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Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar
filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell
in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments
unbundle and randomly reorient the cell for a short period of time before returning to their
bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart,
a mechanical process whereby hydrodynamic interactions balance with elasticity to deter-
mine the time-varying deformation of the filaments. Inspired by this biophysical problem,
we present in this paper what is perhaps the simplest model of bundling whereby two or more
straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing
rotational flows which tend to bend the filaments around each other. We derive an integrod-
ifferential equation governing the shape of the filaments resulting from mechanical balance
in a viscous fluid at low Reynolds number. We show that such equation may be evaluated
asymptotically analytically in the long-wavelength limit, leading to a local partial differen-
tial equation governed by a single dimensionless bundling number. A numerical study of the
dynamics predicted by the model reveals the presence of two configuration instabilities with
increasing bundling numbers: first to a crossing state where filaments touch at one point and
then to a bundled state where filaments wrap along each other in a helical fashion. We also
consider the case of multiple filaments and the unbundling dynamics. We next provide an
intuitive physical model for the crossing instability and show that it may be used to predict
analytically its threshold and adapted to address the transition to a bundling state. We then
use a macroscale experimental implementation of the two-filament configuration in order to
validate our theoretical predictions and obtain excellent agreement. This long-wavelength
model of bundling will be applicable to other problems in biological physics and provides
the groundwork for further, more realistic, models of flagellar bundling.

DOI: 10.1103/PhysRevFluids.2.123101

I. INTRODUCTION

The locomotion of bacteria has recently provided the fluid mechanics community with a series
of outstanding problems at the intersection of many fields [1]. Building on classical work from
the 1970s quantifying how bacteria actuate their helical flagella and how the forces from the fluid
affect the kinematics of the organism [2,3], recent work has addressed how to improve these classical
models [4,5], how to predict and measure the flow induced by bacteria [6—8], and the crucial role that
hydrodynamics has played in the evolution of the bacterial flagella [7]. One aspect in particular which
has received a lot of attention is the role of hydrodynamic interactions, including interactions with
surfaces [8—15], with external flows [16—18], with complex fluids [19], and between cells [20-22].

One particular phenomenon involving hydrodynamic interactions at the scale of a single cell is
the bundling and unbundling of bacterial flagella [23]. While many bacteria have only one flagellum,
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FIG. 1. Illustration of peritrichously flagellated bacteria: (a) Bacillus subtilis cell dividing [26]; (b) bundling
and unbundling dynamics of bacterial flagellar filaments of E. coli [30]. Panel (a) courtesy of C. Dombrowski and
R. E. Goldstein; panel (b) reproduced with permission from Turner, Ryu and Berg, Real-time imaging of
fluorescent flagellar filaments, J. Bacteriol. 182, 2793-2801 (2000); Copyright 2000 American Society for
Microbiology.

most well-studied pathogenic bacteria possess multiple flagella and are refereed to as “peritrichous”
bacteria. Such bacteria are propelled from behind by a bundle of helical flagella, for example, the
well-studied Escherichia coli (E. coli) [24], and also Salmonella typhimurium [23], Halobacterium
salinarium [25], and Bacillus subtilis [26] [see Fig. 1(a)].

The presence of multiple flagella allow bacteria to undergo random walk-like trajectories where
long straight swimming “runs” (~1 s) are interrupted by short “tumbles” (~0.1 s) during which the
cells randomly reorient [23,24,27]. During the run phase, all flagella take a normal left-handed shape
and are rotated in a counterclockwise direction (CCW, when viewed from outside the cell behind
the flagella) by specialized rotatory motors embedded in the cell wall. During a tumble, at least one
motor switches its rotation direction to clockwise (CW) and the corresponding flagellar filaments
fly out of the bundle (“unbundling”) and change their helical pitch, amplitude, and handedness in a
manner which is dictated by biochemistry [28-30]. This in turn leads to a modification of the force
balance on the whole cell and its reorientation. At the end of a tumble, all motors return to a CCW
rotation, and the splayed flagella reintegrate into the normal left-handed helical bundle behind the
cell (“bundling”), which resumes swimming along a straight line. This bundling and unbundling of
flagellar filaments is illustrated in Fig. 1(b) for E. coli.

