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Empirical resistive-force theory for slender biological filaments in shear-thinning fluids
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Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids.
While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian
fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear
fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and
on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force
theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the
flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the
fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting
non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the
experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that
the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically
and to interpret physically. An application of the models to recent experimental results on the locomotion of
Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics
of swimming in shear-thinning fluids.
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I. INTRODUCTION

Biological locomotion is crucial on microscopic scales.
From finding new food sources and evading predators for
individual swimmers, to fertilization and flow induction in
higher organisms [1], the generation of fluid flows at the
microscale is an important field of study, dating back to the
advent of the microscope and the first observations of bacteria
and spermatozoa by van Leeuwenhoek [2].

Below the millimetre scale, viscous effects tend to dominate
and macroscale methods of propulsion that rely on inertial
momentum transfer are often ineffective. In order to produce
continuous motion at low Reynolds number, a swimmer must
move its body periodically but avoid time-reversible motion
[3]. For swimmers with back-and-forth motion, the viscous
drag during the power stroke must be greater than that during
the recovery stoke, and it is this drag anisotropy that leads to
locomotion. Thin rodlike appendages, usually termed flagella,
are used by both eukaryotic [4] and prokaryotic [5] cells, as
well as manmade swimmers [6], in order to induce propulsion
in the absence of inertia. Due to the difference in drag
coefficients for rods moving in a fluid perpendicular versus
parallel to their long axis, the time reversibility is broken for
traveling wavelike motion of the appendages of swimmers,
which allows the generation of propulsion [7]. Although
flexible planar wave motion of eukaryotes and rigid rotation
of helical prokaryotic flagella evolved separately billions of
years ago, they both take advantage of this anisotropy in drag
via the large aspect ratio of their flagella [8].

In order to describe swimming induced by long, slender
flagella, resistive-force theory was proposed over 60 years
ago [9,10] and has subsequently been improved upon [11].
The basic idea is to approximate the perturbation induced
by the flagellum on the fluid as a line of flow singularities.
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For a radius of curvature of the flagellar waveform much
larger than the diameter of the flagellum then at leading
order in the aspect ratio of the flagellum, the local velocity
linearly determines the local force density on the flagellum.
The drag can then be decomposed into the perpendicular and
parallel components in this local region [12,13]. Corrections to
resistive-force theory have been made to improve its accuracy
by increasing the number of terms in the expansion thereby
analytically including hydrodynamic interactions between
different portions of the flagellum in a systematic fashion
[14,15]. Further refinements include slender-body theory
[11,16], which provides greater accuracy leading to better
qualitative and quantitative approximations [17], compared
to resistive-force theory but typically requires numerical
evaluation.

While it is only valid asymptotically, and is only logarith-
mically accurate, resistive-force theory has been shown to be a
good approximation in many instances [18]. Without resistive-
force theory the only analytical insight into low-Reynolds
number swimming would come from small-amplitude swim-
mers [19,20]. In contrast, resistive-force theory allows calcu-
lations on the kinematics of swimming at large amplitudes,
as relevant to real flagellar motion. For this reason it provides
a good intermediary model between simple small-amplitude
results and complex computations and has had great success
in describing the locomotion of microorganisms in Newtonian
fluids [21–23].

Beyond Newtonian fluids, many biologically relevant fluid
environments have shear-dependent viscosities, including lung
mucus, cervical mammalian mucus [24], and soil [25].
Prompted by the success of resistive-force theory and the
biological relevance of non-Newtonian fluids, it is natural to
ask if it would be possible to derive a resistive-force theory for
nonlinear fluids.

Most theoretical studies of motion in shear-thinning flu-
ids focus on small-amplitude asymptotics. This includes
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small-amplitude perturbations of Taylor’s swimming sheet
[24] and squirming motion on a spherical surface [26]. Of
course, real biological swimmers fall beyond the asymp-
totic small-amplitude limit. In order to probe theoretically
large-amplitude motion in non-Newtonian fluids, complex
numerical simulations are required, such as those performed
on finite high-amplitude sheets [27,28] and the thick nematode
Caenorhabditis elegans (C. elegans) [29] in viscoelastic fluids,
and those performed on a variety of swimmer types in
shear-thinning fluids [30]. Though they provide important
novel physical insight, such computational approaches are,
by nature, difficult to extrapolate to other geometries, waving
kinematics, etc. It would thus be useful to have a modeling
tool easily implementable and allows us to tackle a variety of
flagellar kinematics.

The study of bodies moving in non-Newtonian fluids has a
long and rich history. Dating back over a century, the earliest
studies of single particles in Newtonian Stokes flow found
analytic solutions to axisymmetric particles, such as spheres
[31], prolate and oblate ellipsoids, lenses, and spherical caps
[32]. However, for extension to cylinders and other thin shapes
such as double-headed cones, full steady state solutions cannot
be found due to the Stokes paradox in two dimensions, and
approximate solutions can only be obtained for thin cylinders
[33]. Analytical studies on the motion of rigid spheres in non-
Newtonian fluids have been conducted using a variety of shear-
thinning models including power law [34], Carreau [35], and
Ellis [36]. Although exact solutions can be found, the results
reported from power-law fluid models often do not agree with
one another and with experimental results [34]. Greater success
and agreement with experiments [34] have been obtained with
the Carreau and Ellis fluid models. Analytical studies in this
case used expansion of small non-Newtonian effects for the
Carreau fluid and extremum principles for the Ellis model
[35,36] while numerical approaches required fitting external
parameters to the data [37].

