that the first term on the right-hand side of
Equation (9) has four derivatives along s).

To simplify the mathematical approach and the interpretation
of the results we proceed to non-dimensionalize the problem.
We use the length of the papilla, L, as the characteristic
length, teh as the characteristic time (Equation 8), L/teh as the
characteristic velocity and B/L2 as characteristic tension. Doing
so, Equation (9) becomes

rt = u− rssss + (τrs)s. (10)

The equation for the tension τ is found by enforcing that rs · rs
remains equal to one for all times, leading to

τss − τ (rss · rss)+ 4rss · rssss + 3rsss · rsss + rs · us = 0. (11)

In Equation (12) the term including us is small and can be
neglected since it quantifies gradients of the flow along the length
of the papilla. In the linear regime, rs = t = ey is the tangent to
the papilla while us = ∂u/∂y is the y derivative of the flow, which
is nonzero along the x direction only, and therefore rs · us = 0.
We thus obtain the further simplification

τss − τ (rss · rss)+ 4rss · rssss + 3rsss · rsss = 0. (12)
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Furthermore, using our scaling approach from the previous
section we can neglect any nonlinear terms in the shape of the
papillae. As can be seen in Equation (12), the tension τ is expected
to be quadratic in the filament amplitude and therefore the last
term in Equation (10) is cubic, and can be neglected. We thus
end up with the linear beam equation

u− rt = rssss, (13)

which, when simplified further due to the fast relaxation of
unsteady modes (see Section 4.1), becomes the quasi-steady
equation

u = rssss, (14)

Physically, Equation (14) indicates a balance between bending
and the drag forces from the fluid.

4.3. Scaling Laws for Deflections
Calling δ the typical deflection of an individual papilla and
coming back to dimensional equations, we thus obtain the
linearized balance

ξu ∼ B
d4δ

dy4
, (15)

leading to a typical tip deflection on the order of

δ ∼
ξL4u

B
· (16)

We can then use the two velocity profiles, Equation (1) and
Equation (6), to obtain the typical order of magnitude of the
deflections.

4.3.1. Shear Flow

For a shear flow we have u = u‖ ∼ UL/H leding to a typical
deflection

δ‖ ∼
ξUL5

BH
· (17)

The longitudinal strain, ǫ, along the papilla is given by ǫ = aκ
where a is the radius of the papilla and κ the curvature of the
papilla, κ ≈ δ′′(y) ∼ δ/L2. The typical longitudinal strain, ǫ‖,
scales thus as

ǫ‖ ∼
aξUL3

BH
· (18)

Using the parameters of our model, µ = 100 mPa.s, ξ ≈

4πµ/[ln(2L/a) + 1/2] ≈ 0.45 Pa.s, L ∼ 250 µm, B = 1.2 ×

10−13 J.m, U ≈ 10 cm/s, H ≈ 5 mm and a ≈ 50 µm, we obtain
small strains of order |ǫ‖| ≈ 6%.

4.3.2. Squeeze Flow

In the case of the squeeze flow the velocity scales as

u⊥(y) ∼ V
Wy(H − y)

H3
· (19)

Furthermore, since the papillae aremuch smaller than themouth,
L≪H, the velocity profile close to the tongue is approximately a

shear flow and the papilla is not able to feel the curvature of the
velocity profile in the center of the mouth. The typical magnitude
of the flow near a papilla is therefore given by

u⊥(y) ∼ V
WL

H2
· (20)

Using Equation (16), we thus obtain a typical deflection

δ⊥ ∼
ξVWL5

BH2
, (21)

and therefore a longitudinal strain in the papilla scaling as

ǫ⊥ ∼
aξVWL3

BH2
· (22)

Using the same numbers as above with in addition V ≈ 10 cm/s
and W = 5 cm, leads to a much larger strain than in the
longitudinal case, |ǫ⊥| ≈ 60%, indicating significant strains.
Although a more complete quantitative model would include all
nonlinear terms in the beam equation, this results provides a
qualitative estimate.