The process by which the flagella of peritrichous bacteria interact, repeatedly come together,
and separate is complex and involves at least three important mechanical aspects: hydrodynamic
interactions between the rotating helical filaments [23,31-38], elastic deformation of the short
flexible hook joining the rotary motors to the flagellar filaments [33,39], and interactions between
the filaments and the rotating body of the cell [40,41].

Given its relevance to one of the most fundamental forms of mobility on the planet, the role
of fluid dynamics in this process has received a lot of attention from the research community.
Experimentally, a macroscale version of the interactions between rotated helices [31] and subsequent
flow measurements [42] showed that hydrodynamic interactions alone were able to lead to wrapping
of flexible helical filaments consistent with experimental observations at the cellular scale [30].
Computationally, the issue of synchronization between rotating helices was addressed [33,42],
and similarly for rotating paddles [43]. Full simulations of the bundling process were carried out
using a variety of computational methods including the use of regularized flow singularities [32],
multiparticle collision dynamics [34,36], finite differences [38], the immersed boundary method
[35], bead-spring model [6], and the boundary element method [37].

In parallel to these significant computational advances, theoretical studies have not yet been
able to derive simplified models allowing one to capture, from first principle, the essence of the
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FIG. 2. A simplified model of flagellar bundling. Two parallel elastic filaments of length L and radius a are
separated by a mean distance /(. Both filaments are rotated with speed w(()i ) (i =1,2) in a viscous fluid from
their clamped end while their other end remains mechanically free. We use Cartesian coordinates with z along
the filaments and x,y perpendicular to it.

dynamics of the bundling and unbundling process. In this paper, we derive the tools required to build
such a model by considering what is perhaps the simplest model of bundling, namely the rotation
and interaction of two rotated straight filaments. This is clearly an idealized configuration which
ignores the helical geometry of real flagella and thus the propulsive flow generated by the rotation
of the filaments, but it has the advantage that it may be treated rigorously from a mathematical
standpoint and provides the basis to develop more realistic models. Taking advantage of a separation
of length scales for slender filaments, we show that in the long-wavelength limit the shapes of
the filament, obeying a balance between hydrodynamic and elastic forces, satisfy a local nonlinear
partial differential equation. Crucial to the derivation of this equation is the integration of nonlocal
hydrodynamic interactions which can be done analytically in the long-wavelength limit [44,45].
We then study the dynamics predicted by our model numerically and reveal the presence of two
configuration instabilities, first to a crossing state where filaments touch at one point and then to
a bundled state where filaments wrap along each other in a helical fashion. Using a simplified
analytical approach, we are next able to rationalize and predict the onset of the instabilities. We then
use a macroscale experimental implementation of the two-filament configuration in order to validate
our theoretical predictions and we obtain excellent agreement. Our derivations, which provide a
simplified approach to capture the dynamics of bundling and unbundling, should be applicable to a
wide range of problems in biological mechanics where slender filaments interact hydrodynamically.

II. INTERACTIONS BETWEEN TWO ELASTIC FILAMENTS
A. Setup

To address flagellar bundling as a balance between hydrodynamics and elasticity, we set up the
very simplified model illustrated in Fig. 2. Two naturally straight elastic filaments of length L and
radius a are rotated at their clamped ends by imposed rotation rates a)g ), where i = 1,2 refers to the
filament number. The filaments are initially parallel and separated by a distance k. The filaments
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are assumed to be located in a viscous fluid of viscosity w. As a result, their rotation set up rotational
flows and, with the other ends of both filaments free, will lead to a helical wrapping driven purely
by hydrodynamic interactions. Note that in general we allow the two rotation rates of the filaments
to be different; however, in most of the cases studied below we will consider identical rotation rate,
i.e., a)g ) = wo. Note also that while we focus our initial derivation to two filaments, the results will
be generalized later in the paper to the case of N > 2 filaments.