In non-Newtonian fluid mechanics, empirical fitting is
a key modeling approach. Due to the nonlinear nature of
the fluid, parameters are often fit to certain shear-thinning
indices, other rheological properties, or shape parameters,
allowing prediction of behavior in a variety of shear-thinning
fluids. As studies branch away from rigid spheres in infinite
fluids, the complexity of calculations increases again due to
orientation considerations, and past theoretical studies mostly
rely on numerics. While it was shown analytically that the
Stokes paradox vanishes for cylinders in power-law fluids
[38], attempting to extend this to Carreau fluids has proved
problematic. Furthermore, the majority of the work on rods
and cylinders in non-Newtonian fluids has focused on small but
finite Reynolds numbers, motivated by industrial applications.
In this regime the shear-thinning effects of the fluid tend
to be negligible compared to inertial and wall effects [39].
In the creeping flow limit the drag coefficients calculated
numerically show reduction compared to those calculated in
a Newtonian fluid [39,40], similar to experimental results
[41], where both motion of cylinders orientated parallel and
perpendicular to their motion was investigated. The role of the
aspect ratio of cylindrical rods has been studied in inelastic
and elastic fluids, showing that drag coefficients reduce by
about one order of magnitude over aspect ratios ranging from

1/150 to 1/10 [42]. Comparing these experimental result to
semiempirical predictions, despite qualitative agreement, the
drag coefficient was overestimated by theoretical predictions
[43,44]. Comparable studies have also probed wall effects
[39,45], different cross sections [46], and interactions between
particles [47].

Returning to the impact on biological swimmers, the
fundamental physical problem to tackle concerns the force
generation by beating flagella. Physically, we expect that
flagella waving in shear-thinning fluids will experience two
important effects [48]. One is a local influence due to changes
in the viscosity. If a body is subject to a Stokes-like force
law and the viscosity of the fluid decreases, then the local
force will decrease [41], and swimmers will then experience
either enhanced or decreased locomotion based on the detailed
balance between drag and thrust. The second effect, more
subtle, is nonlocal and due to the change in the flow field
around the body. Bodies moving in shear-thinning fluids
are expected to be surrounded by low-viscosity regions,
themselves embedded in high-viscosity domains. This thus
makes swimming in a shear-thinning fluid akin to swimming
under (soft) confinement, which might lead to an increase
of propulsion [28,49]. In this paper we propose a theoretical
model for swimming in shear-thinning fluids addressing the
first, local, effect by building an empirical extension of
resistive-force theory in complex fluids. Specifically, and
similarly to recent work in granular media [50], we propose
to use experimental results on rods falling in shear-thinning
fluids to obtain estimates on the drag coefficients acting along
slender bodies (Sec. II). We then quantify the impact of these
coefficients on waving locomotion (Sec. III) and compare our
predictions with recent experiments on C. elegans (Sec. IV).

II. BUILDING A NON-NEWTONIAN RESISTIVE
FORCE THEORY

A. Methodology

The aim of this paper is to propose a new, nonlinear
relationship between the velocity of a slender filament relative
to a background fluid flow and the local hydrodynamic force
density acting on it. We should point out at the outset that
we are not deriving a rigorous mathematical model from
first principles, as this is in fact virtually impossible due to
the nonlinearity of the constitutive relationships, but instead
seek to describe filament motion in shear-thinning fluids
empirically.

Two approaches are used to calculate the non-Newtonian
drag coefficients. The first one is an empirical fit to experi-
mental measurements of sedimenting rods in shear-thinning
fluids and thus is directly built from experimental data. The
second approach is an ad hoc model based on the Carreau
viscosity-shear-rate relationship. Since in shear-thinning fluids
the shear viscosity of the fluid is a function of the shear rate,
we first need, in this case, a method to estimate accurately
the local shear rate around the moving filament. We do so
by approximating the flow as locally Newtonian, allowing
us to exploit elementary flow calculations. With this local,
instantaneous value of the shear rate, we can then incorporate
the shear-thinning nature of the fluid though a correction to
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FIG. 1. A straight filament of length 2� and cross-sectional radius
a may translate in a fluid along its length (velocity u‖) or perpendicular
to it (u⊥). The axis of the cylinder is along the ẑ direction while x̂ and
ŷ are in the cross section.

the Newtonian drag coefficients and therefore a nonlinear
velocity-force relationship. For both approaches, we ensure
that our methodology is consistent with the Newtonian limit,
and we carefully examine the limit in which we expect this
approach to be valid.

B. Shear rate around slender filaments

1. Newtonian flows near filaments

In order to estimate the shear rates around moving filaments
we make a locally Newtonian assumption. To describe the
drag on a slender filament we decompose the motion along
the directions parallel and perpendicular to the local axis of
the filament, leading to two drag coefficients. For simplicity
consider a straight filament of cross-sectional radius a and
length 2� (Fig. 1). Following Lighthill’s classical analysis [11],
at leading order in the aspect ratio of the filament, the flow near
the filament is described by a local, uniform line distribution of
point forces and (potential) source dipoles along the centerline
of the rod.

When the filament is translating along its symmetry axis,
ẑ, the flow around the cylinder is given by a linear distribution
of point forces, with no need for dipoles, giving a relationship
between the velocity field close to the filament, u‖(x,y,z), and
the force per unit length acting along the filament f‖ẑ, as [11]

u‖(x,y,z) = f‖
4πη0

[
ln

(
4�2

r2

)
− 1

]
ẑ, (1)

where r =
√

x2 + y2 is the distance from the axis of the
filament and η0 is the Newtonian viscosity. At the surface
of the cylinder r = a, the parallel drag coefficient, b‖, is given
by

f‖
u‖|r=a

≡ b‖ = 4πη0

ln(4�2/a2) − 1
. (2)

When the filament is translating perpendicular to its axis
(here the x̂ direction), then a combination of point forces and
source dipoles are required to model the flow [11]. The velocity
field near the filament is now given by

u⊥(x,y,z) = f⊥
8πη0

⎛
⎜⎜⎝

ln
(

4�2

r2

) + a2

r2 + 2x2

r2

(
1 − a2

r2

)
2xy

r2

(
1 − a2

r2

)
0

⎞
⎟⎟⎠, (3)

in the (x̂,ŷ,ẑ) coordinate frame where f⊥ is the force acting on
the filament per unit length. On the surface of the filament we

have then

u⊥|r=a = f⊥
8πη0

⎛
⎝ln

(
4�2

a2

) + 1
0
0

⎞
⎠, (4)

i.e., the filament translates in the x̂ direction and the velocity
is uniform around its surface. Similarly to the motion parallel
to the filament axis the perpendicular drag coefficient, b⊥, is
given by

f⊥
u⊥|r=a

≡ b⊥ = 8πη0

ln(4�2/a2) + 1
. (5)

In order to extend these drag coefficients obtained for a
straight filament to smooth curved filaments a relevant length
� over which the filament can be approximated as straight
is required. In the application of resistive-force theory to
traveling waves along sperm flagella, Gray and Hancock chose
for � the wavelength λ as the only relevant length scale
along the swimmer but without mathematical justification
[10]. In subsequent work, Lighthill showed mathematically
by considering a periodic distribution of flow singularities
that � ≈ 0.09λ was the relevant length scale along a periodic
wave of wavelength λ [11]. This is the choice we make here
to address waving motion with the understanding that other
filament kinematics might require a different choice.

