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Particles adsorbed on the surface of a droplet form three-dimensional packings when the droplet evaporates. We
study the final packings when the liquid droplet is attached to a solid substrate. In contrast to a droplet evaporating
away from a substrate, here the final packings are highly dependent on both the number of particles and the contact
angle between the droplet and the surface. Simple geometrical constraints quantitatively determine the parameter
regions that particular packings can form.

I. Introduction

Perhaps the most natural strategy for self-assembly is to design
an energy landscape so that the desired outcome is the energy
minimum.1,2 The primary difficulty with this strategy is the
prevalence of local minima. For example, if we consider clusters
of N particles interacting through a van der Waals potential, the
number of local minima increases from at least 4 forN ) 7 to
988 forN ) 13.3 For this reason, successful assembly strategies
have generally employed patterned surfaces or templating
strategies to lower the number of local minima.4-9 It therefore
came as a surprise when Manoharan et al.10demonstrated a method
employing no patterning or templating for forming large numbers
(∼1010) of unique packings of micron-scale particles, with no
observable multiplicity of structures. Their method used poly-
styrene spheres in an emulsion of toluene and water, in which
the toluene was then preferentially evaporated. Due to surface
tension, the spheres lay at the interface between the toluene and
water and as the droplets evaporated, the spheres came together
to form unique packings.

How did this method eliminate the local energy minima? The
uniqueness of the final structures arises from two features of the
assembly process:11 (1) The particles are initially confined on
the two-dimensional surface of the toluene droplet. As the droplet
evaporates, the particles become jammed together and the droplet
cannot evaporate further while maintaining a spherical shape.
The configuration in which they are jammed together is in fact
unique.11-13 Henceforth, we call this particle configuration the
initial packing. (2) When the droplet evaporates further, it cannot
maintain its spherical shape, and hence the initial packing must
deform. However, the final packing of the spheres (when the

toluene has completely evaporated) is uniquely related to the
initial packing of the particles: the kinematics of particle contacts
as well as the mechanical equilibrium of individual particles do
not allow any freedom among the particle contacts once they are
initially jammed together.

The extreme nonuniqueness of the self-assembly of three-
dimensional particle clusters is eliminated by first confining the
particles to a closed surface of lower spatial dimensionality,
where the minimal energy structures are completely unique, and
then deforming this surface until geometrical constraints prohibit
further deformation. The final assembled morphology (the final
packing) is then completely determined by the initial packing
(though in general the final packing is different than the initial
one).

The challenge now is to figure out whether this assembly
strategy can be suitably generalized to allow tuning of the final
packings. The observed unique map between the final packing
and the initial packing implies that the assembly strategy must
focus on tuning the initial packings. One method for changing
the initial packing is to introduce particles with different
wettabilities.11 Here we explore another possibility, the effect of
an external geometrical constraint. Instead of allowing the
evaporating droplets to float freely in the bulk, we constrain
them in this paper to sit on a surface, with a fixed contact angle
during evaporation,R, as illustrated in Figure 1.

We find that for this problem multiple final packings are
allowed for a givenN. The packings that can form depend strongly
on bothR andN: For low contact angles and particle numbers,
we find that the final packings are either planar (with only a
single layer of particles on the solid surface) or highly symmetric.
In contrast, at high contact angles and high particle numbers, the
packings are generically highly distorted, with no apparent
symmetries. We present a quantitative explanation for this
transition using geometric constraints on the initial packings.

II. Initial Packings

Our numerical study builds on the background discussed
above.11When the liquid droplet is sufficiently large, the particles
do not touch. In this regime, the minimum energy configuration
requires that the droplet is a spherical section. This minimum
energy solution holds until the particles jam together at a critical
liquid volumeV*. When jamming occurs, it is no longer possible
to shrink the liquid volume while maintaining the liquid surface
as a spherical section.