In order to derive an analytical model of the dynamics, we need to make a further assumption.
Examining the typical dimensions of flagellar filament of bacteria, we see that the three relevant
length scales a, hg, and L are often in the limit where there is a clear scale separation, a < hg < L.
As an illustrative example, consider the flagellar filaments of E. coli. Each filament has a typical
length L &~ 10 um and radius a ~ 10 nm. The cell body takes approximately the shape of a prolate
ellipsoid of 1 um width and 2 um length [30,46]. Assuming the same scale as the body size, the
distance between the proximal ends of the flagellar filaments can be thus estimated to be around
ho ~ 1 um. These numbers lead therefore to ratios a/hg ~ 1072 and ho/L ~ 10~!, which are
consistent with this separation of scales.

Mathematically, placing ourselves in the limit ¢ < L means that each filament is slender and we
will be able to make use of resistive-force theory to compute hydrodynamic forces. The limit 7y < L
means that the filaments are not in the far-field limit but in the opposite limit where all long-range
hydrodynamic interactions have to be included. Furthermore, given that their separation will remain
at most A, this means that we will be able to treat the problem in the long-wavelength limit, a crucial
step to derive an analytical model. Finally, the limit a < ho means that lubrication stresses can be
ignored and the flow can be accurately captured by a superposition of hydrodynamic singularities.

B. Force balance

Focusing on small-scale systems (a few microns, as relevant to the bacterial world), we remain
safely in the low-Reynolds number regime, and therefore the force balance on each filament is
written instantaneously as

£, (5.0 +£0(s,1) = 0, (1
where f;f)(s,t) and (s, ) refer, respectively, to the hydrodynamic and elastic forces per unit length
acting along filament 7 and where s refers to the arc length along the filament ranging from s = 0
(clamped end) to s = L (free end). We denote the position vector of filament i as r)(s,?).

C. Kinematics

Assuming that all displacements remain on the order of h, it is natural to describe the shapes of
the filaments using Cartesian coordinates (Fig. 2) as

rO(s,1) = [hox(s,1),hoy " (s,1),5] = [ho;“')(s,t),ho(qcé + n“')(s,r)),s] 2)

where [x®,y®] and [¢?D,nD] denote the filament position and displacement scaled by ho,
respectively.

III. CALCULATION OF ELASTIC FORCE DENSITY

A. Classical rod theory

We first compute the elastic force density, f,, arising in Eq. (1). Notation-wise, we drop for
simplicity the upper index (i) and consider one specific filament. For an inextensible elastic filament
able to both bend and twist, it is a classical result that f, contains three terms, namely [47,48]

¢ A84r +cla ar 9’r A8r 3)
= — — —_— X — J— R .
¢ ds4 s 9s2 /)], ds |,
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In Eq. (3), the coefficients A, C are the bending and twist moduli of the filament, respectively, €2 is the
twist density, and A is the Lagrange multiplier (tension) enforcing the inextensibility of the filament.
The conservation law for twist density (often referred to as the compatibility equation) is [48]

I dw N ar 9’r ar @
- = —_ X — | — s
ot as ds  0s2 ar |,
where w, a notation shorthand for w(s,7), is the local rotation rate of the filament around its
centerline. In addition, the local torque balance along the filament is written as

1Y)
C—=%o, (5
as

where &, ~ 4mwua® is the local drag coefficient for rotation around the filament centerline.
Substituting Eq. (5) into Eq. (4) classically leads to a forced diffusion equation for the twist density as

2 2
BQ_C3§2+(8r Br)'[ar:|. ©)

e — — X — JE—
ot & 0s? ds  0s? ot

B. Separation of time scales

In order to appreciate the relative magnitude of each term in Eq. (3), we consider the physical
scalings of the various quantities of interest. The relevant time scale in Eq. (6) is a diffusion time,
T;, scaling as [47]

%
e
In contrast, balancing Eq. (3) with an usual hydrodynamic drag term of the form ~&, dr/dt, reveals
that the relevant bending time scale in Eq. (3) is a hyperdiffusion time, 7, scaling as [49]

L4
T, = EJ_A ) (8)

In the slender limit L/a >> 1, we have the classical result for the drag coefficient [50,51]

T, (7

£~ 4
7 In(L/a)

and therefore, after introducing the ratio I' of elastic moduli,

)

r=—. (10)

we obtain that the ratio of twist to bending relaxation time scales is given by the scaling
T, eIn(l/e,)
1 r

where we have defined €, = a/L, a small number in the slender limit. Clearly Eq. (11) indicates
that 7, < T,. Since T}, is the time scale relevant to describe the shape of the filaments, we will be
able to separate the time scales and consider the twist problem solved in a quasisteady fashion [47].