5. PAPILLAE-INDUCED SUBSTRATE
DEFORMATION

5.1. Main Question
We are now in a position to answer the main question of this
work: do the papillae, through their deformation and the fact
that they are anchored to the tongue, lead to deformation of the
tongue which is stronger than if the papillae were not present.
In other words, if the mechano-sensors are distributed beneath
the surface of the tongue, could papillae amplify deformation
of the tongue mediated through fluid-structure interactions? We
can quantitatively address this question within our mathematical
framework. In addition, since sensory neurons have also been
shown to be mechanosensitive themselves (and thus not solely
serving conduction of surface mechanosensory cells [41]), it is
important to ask whether such neurons could be impacted by
papillae strains.

5.2. Fundamental Solution: Point-Force on
an Elastic Substrate
The first step is to consider the Green’s function for the
deformation of a semi-infinite elastic substrate due to a point
force. With the Green’s function known, all other types of
deformations can be tackled mathematically.

Consider an elastic medium located in the x3 < 0 semi-
infinite plane, as a model for the tongue. The Young’s modulus
of the tongue is denoted E and its Poisson’s ratio ν. A constant
force of magnitude F3 is applied at the surface of the tongue,
with the surface being parallel to the (x1, x2) plane. The force
is being applied at the origin of the coordinate system. The
solution to this Green’s function problem is classical [40] and we
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summarize it here. The elastic displacements in the tongue along
each direction, {u1, u2, u3} at position {x1, x2, x3} are given by

u1 =
1+ σ

2πE

[

−
x1x3

r3
−

(1− 2σ )x1

r(r − x3)

]

F3, (23a)

u2 =
1+ σ

2πE

[

−
x2x3

r3
−

(1− 2σ )x2

r(r − x3)

]

F3, (23b)

u3 =
1+ σ

2πE

[

x23
r3

+
2(1− σ )

r

]

F3, (23c)

where r2 =
∑

i x
2
i .

For simplicity we then assume that the tongue is
incompressible, meaning its Poisson’s ratio is given by σ = 1/2.
This simplifies the results for the displacements as

u1 =
3

4πE

(

−
x1x3

r3

)

F3, (24a)

u2 =
3

4πE

(

−
x2x3

r3

)

F3, (24b)

u3 =
3

4πE

(

x23
r3

+
1

r

)

F3. (24c)

5.3. Strain Field
With the elastic displacements known, we can then compute
the strain field, and it is given by the symmetric part of the
displacement gradients. As can be seen in Equation (24), the
typical displacement inside the tongue scales as u ∼ F/Er at
a distance r from the point where the force F is being applied.
The strains in the tongue, ε, are therefore expected to take the
approximate values

ε ∼
u

r
∼

F

Er2
· (25)

5.4. Point moment on an Elastic Substrate
The deforming papilla is not applying a force on the tongue
but instead it applies a moment at its base. If we denote by M
the applied moment then we need to take one additional spatial
derivative to obtain the strains in the tongue, leading to

ε ∼
M

Er3
· (26)

The maximum tongue strain is found near the base of the papilla,
r ∼ a where a is the radius of the papilla leading to the relevant
strain value of

ε ∼
M

Ea3
· (27)

5.5. Strains in Tongue from Papilla Bending
The result shown by Equation (27) needs now to be compared
with what would happen in the absence of papillae-induced
deformation.

5.5.1. Shear Flow

In the case of a shear flow, in the absence of papillae the
pressure in the Newtonian fluid is constant and equal to its

atmospheric value, meaning that the tongue would undergo
no forcing normal to its surface. The shear flow would of
course lead to shear stresses, but no shear strain in the case
of an approximately incompressible tongue. So as far as strain
receptors are concerned, they would not measure anything if
there were no papillae in this situation.

What is the order of magnitude of the tongue strains, ε‖,
we would obtain as induced by the presence of papillae? The
moment at the base of an individual papilla scales as M ∼ aF
with the force F ∼ a2σ corresponding to typical bending stress
σ ∼ Epǫ, where ǫ denotes the longitudinal strain in the papilla
and Ep the Young’s modulus of the papilla. We therefore finally
obtain an applied momentM ∼ a3Epǫ.