This observation naturally breaks the problem of computing
the final packings into two parts: First, we need to find the
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particle configurations at the critical liquid volume where the
initial jamming occurs. Then we need to find out how these
initial packings deform during the rest of the evaporation. Given
that the final packing is uniquely determined by the initial
packing,11we can get a good idea of the landscape of possibilities
by first examining the initial packings, a task to which we now
turn.

A. Numerical Method. The initial packings are equivalent to
the jammed packings of circles on a spherical cap resting on a
solid surface with a prescribed contact angle. (The set of jammed
packings contains the set of densest packings but may also contain
others.) The method most commonly used for finding densest
packings of circles on a sphere has been to assign a steep repulsive
energy between the circles, and use a gradient descent method
to minimize this energy.13Instead, we use a Markov Chain Monte
Carlo algorithm with simulated annealing, first suggested by
Krauth.14 In the algorithm, an initial angular randomized
configuration of circles is generated and placed on a sphere of
sufficient size that none of the circles overlap. Then the algorithm
iterates, at each step picking one of the circles at random and
attempting to move it in a randomly chosen direction. If the
move is allowed without violating nonoverlap constraints, it is
made, otherwise the move is not made. At regular multiples of
iterations, a simulated annealing is attempted, in which the radius
of the sphere is decreased by a small fraction, and the nonoverlap
constraints are checked. Again, if the annealing is allowed without
violating any of the constraints, it is completed, otherwise it is
not. The annealing step represents the evaporation of the droplet.
These random motions and annealings are repeated a large number
of times. In our simulations, we performed typically 100 000
random motions with an annealing at every 10th motion (with
the choice of annealing at every 10th motion made from a balance
to avoid extra computation) and then the size of the random
motion, and the fraction of the sphere radius decrease in the
annealing step, are decreased and the iterations repeated.
(Typically, we decrease each of these by factors of 10, until
round off error sets in.) We have tested this algorithm up toN
) 20 on the problem of packing circles on free spheres and have
found all of the known densest packings and features (including
the presence of “rattlers” (particles whose centers are not fully

constrained) atN ) 5 andN ) 19, and the two different densest
packings atN ) 15, see ref 13), so we are confident in the
general accuracy of this method.

The algorithm has two major advantages for our purposes
over the traditional gradient descent method. The first is that,
since the algorithm explicitly checks that nonoverlap constraints
are satisfied, moving to different geometries is an extremely
straightforward modification. The second is that the algorithm
more closely reflects the experimental reality that we aim to
capture in solving the densest-packing problem: the Brownian
motion of particles with the slow evaporation of the sphere on
which they rest. Because of this, the algorithm will find all of
the jammed packings of circles (not just the densest packings)
and thus all of the corresponding initial packings of spheres.

We end our description of the algorithm by noting that on a
∼1 GHz computer a single run of the algorithm takes a few
minutes (for typical values ofN ∼ 10). The running time of the
algorithm is ostensiblyO(N) since at every iteration only the
distances between the one circle being moved and every other
circle must be checked (and at every annealing only the two
closest circles must be checked to check if constraints are still
satisfied); however, the number of iterations required to achieve
a jammed packing with probability close to 1 must be increased
with increasingN, making the running time longer thanO(N).

B. Packing Results.Our algorithm to find initial packings
was run for the number of particlesN, from 4 to 12, and for
contact angle between the droplet and surfaceR, from 3π/16 to
π. For our computations, we restricted our attention to the contact
angle between the particles and the liquid,θ, being fixed atπ/2.
[In the analytical results below, we generalize to arbitrary valued
θ.]

The results of our packing simulations are displayed in Figure
2. Two features of our packing results are particularly notable.
The first is that, unlike the case of packing circles on free spheres,
multiple jammed packings were found that were not the densest
packings, even at lowN 2. The second feature of note is that for
low values ofN (N < 9), the inital packings found are all highly
symmetrical below a critical value ofR (the added constraint of
the surface is most dominant for lowR). ForR below this critical
value, the packings found are either a ring structure, where all
of the circles lie on the plane of the surface in a single ring, or
a pyramid structure, whereN - 1 of the particles lie in a ring
and one particle rests on top of the others. Examples of these two
structures for different values ofN are shown in Figure 3.