, (1)

C. Nondimensionalization

We proceed by nondimensionalizing the equations using the length scale L and time scale 7} as
the relevant dimensions and we use bars to denote dimensionless variables. Following Eq. (2), we
write for the position of the filament

I = [€,X,€,),5], (12)
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where we have defined a second dimensionless number €, = ho/L, which is assumed to be small.
Writing as well

_ L> L
s=s/L, A=A—, f,=f,—, Q=QL, (13)
A A
we obtain the dimensionless equations as
. e _(0F  3F _OF
f,=— rel—x-— — A=, 14
PE [ (85 % aﬁ)]s [ afl (142)

Gl9) r 9@ /ot d°r\ [or
— = — = —x — )| =" 14b
0T~ Sn(ljey) 3% (a& x a§2> [arl (14b)

Note finally that the imposed rotation is nondimensionalized as @y = w7}, and the result is related
to the classical dimensionless Sperm number, Sp, quantifying a balance between elastic and viscous
drag as [51]

_ Elwglt

D = Sp*. 15
@0 2 p (15)

D. Twist equilibrium

For convenience, we now drop the “bar” notation in what follows. Except where explicitly stated,
the results below should thus be assumed to be dimensionless.

Given the separation of time scales by Eq. (11), we expect the first term on the right-hand of
Eq. (14b) to dominate and thus with the boundary condition at the clamped and free ends,

Q2 2In(1
gy el =10, (16)
as r
the twist density is given in quasisteady equilibrium by a simple linear function
2In(1/¢,
Q= wwo(s —1). (17)
Substituting this result into Eq. (14a), we obtain the explicit formula for the elastic force density as
d*r ) ar  d’r ar
fe=—@ +a)06a IHGa[(l—S)(g X m)]v— [l\a]Y (18)
E. Scalings

In order to make further progress, we next compare the expected magnitude of each term in
Eq. (18). The first two terms clearly scale as

84
—~ (19)
as?
ar o2
woe2 Ine, [(1 — s)<a—r x a—;ﬂ ~ ene? In(1/e,)Sp". (19b)
S S s

In order to derive the scaling for the third term, we need to carefully examine the equation for the
tension, A.

F. Tension

In order to solve for the Lagrange multiplier A explicitly, we consider the original equation
for the force density, Eq. (3). The inextensibility condition is mathematically written ry - ry = 1 or

123101-6



BUNDLING OF ELASTIC FILAMENTS INDUCED BY ...

;s - ry = 0, where we use subscripts to denote partial derivatives. We next compute the s derivative
of the force density as

1 1
fs = (I - Er.rrs) : (rzs - Vs) - E(rssrs + riyrss) : (I', - V)
1 1
=TI — I- Ersrs * Vg — E(rssrs + rsrm) . (rt - V)v (20)
and now aim to simplify all terms involving time derivatives in Eq. (3). Since ry - ry = 1, it is clear

that a derivative of this equation leads to r, - ry; = 0. Evaluating next the dot product f; - ry we have