2. Shear rates

In order to propose drag coefficients to use with the Carreau
model (or any other shear-thinning empirical fluid model [51])
we require knowledge of the shear rates in the fluid near
the filament. In order to estimate shear rates we again use
Lighthill’s calculations [11].

In the case of parallel motion, we calculate the velocity
gradient, ∇u, using Eq. (1). In cylindrical polar coordinates
(r̂,φ̂,ẑ) the only nonzero term is given by

∂uz‖

∂r
= − f‖

2rπη0
, (6)

and thus the shear-rate tensor, γ̇ ‖, is given by

γ̇ ‖ = − f‖
2rπη0

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠. (7)

For a filament moving locally in the direction perpendicular
to its axis, the shear-rate tensor, γ̇ ⊥, is obtained by taking the
gradient of the flow in Eq. (3), such that

γ̇ ⊥ = f⊥
2rπη0

⎛
⎜⎝

cos φ(−1+ a2/r2) a2

r2 sin φ 0
a2

r2 sin φ cos φ(1 − a2/r2) 0

0 0 0

⎞
⎟⎠.

(8)

In order to capture how the viscosity changes near the
filament, the total shear rate near the filament is required.
Indeed, a change in the viscosity due, for example, to
perpendicular motion will then affect the apparent viscosity
for movement in the parallel direction and vice versa. In other
words, when the fluid is not Newtonian we can no longer
consider perpendicular and parallel motions separately but
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need to include both solutions together. To find the total shear
rate, γ̇ tot, we exploit linearity and add the perpendicular and
parallel solutions together to find on the filament r = a, the
tensor

γ̇ tot = 1

2aπη0

⎛
⎝ 0 f⊥ sin φ −f‖

f⊥ sin φ 0 0
−f‖ 0 0

⎞
⎠. (9)

The first shear-rate invariant is zero at r = a, thus we calculate
the second shear-rate invariant |γ̇ |2 = tr(γ̇ 2)/2 where tr refers
to the trace of the tensor [51], such that

|γ̇ |2tot = sin2 φf 2
⊥ + f 2

‖
(2aπη0)2

· (10)

To find the average value of the shear-rate invariant around the
surface of the cylinder we integrate around the cylinder axis
(φ) and divide by 2π , and define the average shear rate on the
surface due to both perpendicular and parallel motion of the
rod as

γ̇avg =
√

f 2
⊥ + 2f 2

‖

2
√

2aπη0

· (11)

Note that beyond this local flow, hydrodynamic singularities
far from the local portion of the filament also contribute to
flow and shear rates, but these will be at least O(a/�) smaller,
and are thus subdominant [11]. In the slender limit, the result
in Eq. (11) gives therefore the leading-order value of the mean
square shear rate along the filament.

Finally, Eq. (11) relates the local shear rate to the local force
density. In order to be used in a resistive-force theory-type
approach, we need instead to have a relationship between the
shear rate and the local velocity. To quantify the forces on
the filament in a self-consistent fashion we write

f⊥ = b⊥u⊥, and f‖ = b‖u‖, (12)

and thus the average shear rate around the rod is given by

γ̇avg =
√

b2
⊥u2

⊥ + 2b2
‖u

2
‖

2
√

2aπη0

· (13)

For a given velocity, we thus obtain that the locally Newtonian
assumption leads to a shear rate independent of the viscosity,
since both drag coefficients scale linearly with the viscosity
(i.e., we get γ̇ ∼ u/a). We simplify the shear rate by defining
the shear-rate velocity as

uγ̇ =
√

u2
⊥ + 2

b2
‖

b2
⊥

u2
‖, (14)

such that

γ̇avg = b⊥uγ̇

2
√

2aπη0

· (15)

C. Notation

Depending on the model, shear-thinning fluids may be
characterized by a number of rheological parameters. For
example, for a Carreau-like fluid or a power-law-like fluid
[51], one rheological parameter is the shear-thinning index,

0 < n < 1, that describes by how much the viscosity reduces
with increasing shear rate (n = 1 being the Newtonian limit).
A Carreau-like fluid is also characterized by the critical shear
rate, 1/	, at which the fluid transitions from a Newtonian
fluid, with viscosity η0, to a shear-thinning fluid. In order
to describe swimming through a non-Newtonian fluid, the
Newtonian drag coefficients (b‖,b⊥) are replaced by their
non-Newtonian counterparts (bNN‖ ,bNN⊥ ). To quantify the
non-Newtonian drag coefficients we introduce two correction
factors, (R‖,R⊥), defined as

R‖ = bNN‖

b‖
(16)

and

R⊥ = bNN⊥

b⊥
. (17)

If these drag coefficients are to describe motion in a shear-
thinning fluid then they are likely to depend on the local shear
rate (and thus both local velocity and the Newtonian drag coef-
ficients) in a nonlinear fashion, as well as on all the rheological
parameters of the fluid and the geometrical parameters of the
filament. We propose two empirical approaches in this paper,
one based on experimental results and one based on the ad hoc
Carreau model. In order to distinguish between the correction
factors in our two models below we use the subscript E to
denote the correction factor derived from experiments and
the subscript C will be used to denote the Carreau correction
factor.

D. A non-Newtonian resistive-force theory from empirical data

We build our first empirical resistive-force theory from the
experimental results of Ref. [41]. In this study, measurements
were made of the sedimentation speed of rigid rods under
gravity into a variety of fluids at low Reynolds numbers
(0.01 < Re < 0.27 based on their terminal velocity). The
orientation of the rods was either aligned with gravity or
perpendicular to it. The forcing from gravity is known
and velocities are measured, allowing access to the drag
coefficients. The rods used are a variety of materials (perspex,
polyvinyl chloride, aluminum, and stainless steel) with aspect
ratios, α = d/L, ranging from 1/10 to 1, where L is the rod
length and d is the rod diameter. The non-Newtonian fluids
in which the rods are dropped are shear-thinning viscoelastic
fluids, with critical times ranging from 0 s < 	 < 19 s, and
shear-thinning indices spanning 0.6 < n < 1 [41]. Rheometry
data from Ref. [41] show that the viscosity versus shear-rate
relationship for each of the five fluids probed can be described
by the Carreau model; however, they have nonzero first normal
stress differences.