At R above the critical value, the packings found are rather
asymmetric. Some examples of these structures are shown in
Figure 4.

III. Final Packings

What happens to the initial packings upon further drying? To
determine this, we carry out numerical simulations of the full
drying process using the Surface Evolver,15 a program which
determines the equilibrium configuration of deformable surfaces
given the definition of an energy. The colloidal spheres are
modeled as liquid droplets with high surface tension, typically
1-2 orders of magnitude larger than the main droplet, to penalize
nonspherical deformations of their shape. Interfacial tension
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nondensest jammed packings were found belowN ) 10. ForN below 20, even
when multiple jammed packings were found, these states only differed by∼1 part
in 1000 from the densest packing. This may explain why unique structures were
found in the original experiments and simulations: differences of 1 part in 1000
may have been present, but were simply were undetectable.

Figure 1. Schematic representation of the proposed experiment. A
numberNof spherical particles of radiusa (hereN) 3) are adsorbed
at the surface of a sessile droplet of solvent on a solid substrate. The
contact angle between the droplet and each particle isθ and that
between the surface and the droplet isR. At the initial jamming stage
(see text for definition), we denote byRd the radius of the droplet
and byRs the distance between the center of the droplet and the
center of the particles.
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between the droplet and the particles are chosen appropriately
in order to satisfy Young’s law at the solid-liquid contact line.
Finally, noninterpenetrability is enforced with an excluded volume
repulsion energy acting between the centers of the spheres (see
ref 11).

These full simulationsaremuchmorecomputationally intensive
than finding the initial packings, so we carry these out only for
N ) 5. The results are illustrated in Figures 5 and 6. Our
simulations confirm that both the ring and pyramid occur at the
initial packing stage, as described above. Upon further drying,
when the droplet evaporates completely, the pyramidal structure
remains (see Figure 5). In contrast, the ring structure evolves to
a planar symmetric 2-3 configuration (see Figure 6).

What lessons can we extract from these simulations with five
particles to the more general case? Although the phase diagrams
presented in Figure 1 show only the initial packings, they reflect
the morphologies that occur in the final packings. The pyramidal
structures are rigid and hence are stable to evaporation. Upon
evaporation, the ring-like structures remain planar but deform.
Similarly, the disordered structures remain disordered. Hence,
Figure 1 illustrates phase boundaries that we expect to be
observable in experiments: WhenN and R are low, the final
packings that occur are either planar or pyramidal. Above the
critical threshold N ) N*(R), the final packings become
disordered. It is noteworthy that forN < N* multiple equilibria
exist for the same (N,R). This occurs because of a degeneracy
in the number of initial packings that are accessible to random
initial conditions. Although for a givenR only one of the structures
(ring or pyramid) is the lowest energy state for the initial packing,
the other structure may still occur and even may occur more
frequently.

IV. Phase Boundary

Given the striking change from ordered to disordered structures
atN) N*, it is of interest to understand where this phase boundary
comes from. Here we demonstrate that the phase boundary
originates from geometrical constraints on when rings and
pyramids can form.

The constraints depend on the ratio of the particle radiusa to
the droplet radiusRd. In what follows, we will nondimensionalize
lengths scales by 2a so that the particles have radius 1/2. We use
two (dimensionless) variables to describe the size of the
structure: rs is the distance from the center of the droplet to the
centers of the particles (rs ) Rs/2a), andrd is the radius of the

Figure 2. Summary of the results of the initial packing simulations,
and comparison with the theoretical predictions, plotted in the (R,
N) space, in the case whereθ ) 90°. Top: Region of parameter
space where the rings are predicted to be both possible and jammed
(light red), region where other asymmetric structures are obtained
in simulation at the jamming stage (red) and regions where both
types of packings are possible (dark red). Bottom: Region of
parameter space where the pyramids are predicted to be both possible
and jammed (light blue), region where other asymmetric structures
are obtained (blue) and regions where both are possible (dark blue).
In both cases, the dots represent the results of initial packing
simulations where rings (pyramids) have been obtained.