1 1 1 1
fi-ry=—-vy-r, + FVs Ts = 5T Sy —v) = 5V Fs T ol (r; —v). (21

We then calculate f - rg as
f-rg=ry- @ —v), (22)
and can now eliminate all terms involving time derivatives by combining these equations as
2, -rg +f-r = —v, -1y, (23)
Substituting the equation for the elastic force, Eq. (3), into Eq. (23), we obtain
2(Ary)ss - T + (AXy)s - T
= —2rs; - Ty + 20 [Q(rs X Fgg)lgs - Ty — Tag - Ty + T[Q(E X Tyo)]s -y + V5 - T (24)
The terms on the left-hand side can be simplified by noting that
2(ATs)ss - s + (Arg)s - Tyg = 2A55 + Arsg - 1, (25)
while the terms on the right-hand side involving the twist density combine into
2N [Q2(rs X rgs)lss - s + T[Q(xs X rgg)ls - rgs = —I'Qrg X I3g - Igs. (26)
The equation for A takes therefore the final form
2A5s + Arzg -1y = —2rs, - ¥y — gy - Ty — QI X I3, - Iy + Vg - T, 27
Since s = O(1), we see that the first term on the left-hand side of Eq. (27) provides the
leading-order scaling for the magnitude of A. This needs to be balanced with the leading-order
term on the right-hand side of the equation, which includes three terms scaling respectively as
0(6%), 0[6%62 In(1/€,)Sp*] and O(e,v). Since v is expected to scale with f, the term v, - ry will
contribute at higher order, and therefore we obtain the scaling for the final term in Eq. (18) as

(A;) ~ O(max{e},€je; In(1/€,)Sp*}). 28)

G. Orders of magnitude and final scalings

In order to estimate the relative magnitude of the bending, twisting, and tension terms in the
case relevant to the bundling of bacterial flagella, we need to examine the numbers applicable in the
biological world. Beyond the length scales mentioned above, we may use past measurements for
bacterial flagellar filaments [52] to obtain the estimates

wo~ 100 s7', A~107%* - 1072> Nm?’. (29)

These numbers imply that the range in Sperm numbers is Sp & 3—10. As seen in Sec. I A, a typical
value for €, is around 1073, and thus we see that

€21In(1/€,)Sp* < 1. (30)
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This in turn means that the tension in Eq. (30) scales in fact as

or
<A£>S ~0(&), 31)

and that the term in Eq. (19b) can be neglected when compared with the one in Eq. (19a). Since
€, < 1, the tension term in Eq. (31) may also be neglected in comparison with the bending term
in Eq. (19a). In the dynamical regime relevant to the helical filaments of bacteria, we thus have the
final result
d*r
f,=——, 32
= (32)

and the elastic force density is dominated by the bending term.

IV. CALCULATION OF HYDRODYNAMIC FORCE DENSITY

Having evaluated the elastic force density in the limit relevant to the bundling of bacterial flagella,
we here consider the second term appearing in Eq. (1), namely the hydrodynamic force density. We
derive its value in the long-wavelength limit; an early version of this calculation was presented in
Ref. [44] in the linearized limit and Ref. [45] in three dimensions.

A. Resistive-force theory

Since the filament is slender (¢ <« L), the hydrodynamic force density is provided by resistive-
force theory, which states that the force is proportional to the local velocity of the filament relative
to the background flow [50,51], as

; L L or® N
19 = —[£,t0 4 £, (1 — tO1D)]. ( - v <z>), (33)

where v~ @ denotes the flow velocity induced by the motion of filament j near filament i (i.e.,
hydrodynamic interactions). The tangent vector along the filament is defined as
= —. (34)
as
The hydrodynamic resistance coefficients for motion parallel and perpendicular to the local tangent,
&) and &, , approximately satisfy

£ =28, (35)
which leads to a simpler form of Eq. (33) as
. 1 ... or® o
f(l) I I— —tOtD|. — yW=@ 36
h §L|: ) Y v (36)
Using the scalings consistent with Eq. (13),
L} N o ELL?
£, ==, 0= yi-0 ’ 37
n=—t, ¥ v 2 37

the dimensionless form of Eq. (36) is finally given by

. | or® o
fi(zl) — —|:I _ 5t(l)t(l)i| . |:_3t_ _ ‘—,(J)%(l)i|_ (38)
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B. Hydrodynamic interactions

Hydrodynamic interactions between the moving filaments fundamentally arise from two different
types of motion, which will be captured by different flow singularities: rotational motion of the
filaments around their centerline (fast decaying rotlets) and translational motion (slow decaying
stokeslets). The dimensional flow field induced by the motion of filament j near filament i, v//)~>®,
can therefore be split into two terms induced by local moments and forces as

j)— (i ()= j)— (@)
V=0 = 7O 4 D20, (39)

Because of the wide-separation assumption, a < hg, both vy, and vy can be described by a
superposition of flow singularities.