All results from Ref. [41] are reproduced in Fig. 2 where
both perpendicular and parallel rod orientations are shown for
all five non-Newtonian fluids. No systematic impact of the
orientation of the rod on the experimental results is evident
(specifically the change in the sedimentation velocity, i.e.,
the correction factor), suggesting therefore that correction
factors are approximately independent of orientation in these
experiments, RE⊥ ≈ RE‖ ≡ RE . Based on their data, the
authors of Ref. [41] proceeded to propose an empirical formula
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FIG. 2. Inverse of the drag coefficient correction factor, RE , as
obtained experimentally by measuring the sedimentation speed of
cylindrical rods under gravity in a variety of shear-thinning fluids [41].
Results from both vertical (‖) and horizontal (⊥) rod orientations are
shown and different fluids are marked by different symbols. Here n is
the power index of the fluid, 	−1 the critical shear rate for transition
to shear-thinning behavior, U the velocity of the rod, and ds a relevant
length scale characterizing the rod (see text). Inset: empirical formula,
Eq. (18), proposed to fit all data [41]. Adapted and reprinted from
Ref. [41] with permission from Elsevier.

fitting their data, namely, a correction factor RE given by

1

RE

= 1 + 0.317

[
(1 − n)	

|u|
ds

]0.692

, (18)

where n and 	 are as defined earlier, |u| is the magnitude
of the rod velocity, and ds = 3

√
3Ld2 is the equivalent sphere

diameter of the rods. The average error between their data
points and this empirical best-fitting curve is 12%.

Based on this, we use the fit from Eq. (18) as our
first empirical resistive-force theory in non-Newtonian fluids.
Specifically we write that the non-Newtonian drag coefficients
are given in this case by

bE⊥ = RE(|u|)b⊥, bE‖ = RE(|u|)b‖, (19)

and we choose L = �, in keeping with the calculation of
the shear rate and the derivation of the Newtonian drag
coefficients, in the expression for the effective rod diameter
used in Eq. (18). Importantly, we note that Eq. (19) is
fully consistent with Newtonian resistive-force theory in that
for n = 1, or 	 = 0, we recover the Newtonian solution.
Furthermore, Eq. (19) is consistent with experimental data
shown in Fig. 2.

E. A non-Newtonian resistive-force theory
from the Carreau model

We now attempt to build the second correction factor from
a shear-thinning fluid model. We assume that the flow is
locally Newtonian, and thus we can employ the shear rate
from Eq. (15) in any shear-thinning fluid model. We choose
the Carreau model, which is a good fit to many shear-thinning
fluids [24,52] and in particular to the data of Ref. [41]. In a

Carreau model, the viscosity of the fluid is given by

η = η∞ + (η0 − η∞)[1 + (	γ̇ )2]
n−1

2 . (20)

The model is well behaved and shear thinning for 0 < n < 1.
Here η0 and η∞ describe the fluid’s Newtonian zero and
infinite shear-rate viscosities, respectively. Since high shear
rates are unlikely to be reached, we set η∞ = 0 so that the
model simplifies to

η

η0
= [1 + (	γ̇avg)2]

n−1
2 , (21)

where γ̇ = γ̇avg. Together with Eq. (13), we describe the
second correction factor as

RC =
[

1 +
(

	b⊥uγ̇

2
√

2aπη0

)2
] n−1

2

. (22)

As a result, the Carreau non-Newtonian drag coefficients are
defined by

bC⊥ = RC(u⊥,u‖)b⊥, bC‖ = RC(u⊥,u‖)b‖, (23)

with RC from Eq. (22). Again, we note the Carreau correction
factor is consistent with Newtonian resistive-force theory, and
Eq. (19) reduces to unity when n = 1 or 	 = 0 to recover the
Newtonian solution. Note that, contrary to the experimental
non-Newtonian drag ratio, the Carreau maintains a difference
between parallel and perpendicular orientations.

F. Comparison between the two models

We have proposed two methods to estimate non-Newtonian
drag coefficients, one based on fitting experimental data
[Eq. (19)] and one based on using the classical empirical
Carreau model [Eq. (23)]. A comparison between the non-
Newtonian correction factors for these two models is shown
in Fig. 3, where we plot the correction factors as a function of
the local dimensional shear rate in the fluid (i.e., 	γ̇ for the
Carreau model and 	|u|/ds in the case of the experiments).
Both correction factors show the same qualitative behavior
decreasing with an increased actuation shear rate, an increased
critical time 	, and a reduced shear-thinning index n. As
expected, the nonlinear dependence of RC on n is stronger
than the linear dependence in the case of RE , and there is thus
a stronger reduction in drag with smaller values of n in that
case.

Some important differences are however to be expected in
the results. The empirical fit described by Ref. [41] was built
from a small range of shear-thinning fluid parameters, thus
in order to explore a wider range of n and 	 value we will
push the experimental model past its true regime of validity.
In comparison the Carreau fluid model is valid for all n and
	 values. We note also that Carreau fluids have zero first and
second normal stress differences, whereas the fluids measured
in Ref. [41] have nonzero first normal stress differences which
increase with increasing shear rate.