Figure 3. Pyramid and ring initial packings forN ) 6-8. The
pyramid is stable in transitioning to the final packing, while the ring
is not.

Figure 4. Initial packings obtained when the contact angle with the
surface,R, exceeds the critical value, forN ) 6-8.

Figure 5. Drying simulation ofN ) 5 spheres on a droplet with
R ) θ ) 90 °. Both the initial condition and the final particle
configuration (two views) are displayed.
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droplet (rd ) Rd/2a). From the law of cosines, it follows that

Hereθ is the contact angle of the particle-liquid interface. We
now consider constraints on forming both rings and pyramids.

A. Constraints on Forming Rings and Pyramids.For the
ring structure, two constraints need to be considered: First that
the plane the ring lies in is a distance of a particle radius ()1/2)
from the surface on which the droplet lies, and second that the
radius of the smallest circle on whichN points all separated by
a distance of 1 can lie,RN, is the effective radius of the droplet
at the ring height. A simple calculation gives thatRN

-1 ) 2
sin(π/N). The condition that the ring lies at a height of 1/2 above
the surface implies that

Solving forrd gives the critical radius of the droplet for the ring
structure

For the pyramid structure, there are now three constraints to
consider: The first two are the same as those given above for
theN - 1 ring (because the pyramid contains theN - 1 ring)
and the third is that the particle at the top must be a distance of
1 away from particles that lie on the ring. The critical radius is
found by solving for at least two out of the three constraints to
be satisfied with equality. This gives three possible radii. The
actual radius will be the largest of the three radii (since the two
smaller radii necessarily violate one of the constraints), subject
to jamming conditions discussed below. Letting constraint 1 be
that theN- 1 ring is a distance of 1/2 from the surface, constraint
2 be thatRN is the effective radius of the droplet at the height
of theN - 1 ring, and constraint 3 be that the top particle is a
distance of 1 from all of the particles in the ring, we find the
following. If constraints 1 and 2 are both satisfied with equality,
the result is the same as that for theN - 1 ring. If constraints
2 and 3 are satisfied at the same time without constraint one
being satisfied, the solution cannot be jammed. This is because
the N - 1 ring is always found to lie in the upper hemisphere
of the droplet, and so if it is not resting against the surface, the
particles cannot be held in place. The ring can always be brought
down and expanded in this case and the constraints relaxed.

Finally, if constraints 1 and 3 are satisfied at the same time, the
solution is found to be the positive value ofrd satisfying the
following equation:

The value of the solution can readily be found numerically. An
examination of the graphs of the two sides of the above equation
shows that it has always exactly one positive solution forrd for
all values ofθ andR (with the exception of the limiting case
whereR ) π). If we let r13(R,θ) be the solution of the above
equation, then in general we find that the critical radius of the
droplet is

The above formulas for the critical radii of both structures give
values that agree exactly (to the precision of our numerical
calculations) with the critical radii of the configurations output
by our computations.

B. Jamming.Simple geometric calculations also yield results
for whether the structures are jammed. By jammed, we mean
that no movement of any of the particles is allowed that would
change the structure of the packing: if this is not satisfied, the
structure will not be found as an initial packing. (Note that for
the pyramid structure this might allow the top particle to rattle.)
For the ring to be jammed, it must be impossible for any of the
particles to move upward and out of the ring; therefore the ring
cannot sit in the lower hemisphere of the droplet. Since the ring
must lie at a distance of 1/2 from the surface, we have

(R is larger thanπ/2 for our limit) and therefore from eq 2,rs

) RN. Using this in eq 1, we find that for the structure to be
jammedR must be smaller than a critical value,Rc, given by

Whether the pyramid structure is jammed depends on which
constraints are being satisfied with equality. If