Using m") to denote the torque density acting on filament j, and R(s,s’) as the relative position
vector r)(s) — r'/)(s"), with magnitude R(s,s’), the flow V(Ag)_)(i) is given by an integration of rotlets
singularities [53],

L _ (o’ /
()—() m'(s")  R(s,s")

= ds’, 40
Vi /0 8 x R(s,s')? s (40)

where the minus sign arises from the fact that —m®) is the density of moment acted from the filament
on the fluid.
Using the classical hydrodynamic result

mY) = —Erw(j)t(j), 41)
the integral becomes
o Lend  Ris.s'
v _ [FEe g Res @)
o 8mu R(s,s')?

Similarly, the flow velocity induced by the translational motion is given by a linear superposition

of stokeslets as
()= h ’
= — | =4+ — )ds/, 43
V=0 fo = <R+ R3) s (43)

where the force density along filament j, f;(lj ), may be obtained from Egs. (1) and (32).
Following the nondimensionalization procedures from Eqs. (13) and (37), the dimensionless form
of these two integrals are given by

2 1 D/ = =/
(=)= € — =N () =t R(S,S) _r
VA{I (S) = ?[) w(s )(f)t(”(s ) X W s, (443)
NG 1 ' (1 RR
()= < (j) —
=— [ £ ( =+ = )d5. 44b
e 21n<1/ea)fo " (R " R3> ’ b

Inspired by a classical calculation by Lighthill [3], the mathematical approach used to carry out
the integrals in Eq. (44) is illustrated in Fig. 3. We aim to compute the leading order term of v(/)~®
asymptotically at limit €, < €, < 1. In order to carry out these evaluations despite the fact that the
kernels in Eq. (44) are singular at R = 0, we introduce an intermediate (arbitrary) length § satisfying
€n < § < 11n order to divide the integration regions into local and nonlocal parts. In the local part,
the filament is nearly straight, which simplifies the algebra, while in the nonlocal part the kernels are
no longer singular and the integrals may be evaluated asymptotically directly. The final asymptotic
results, sum of the two integration regions, should be independent of the value of §.

For notation convenience, we drop the bars below to indicate dimensionless quantities in the
following derivations.
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FIG. 3. (a) Illustration of the mathematical method used to compute hydrodynamic interactions. The
integration domain is divided into a local region of length 2§ (dark gray) and nonlocal region (light gray).
(b) Geometric relations between d(s,s”) and R: R is the distance between two points on the two filaments;
€,d(s,s’) is its projection in x-y plane; €,d(s,s) is the local separation distance between two points at the same
arclength s.

C. Nonlocal term

We introduce the notation A =s — s/, and the nonlocal region is where |A| > §, and the
corresponding integral contributions to the velocities, denoted NL, are given by

62 -8 K ) ) R
Vi (s) = _af +/ @P(s — Mt (s — A) x —dA, (45a)

2 Joo1 Us R3

1 -3 S I RR
NL (J)
= — f —A)- | =+ — JdA. 45b
YE ) = (/e /H +/s p =8 (R - R3> (b
As illustrated in Fig. 3(b), we write the relative position vector as

R(s,s") = Ae, + ¢,d(s,s"), (46)

with magnitude written R =,/ A+ e,fd 2(s,s’) and where the vector d(s,s’) denotes the projection of
Rin x-y plane at point s. Since A > § > ¢, we have R(s,s") ~ |A[. Substituting this approximation
into Eq. (45), we have approximately