G. Regime of validity

The shear-rate calculated in Sec. II B describes the local
flow around the filament in the limit where it is asymptotically
slender. In that case the relevant shear rate near the rod
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FIG. 3. Non-Newtonian correction factors as a function of the dimensionless flow shear rate for the experimental results [(a) RE] and the
Carreau fluid model [(b) RC]. Increasing shear-thinning indices n are shown from light gray to dark gray with the Newtonian limit n = 1 shown
in black.

is dominated by that induced by the local portion of the
filament. In order for our local resistive-force theory to be
self-consistent, the fluid viscosity around each section of the
filament must be affected only by the movement of said
filament section. This requires the shear rate at the cutoff
distance � away from the flagellum to be less than the
critical shear rate, |γ̇ C | = 1/	, at which the fluid becomes
shear-thinning. The shear rate scales as γ̇ ∼ uγ̇ /r , hence the
validity of our model is constrained to flows where

uγ̇

�
� 1

	
· (24)

For illustration purposes, let us consider the flagellar motion of
a spermatozoon with beat frequency ν ∼ 30 Hz, wavelength
λ ∼ 70 μm [22], and flagella diameter 2a ∼ 100 nm [13]. For
a waving flagella the maximum velocity reached by any rod
section is the wave speed V = νλ and � = 0.09λ. Using uγ̇ ≈
V the constraint in Eq. (24) simplifies to the inequality 	ν �
0.09, and for the given swimmer the range of critical times our
model can describe is given by 	 � 3 × 10−3 s. Alternatively,
if the fluid properties are given the model is constrained by a
maximum actuation frequency.

III. LOCOMOTION OF WAVING SLENDER FILAMENTS

In order to illustrate the results given by our non-Newtonian
resistive-force theory we apply in this section this modeling
approach to study the waving of slender filament as a model
for the locomotion of flagellated eukaryotes [11].

A. Setup

We consider the swimming of an infinite inextensible
filament whose shape deforms as a planar sinusoidal waveform
given in cartesian coordinates by

y(x,t) = B sin(2πx/λ − ωt), (25)

where B is the wave amplitude, ω the wave frequency, and
λ its wavelength. The x axis is the direction of propagation
of the wave (see notation in Fig. 4). As a result of the

waving motion, the filament undergoes locomotion in the −x

direction. Since the filament is infinite, the swimming speed
is expected to be steady. We nondimensionalize length scales
by λ/(2π ) and times by ω−1, hence the waveform equation
simplifies to y = ε sin(x − t), where ε = 2πB/λ, such that
the nondimensionalized wave speed V = λω/(2π ) = 1. The
Newtonian drag coefficients are nondimensionalized by the
zero-shear viscosity.

For a slender flagellum the force per unit length exerted by
the fluid on the flagellum, f, is quantified by the non-Newtonian
resistive-force theory as

fE/C = −[RE/Cb‖ t̂t̂ + RE/Cb⊥(I − t̂t̂)] · u, (26)

where t̂ is the local tangent to the filament, u is the laboratory-
frame velocity, and RE (resp RC) is the non-Newtonian
correction factor for the Newtonian drag coefficients (b‖,b⊥)
based on the experiments (resp. on the Carreau model).
Classically, the nondimensionalized velocity of each point
along the flagellum can be written in the laboratory frame
as [11]

u = (1 − U )x̂ − q t̂(s), (27)

where q = �/λ > 1 is the ratio between the wavelength �

measured along the flagellum arc-length (s) and the wavelength

B

λ

U

V

x
y

FIG. 4. Sinusoidal traveling waveform as a model for the loco-
motion of flagellated eukaryotic cell. Swimming, with speed U , is in
the opposite direction to the traveling wave, with wave speed V . See
text for notation.
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λ measured along the x direction, x̂ is the unit vector
along the direction of the traveling wave, and U < 1 the
nondimensionalized (unknown) swimming speed. In order
to determine the value of U we enforce the free-swimming
condition, ∫ �

0
f · x̂ ds = 0, (28)

with the other components being zero by symmetry. The force
density along x, fx , is given by

fx = f · x̂ = −RE/Cb⊥u · x̂

+ (RE/Cb⊥ − RE/Cb‖)(u · t̂)(t̂ · x̂). (29)

Using Eq. (27), the above simplifies to

fx = RE/Cb⊥(U − 1) + RE/Cb‖q t̂ · x̂

+ (RE/Cb⊥ − RE/Cb‖)(1 − U )(t̂ · x̂)2. (30)

Furthermore we define a dimensionless critical time to com-
plete our nondimensionalization, where 	 is rescaled to 	ω

(with identical notation retained for convenience) such that the
Carreau correction factor becomes

RC =
[

1 +
(

	b⊥uγ̇

2
√

2πa

)2
] n−1

2

, (31)

where

u2
γ̇ = (1 − U )2(x̂ · n̂)2 + 2

b2
‖

b2
⊥

[(1 − U )x̂ · t̂ − q]2. (32)

Similarly upon nondimensionalization the experimental cor-
rection factor becomes

RE =
{

1 + 0.317

[
(1 − n)	|u|

ds

]0.692
}−1

, (33)

where

|u|2 = [(1 − U ) − q t̂ · x̂]2 − (q t̂ · ŷ)2. (34)

The unit tangent and normal to this wave are further given by
t̂ = (cos θ, sin θ ) and n̂ = (− sin θ, cos θ ) where θ is the angle
between the swimming direction (x̂) and the local tangent to
the flagellum (t̂). We now have four dimensionless constants
we are able to vary: n and 	 describing the fluid, α describing
the aspect ratio of the flagellum, and ε describing the amplitude
of the waveform. The variables n and 	 enter only through the
correction factor whereas α and ε enter into both the correction
factor and the Newtonian calculation through the Newtonian
drag coefficients b⊥ and b‖ which depend logarithmically on
α, and ε through the integral over the arc-length s.

Note that, as discussed above, the resistive-force theory
description is only valid when the viscosity changes are
local, hence in nondimensional values the range of viable
critical times is 	 � 0.6, whose value is given for a typical
spermatozoa flagella described in Sec. II G.

B. Numerical implementation and validation

In order to validate our numerical implementation, we first
address Newtonian swimming. We compare our numerical

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5(a)

ε2

UN

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25(b)

ε

UN

FIG. 5. The numerical Newtonian results are compared to the
analytic Newtonian results, (a) small-amplitude analytical expansion
(solid line, ε 	 1) compared to numerical results (red diamonds)
and (b) full analytical result of Eq. (35) (dashed line) compared to
numerical results (red diamonds).

implementation of Eq. (28) in the Newtonian limit to the
analytic Newtonian result [11],

UN = (1 − b‖/b⊥)(1 − β)

1 − (b‖/b⊥ − 1)β
, (35)

where

β = 1

�

∫ �

0
t̂ · x̂ ds = 1

�

∫ �

0
cos2 θ ds. (36)

At small amplitude ε 	 1, the swimming speed limits to
the asymptotic result

UN = ε2(1 − b‖/b⊥)

2b‖/b⊥
, (37)

which agree with our numerics when ε decreases as shown in
Fig. 5(a). A closer agreement can be found for all values of
ε by comparing our full numerical results to the swimming
speed given in Eq. (35), where β is evaluated numerically. The
comparison is shown in Fig. 5(b) and therefore validates our
numerical implementation of the free-swimming problem.