We saw in Equation (18) that in the case of a shear flow we
have a longitudinal strain inside the papilla

ǫ‖ ∼
aξUL3

BH
, (28)

and thus the moment applied at the base of the papilla on the
tongue due to shear-induced bending is given by

M ∼
ξa4EpUL

3

BH
· (29)

Using the scaling relationship between the Young’s modulus of
the papilla and the bending rigidity B ∼ a4Ep, we obtain a simpler
formula for the torque magnitude as

M ∼
ξUL3

H
· (30)

With this value for the moment, we can then use Equation (27)
to find the maximum elastic strains in the tongue

ε‖ ∼
ξUL3

a3EH
· (31)

Provided that the Young’s modulus of the tongue is similar to
that of individual papillae, which as a first approximation it
should, then writing Equation (31), we recognize the elasto-
hydrodynamics time scale, teh, from Equation (8), as a function of

ε‖ ∼ teh
aU

LH
· (32)

Putting in numbers, we recall that teh = 10 ms, U = 10 cm/s,
L = 250 µm a = 50 µm, E = 25 kPa, and H = 5 mm. This leads
to teh ≈ 3 ms and gives a maximum tongue strain of

ε‖ ∼ 4%. (33)

Thus in shear flow we propose the advantage of having papillae
distributed on the tongue: they create a normal mechanical
deformation of the tongue which would not take place in their
absence.
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5.5.2. Squeeze Flow

In the case of a shear flow, the scalings are different.
As in previous cases discussed, we expect to get
an even stronger effect than in the longitudinal
situation.

From Equation (22), the magnitude of the elongational strain
in the papilla due to its bending is given by

ǫ⊥ ∼
aξVWL3

BH2
, (34)

and therefore the torque applied at the base of the papilla on the
tongue has a typical magnitude

M ∼
ξa4EpVWL3

BH2
∼

ξVWL3

H2
· (35)

With this, the typical strains in the tongue in the case of a squeeze
flow, ε⊥, are

ε⊥ ∼
ξVWL3

a3EH2
· (36)

Comparing Equations (31) and (36) we find the ratio

ε⊥

ε‖
∼

VW

UH
· (37)

Using the same numbers as above except W = 5 cm, V =

10 cm/s, this leads to a significantly larger

ε⊥ ∼ 40%. (38)

This result needs to be compared with what would happen in the
absence of papillae. In that case the elastic stress in the tongue
would be uniform everywhere and equal to the fluid pressure.
Approximately, this hydrodynamic pressure is given by

p ∼
µVW2

H3
, (39)

and thus the strains in the tongue in the absence of papillae, εp,
would be

εp ∼
p

E
∼

µVW2

EH3
, (40)

leading to

εp

ε⊥
∼

µ

ξ

W

H

( a

L

)3
· (41)

With W = 5 cm, L = 250 µm, a = 50 µm, H = 5 mm this
leads to

εp

ε⊥
∼ 0.02, (42)

so the presence of papillae leads to an increase of two orders of
magnitude of the strains in the tongue.

6. CONCLUSION

The analytical and numerical solutions derived in this article
confirm that the topology of the tongue can offer mechanical
advantage for texture perception. This effect is dependent on the
presence and location of mechanosensitive cells and neurons in
relation to such topological structures. This, to the best of our
knowledge, remains to be studied, however recent work reporting
corpuscular endings in mice filiform papillae indicates locations
consistent with the mechanism described here [9].

Most interestingly, we prove that depending on the putative
location of those mechanosensitive cells, filiform papillae may
either serve sensing purposes in a direct fashion (papillae
strains), similarly to superficial neuromasts or in an indirect
fashion (tongue strains). In the latter, instead of sensing strains
themselves, papillae might encode stresses by inducing strains
in the tongue which then lead to bulk sensing. The underlying
neurophysiology for those two cases would be dramatically
different in terms of strain orientation and magnitude. The
application from the developed model could then be used to
define the levels of stress and strain that are experienced by
different cells depending on the physiological location.

One can also speculate that similarly to the skin, the tongue is
populated by various types of cellular mechanosensors, encoding
information from different locations and responding to different
levels of stresses and frequencies. In this case both direct
and indirect sensing may occur from the filiform papillae
bending.

As a final perspective, since we have argued that the
aspect ratio of filiform papillae is similar to that of other
biological structures known to support external stress field
encoding, we propose that models similar to ours will also
be applicable to such structures. We hope that biologists and
biophysicists will be able to apply these ideas to other biological
systems.
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