Figure 6. Same simulation as in Figure 5 (N ) 5, R ) θ ) 90 °) but with a different initial condition for the particles on the droplet. We
display the initial condition, the intermediate packing where the ring structure is obtained (initial packing, two views), and the final packing
(two views). The initial ring packing is found to be unstable, and the final assembly of spheres is a planar 2-3 structure.

rs
2 ) rd

2 - rd cosθ + 1
4

(1)

(12 + rd cosR)2
+ RN

2 ) rs
2 (2)

rd, ring(N,R,θ) )

cosR + cosθ + x(cosR + cosθ)2 + sin2 R csc2(π/N)

2 sin2 R
(3)

xrd
2 - rd cosθ + 1

4
)

1 + 2rd cosR + x4rd
2 cos2 R + 4rd cosR + 9

4
(4)

rd,pyr(N,R,θ) ) max{rring(N - 1,R,θ), r13(R,θ)} (5)

-rd cosR ) 1
2

(6)

Rc ) cos-1( -1

cosθ + x4RN
2 + cos2 θ - 1) (7)

rring(N - 1,R,θ) > r13(R,θ) (8)

4550 Langmuir, Vol. 22, No. 10, 2006 Schnall-LeVin et al.



then the pyramid structure is identical to theN - 1 ring structure
and therefore is jammed when theN- 1 ring structure is jammed.
Forθ fixed atπ/2, examination shows that this is always the case
for N g 6. In the other case, theN - 1 ring must take up at least
half of the angular space so that the top particle cannot drop
down. This implies the inequality

Forθ fixed atπ/2, examination shows that this inequality never
holds forN ) 4 and always holds forN ) 5 (the casesN g 6
are again covered entirely by whether theN- 1 ring is jammed).
One consequence of this observation is that the pyramid structure
is never found forN ) 4 (as we confirm numerically).

These conditions to provide for the configurations to be jammed
allow us to predict the region where rings and pyramids can exist
and hence when ordered initial packings can result from this
process. We have plotted in Figure 2 the results of our packing
simulations together with our theoretical prediction.

In the light regions of Figure 2, we predict the structures to
be present, in agreement with the results of our simulations (dots).
If the conditions are outside the range of when a given structure
will be jammed, that structure will not be present under those
conditions, which is also confirmed by our simulations. Note
that a given structure satisfying these conditions does not
necessarily mean one will typically see it; near the edges of
where the structures are jammed we have found the rings and
pyramids to appear very infrequently. Finally, we have also plotted
in Figure 2 (dark areas) the regions where asymmetric structures
such as those present in Figure 4 have been observed in our
simulations. These regions intersect both the domains where the

ring and pyramid structure are jammed, indicating the possibility
of obtaining both symmetric and asymmetric initial packings.

V. Discussion and Conclusion
A variety of methods have already been proposed to assemble

colloidal particles on a template.5-9 However, these methods
rely on the interplay of a liquid with a template whose properties
(mechanical, electrical, etc.) have been tuned to obtain a particular
structure. In contrast, the method proposed by Manoharan et
al.10 produces unique packings without any templating.

In this paper, we have presented a computational study of an
extension of the method in ref 10 when the droplet is fixed on
a solid substrate. Most significantly, and unlike the case of a free
droplet, a number of different structures are allowed for each
value ofN. At the jamming stage, we have shown that ring and
pyramid structures are prevalent, with the pyramid being stable
to subsequent evaporation whereas the rings are not. Furthermore,
the distribution of these structures is highly dependent on the
contact angle between the droplet and the surface. The results
suggest a simple way to control the transition between two-
dimensional (planar) and three-dimensional final particle pack-
ings.

As an extension, one can envision patterning areas of different
structures formed by the above process simply by creating patterns
of different wettability on the surface. The algorithm and analytic
results given above could aid in the choice of parameters for
such an experiment. There are also additional experimental
modifications that could be examined using the above algorithm.
One such modification would be to look at the case of having
two or more different types of particles having different
wettabilities.11
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