C. Non-Newtonian locomotion

We now follow a similar numerical approach to tackle the
non-Newtonian problem; however, as the integral depends
on the velocity U , we must solve this iteratively, taking the
Newtonian solution as the initial value from which we iterate.
The main results are shown in Fig. 6 where we plot the ratio
between the non-Newtonian swimming speed of the waving
flagellum (UNN ) and the Newtonian one (UN ) as a function
of the critical time of the fluid 	 (a) and as a function
of the power index n (b). Results for the two models are
superimposed: the Carreau approach is plotted in solid lines,
while the experimentally based model is shown in the dashed
line, each for a few different values of the wave amplitude ε.

While the Carreau and experimental models do not agree
quantitatively, they both provide a similar physical picture.
Under this modeling approach, swimming of a waving
flagellum is always slower in a non-Newtonian fluid than
in a Newtonian fluid, and all the more that the critical time
	 increases [Fig. 6(a)] or that the power index n decreases
[Fig. 6(b)]. Both illustrate that, for a fixed geometry, the greater
the non-Newtonian effects in the fluid the slower the resulting
swimming speed.

062416-7



EMILY E. RILEY AND ERIC LAUGA PHYSICAL REVIEW E 95, 062416 (2017)

0.001 0.01 0.1
0.6

0.7

0.8

0.9

1(a)

RE

RC

n = 0.3

Γ

UNN

UN

ε = 0.5
ε = 1
ε = 1.5
ε = 0.5
ε = 1
ε = 1.5
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0.6
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ε = 1
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ε = 0.5
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FIG. 6. Ratio between the non-Newtonian and Newtonian swimming speeds, UNN/UN , as a function of the properties of the fluid. (a)
Speed ratio with fixed n = 0.3 for a range of amplitudes ε plotted against the critical fluid time 	. (b) Speed ratio with fixed value of 	 = π/20
for a range of wave amplitudes ε plotted against the power index of the fluid, n. The swimming speed is always reduced in a shear-thinning
fluid.

We further see in Fig. 6 that the results for different wave
amplitudes, ε, do not collapse onto the same curve; non-
Newtonian swimming has therefore a different ε dependence
from Newtonian swimming. To address this we plot the ratio
of the swimming speeds against ε for a fixed 	 value and a
range of power indices in Fig. 7. For both models, we observe a
nonmonotonic dependence of the swimming speed ratio on the
wave amplitude ε. The swimming speed always deceases with
ε for small amplitudes and reaches a minimum for the Carreau
correction factor and experimental correction factor when
ε ≈ 1.2 and ε ≈ 0.6 respectively (the precise value depends
in fact on the fluid properties). Finally, at large amplitudes, the
swimming speed ratio asymptotes again to UNN/UN ≈ 1.

Unlike the Newtonian result, both non-Newtonian swim-
ming speeds depend on the rod shape, i.e., the value of α,
as the correction factors depend on α in such a way that it
cannot be factored out of the integral equation. As with 	,
both the experimental and Carreau model swimming speeds

decrease monotonically with increasing α, showing that we
would expect fatter swimmers to be hindered more by the
shear-thinning fluid. These results are not shown here as they
are qualitatively similar to the dependence on 	 in Fig. 6(a).

D. Asymptotic results

In order to understand further the systematic decrease in
swimming speed compared to the Newtonian results we turn
to considering the impact of a small amount of non-Newtonian
rheology to the fluid. The transition between a Newtonian
fluid and a shear-thinning fluid occurs for fluids with a finite
critical time and with a shear-thinning index below unity. In
the experimental correction factor, both terms (1 − n) and 	

appear as a single factor χE ≡ [(1 − n)	]0.692. In the Carreau
model we must assume that (1 − n) is small to ensure that
the non-Newtonian effects are small. Since (1 − n) appears

0 0.2 0.4 0.6 0.8 10.85

0.9

0.95

1(a)

ε

UNN

UN

n = 0
n = 0.2
n = 0.4
n = 0.6
n = 0.8
n = 1

1 10 100
ε

. . .

Γ = π/40

0 0.2 0.4 0.6 0.8 10.85

0.9

0.95

1(b)

ε

UNN

UN

n = 0
n = 0.2
n = 0.4
n = 0.6
n = 0.8
n = 1

1 10 100
ε

. . .

Γ = π/40

FIG. 7. Ratio of the non-Newtonian to Newtonian swimming speeds UNN/UN for fixed critical time 	 = π/40, for a range of power
indices n as a function of the flagellum amplitude ε, (a) experimental model (RE) and (b) Carreau model (RC).
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only as a power in the correction factor RC , the lowest order
nonzero term is χC ≡ (1 − n)	2.

We can then expand mathematically both empirical models
about the small parameters χE and χC , respectively, leading to
swimming with speeds written at first order as U

(E)
NN ≈ U0 +

χEU
(E)
1 and U

(C)
NN ≈ U0 + χCU

(C)
1 , respectively. At zeroth

order for both models the Newtonian result is recovered such
that U0 = UN . In order to expand the velocity-dependent
drag correction factors we must insert U

(E)
NN and U

(C)
NN into

their respective correction factors RE and RC , such that
RE ≈ 1 + χERE(1) and RC ≈ 1 + χCRC(1) where

RE(1) = −0.317

( |u0|
ds

)0.692

(38)

and

RC(1) = −1

2

(
b⊥uγ̇ 0

2
√

2πa

)2

(39)

are the first-order correction factors, in which

|u0| =
√

(1 + q2) + U 2
0 + 2q(U0 − 1) cos θ − 2U0, (40)

and

uγ̇ 0
=

√
(1 − U0)2(x̂ · n̂)2 + 2

b2
‖

b2
⊥

[(1 − U0)x̂ · t̂ − q]2 (41)

are the leading order rod section velocity and shear rate veloc-
ity, respectively. After expansion, the first-order experimental
and Carreau swimming speeds are obtained to be

U
(E)
1 = −0.317

(
1

ds

)0.692 ∫ �

0 |u0|0.692P (θ ) ds

b⊥� − β(b⊥ − b‖)�
(42)

and

U
(C)
1 = −1

2

(
b⊥

2
√

2πa

)2
∫ �

0 u2
γ̇ 0

P (θ ) ds

b⊥� − β(b⊥ − b‖)�
, (43)

respectively, where

P (θ ) = (1 − U0)b⊥ − b‖ cos θ

− (1 − U0)(b⊥ − b‖) cos2 θ, (44)

where θ is implicitly a function of the arc-length s. The
right-hand side of both Eqs. (42) and (43) depends only
on the Newtonian results and can thus be easily evaluated
numerically. The results for both U

(E)
1 and U

(C)
1 are shown

in Fig. 8. Both the experimental and Carreau first-order
swimming speeds are negative for all values of the wave
amplitude indicating a decrease in the swimming speed with
non-Newtonian effects in agreement with our full numerics.

E. Physical interpretation

In order to gain some fundamental understanding on the
origin of the observed systematic reduction in swimming
speed, we take a closer look at the distribution of shear rates
along the waving flagellum. As the non-Newtonian equations
are too nonlinear to glean physical insight, we consider the
Newtonian shear rates to inform our understanding of the
system. We use the shear rates calculated for our Carreau

0 0.2 0.4 0.6 0.8 1

0

-1

-2

-3

-4

×10−3

ε

χCUC
1 /U0

χEUE
1 /U0

FIG. 8. First-order corrections to the Newtonian velocity scaled
by the Newtonian speed, U1/U0, for the Carreau model (solid line)
and the experimental model (dashed line) as a function of the wave
amplitude ε. The correction is always negative indicating a decrease
in the swimming speed.

correction factor with the knowledge that larger shear rates
will lead to reduced drag force for both our correction factors.

We consider separately the “thrust” problem, where U = 0
and a net force is a applied on the fluid, and the “drag” problem,
where V = 0 and the flagellum is dragged passively through
the fluid. In the thrust problem, denoted th, the magnitude of
nondimensionalized shear-rate velocity is given by

uγ̇ th
=

√
sin2 θ + 2

b‖
b⊥

(cos θ − q)2, (45)

leading to a shear rate along the flagellum of

|γ̇ th| = b⊥uγ̇ th

2
√

2πa
, (46)

where shear rates are nondimensionalized by ω. In the drag
problem, denoted by dr , since the nondimensionalized relevant
shear-rate velocity is given by

uγ̇ dr
= U

√
sin2 θ + 2

b‖
b⊥

cos2 θ, (47)

the shear rate is then given by

|γ̇ dr | = b⊥uγ̇ dr

2
√

2πa
· (48)

The distribution of shear rates for both thrust and drag
problems is shown in Fig. 9 for two wave amplitudes (small
in the thin line and large in the thick line). Note that the drag
problem is computed for U = UN , i.e., we are comparing
the shear rates for the flow around the flagellum for the
two problems, which, on average, induce equal and opposite
forces during the swimming motion. What is apparent from
these results is that the shear rates in the thrust problem are
systematically larger than in the drag problem essentially
everywhere along the waving flagellum. In a shear-thinning
fluid, the higher the shear rate the lower the viscosity. Since
for swimming thrust and drag have to balance, we see that
if the swimming speed was kept constant, forces would not
balance and there would be more drag than thrust. The value of
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FIG. 9. Dimensionless shear rates along a waving flagellum as
a function of the dimensionless position x along the flagellum for
the drag problem (dashed lines) and the thrust problem (solid lines),
shown for a small amplitude (ε = 0.25) and large amplitude (ε = 1)
swimmer.

the swimming speed has thus to decrease in order to compen-
sate for it.

An alternative way to interpret this result is to consider the
case of waving at small amplitude ε. In that limit, the shear
rates for the thrust and drag problems are given by

|γ̇ th| ≈ b⊥ε| cos(x − t)|
2
√

2π
+ O(ε2) (49)

and

|γ̇ dr | ≈ b‖ε2

2
√

2π

(1 − b‖/b⊥)

b‖/b⊥
+ O(ε4), (50)

respectively. As the shear rate in the drag problem is a factor
ε smaller than the one due to thrust generation, we obtain a
relatively larger reduction in thrust, and thus a reduction in the
swimming speed. Fundamentally, the difference in shear-rate
scaling between thrust (∼ ε) and drag (∼ ε2) arises from the

fact that in the thrust-producing waving motion, only a small
subset of the periodic up-and-down motion in the direction
perpendicular to the swimming direction is rectified to produce
useful work for swimming.

IV. COMPARISON WITH C. ELEGANS EXPERIMENTS

In order to demonstrate the relevance of our empirical
model we now compare our simulations results to the exper-
imental results of Gagnon et al. [52], where the swimming
motion of the small nematode C. elegans was studied in
both Newtonian and shear-thinning fluids. The shear-thinning
fluids in their study are composed of Xanthan gum solutions,
shown by rheological measurements to be inelastic and well
described by the Carreau model, with greater shear thinning
obtained for larger Xanthan gum concentrations. C. elegans
are then immersed in the different fluids within an acrylic
chamber of diameter 2 cm and thickness 1 mm. The organisms
are approximately 1 mm in length and 80 μm in diameter.
Through body tracking, the swimming speed, frequency,
wave speed, and amplitude of the waving nematode is
measured in each of the different fluids. These are then plotted
against an effective viscosity ηeff , defined as the average
viscosity over the shear rates experienced by the swimmer,
U/L � γ̇ � 2ωB/d, and ranging in this series of experiments
from 6 to 200 mPa s. The results for shear-thinning fluids are
then compared to Newtonian fluids with similar viscosities to
the effective viscosities of the shear-thinning fluids.

Using the experimental data from Ref. [52], the wave-
form and wave speed of each swimmer in the different
fluids is known as well as the fluid properties, and thus
a direct comparison with our model results can be made
with no fitting parameters. This comparison is presented in
Fig. 10 where we plot the dimensional swimming speed, U ,
against the effective viscosity, ηeff . Each simulation data point
shares fluid and swimmer properties with the experimental
shear-thinning swimming speed at that particular effective
viscosity. Experimental results are shown with open symbols
(each data point represents the mean and standard error of
approximately 15 experiments [52]), while the results of our
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ηeff(mPa s)

U(mm/s)

C. elegans [52]
Rodlike
Ellipsoid

10 100
0

0.2

0.4
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Non-Newtonian

ηeff(mPa s)

U(mm/s)
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Rodlike (RE)
Rodlike (RC)
Ellipsoid (RE)
Ellipsoid (RC)

FIG. 10. Experimental results from Ref. [52] (open symbols with error bars) plotted together with our simulation results (line or filled
symbols). Newtonian swimming speeds are shown in (a) and non-Newtonian swimming speeds in (b). The simulation results are represented
by line symbols for thin rod results and filled symbols for fat rod results. The lines in each of the different colours are straight lines of best
fit to their matching color symbol. Each shear-thinning simulation data point shares fluid and swimmer properties with the red experimental
shear-thinning swimming speed at that particular effective viscosity.
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models are shown with line symbols (rodlike filaments) and
filled symbols (ellipsoidal filaments). Specifically we use line
symbols (crosses and stars) to plot results of our modeling
approach using � = 0.09λ, as described in Sec. II B 1 (for both
the experimental and the Carreau model), here the Newtonian
drag ratio is given by b⊥/b‖ ≈ 1.1. As the wavelength is larger
than the length of the nematode, � is too short, and instead we
choose the body length �nema and note that its shape is more
accurately described by that of a prolate ellipsoid of aspect
ratio α = dnema/�nema ≈ 0.08, where dnema is the nematode
diameter. Using the drag coefficients described in Ref. [53] for
prolate spheroids, we find that the dimensions of C. elegans
correspond to a drag ratio b⊥/b‖ ≈ 1.5, which is within the
range of drag ratios calculated by Ref. [23] for biologically
relevant swimming. The corresponding results are shown with
filled circles in Fig. 10 for the experimental empirical model
and the Carreau empirical model.

While some discrepancies exist, we see that both sets of
numerical simulations share the qualitative features of the
experimental results, which are greater than all modeling in
both Newtonian and non-Newtonian fluids. Our empirical
non-Newtonian resistive-force theory is thus able to capture the
main physical features of swimming in a shear-thinning fluid.
Quantitative differences are expected to arise from multiple
sources. First, our model is confined to local effects of the
thinning fluid, whereas we estimate the fluid to be thinned
over 100 nematode radii in the experiments. This would lead
to soft confinement effects, and an increase of the swimming
above that shown by the thick filament model in Fig. 10(b)
[28,49]. Furthermore our simulations do not include end
effects, which are predicted to increase swimming speeds in
non-Newtonian fluids [27,29]. Wall effects in the confined
experimental setup are also expected to play a role, whereas
our model considers swimming in an infinite fluid. Despite
these possible sources of discrepancies, our simple empirical
model is able to capture the main physical features of waving
locomotion in a shear-thinning fluid.

V. CONCLUSION

Flagella waving in fluids are expected to be subject to
two types of physical changes when the fluid is no longer
Newtonian but is shear-thinning [48]. The first one, local, is
due to the decrease of the fluid forces resulting from a decrease
of the fluid viscosity. The second, nonlocal, results from overall
changes to the flow field in the fluid and is similar to enhanced
swimming under soft confinement [28,49]. In this paper we
proposed an empirical model to quantify the first of these
effects by replacing the classical Newtonian drag coefficients
with velocity-dependent shear-thinning drag coefficients based
on experimental results or empirical modeling. We illustrated
our new models by calculating the swimming speed of an
infinite planar wave swimmer with a slender flagellum, for a
range of shear-thinning fluid parameters, and apply our results

to a set of experimental results on C. elegans taking into
account the ellipsoidal shape of the nematode [52].

The main limitation to our model, beyond the fact that it is
clearly not derived from first principles and is thus empirical, is
the small range of relaxation times (or actuation frequencies)
where our model is viable. Indeed, as with Newtonian resistive-
force theory, we must ensure that the flow induced by the
moving portion of a filament is local otherwise interactions
between different sections of the filament are required. In
a shear-thinning fluid this means that the flow outside the
“region of influence” of size � needs to be Newtonian to allow
fluid stresses to be determined solely by the local kinematics.
This imposes thus a limit on the range of shear rates between
the critical shear rate and the largest shear rate experienced
by the flagella. Typical shear rates generated by spermatozoa,
cilia, and C. elegans are in the range 101–103 s−1, and typical
critical shear rates of mucus are on the order |γ̇ C | ∼ 10−3 s−1

[24] and soil |γ̇ C | ∼ 10−1 s−1 [25]. Hence the typical distance
r away from a particular location along the flagellum where
the fluid is Newtonian is on the order r/a ∼ 102 for C.
elegans in soil and r/a ∼ 104–105 for cilia and spermatozoa
in mucus, meaning the fluid around biological organisms is
already heavily sheared by the motion at a length � before the
swimmer, and therefore the requirement 	ν � 0.09 is likely
to not be reached in vivo.

While the work presented here focused on planar waving
motion, it can be adapted to helical propulsion of bacteria. In
that case, and unlike for planar swimming, the presence of a
head is crucial to balance hydrodynamic moments [54]. The
force integral over the rigid helical flagella must match the
force generated by the head, and similarly for the torque, then
the rotation rate and the swimming speed can be obtained.
In order to describe the force and torque on the head both
the rotational and translational the drag coefficient of the
head would be required. If the head is rod-shaped, then the
translational drag coefficients are as described in this paper;
however, for spherical (e.g., coccus) or more complex head
shapes, knowledge of new drag coefficients would be required,
obtained experimentally or numerically.

Resistive-force theory has also been used to tackle large
variety of problems in the biophysics of swimming cells. With
our modeling approach, these results could then be extended
to more complex fluids. Problems which could be tackled
include the polymorphic transitions of bacteria flagella [55],
bundling of flagella [56], swimming nonflagellated bacteria
[57], the generation of waving modes in passive [21,58] and
active filaments [59], and the motion of filaments in external
flows [60,61].
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