2 -8 s
. A d(s,s — A
vﬁL:%’/ +/ W — Aye, x DT adss = A)
s—1 8

[A[3
2 s—1 N
. dA
= —Eazeh /;5 —|—'/6‘ a)(j)(s — A)ez X d(S,S - A)Fv (473)
Wt | T [ 806 - (5 +55 )as (47b)
F T omje) )y Syt A A
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In the limit where § — 0, the integrals in Egs. (47a) and (47b) diverge and are dominated by the
behavior of the integrands near the boundary (A = 0). Simplifying the notations as

d(s,s)=d, d(s,s)=d, (48)
then we obtain
W= Cach wD(s)e, xdf / Ap (49a)
1 ; s—1 ! e.e
o ——— T f + / (— + = Z)dA. (49b)
P 2In(1/e,) " s 5 \A[ AP
Considering the integrations
/8+/S 2 _ Lo, (50)
_— a
w1 Js 1A 82
—8 K dA
+ ] — =28+ 0(), (50b)
=1 Js 1Al
then we obtain
M) = <o (s)e, x d, (51a)
Ms) = f<”<s> I+ e.e.), (51b)
ne

plus terms which are higher order in 8.

D. Local term

Next we consider local integration where |A| < §, and therefore for which the integrals are given
by

62 § ) ) R
vhi(s) = 7 /8 oP(s — MtV (s — A) x FdA, (52a)

Loy 1 /6 Dee Ay (I, RR
VF(S)_—Zln(l/ea) ﬂsfh (5= A) (& + 27 JdA. (52b)

The relevant quantities in both integrands can be Taylor expanded near A = 0 as

oV(s — A) oY(s) a)(()]A)(s)
dis,s — A) | = d — A doals,s) | + 0(A?). (53)
(s — A) r)(s) ) (s)

Under the long wavelength assumption, all geometrical and kinematic quantities vary on the

length scale of the filaments, L, and thus the terms w(()jA), doa and r(j )(s) are all of order one. The
leading-order contributions in § of the integrals in Eq. (52) can thus be obtained by using the local
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approximation, writing

2 ) 8 3
vh(s) = %w(’)(s)ez xd / (A2 + €24 2dA, (54a)
-8

1 s . | | AZe.e
Ly=—— | 9. iz dA. 54b
Vi) 21n(1/ea>./is ) * (40)

Ja v ear (A4 )

The elementary integrals in Eq. (54) may all be evaluated analytically as

8 dA
/ — = 21In(e,d) +2Iné + O(1), (55a)
-8 AZ +E}%d2
s dA 2 1
5 2o 22 8 +Oo, (55b)
- (AZ =+ €hd2)2 h

& A%dA 8 dA 8 dA
[ e et as
(A2 +epd?)? 8 A2 4 €2d? =3 (A2 4 €,d?)?

and we obtain asymptotically in the limit of small §

2
L _ €i€h 2 1 )
vy = 5 <_E/%d2 — E)w’ e, xd, (56a)
1 Ghd (j)
Vi = Ine, in <T>fl{l (s)- (I+ece). (56b)

E. Final asymptotic result

Adding the nonlocal and local results of Egs. (51) and (56) together, we obtain results independent
of the value of § as

. . 2 .
V=0 6:22 w9V (s)e, x d, (57a)
#>“=%@J¢%»a+%m. (57b)
ne,

The algebraic dependence of vy on d arises from the fast ~1/73 spatial decay of rotlets while the
logarithmic dependence in v is a consequence of the slow ~1/r decay of point forces in Stokes
flows.

V. LONG-WAVELENGTH BUNDLING MODEL

With both the elastic and hydrodynamic forces evaluated asymptotically in the limit relevant to
the bundling of bacterial flagella (¢, < €, < 1), we may now derive the long-wavelength bundling
model.

First, we substitute Egs. (32) and (38) into Eq. (1), so that the force balance on filament i may

now be written

94r® 1 ... or®) N

o + [I _ Et(’)tm] . [ o _ v(J)H(l):| = 0. (58)
K
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As seenin Sec. III D, the twist density is in quasisteady mechanical equilibrium, and as a consequence
the local rotation rate of the filament relative to the fluid is constant, i.e., w(s) = a)g ). Since at
leading order t® is e,, we have the force balance as

34r® 1 ar® N
I- - R o =1 |} 59
a5t [ 2ezez} [ o (59)
Considering the description of the geometry in Cartesian coordinates as in Eq. (12), we see that
ar®
e,- — =0. 60
i (60)

Also, considering Egs. (39) and (57), and using the fact that the force density in Eq. (57) is given by
Eq. (32), we obtain

2. () 4.3J)
V=0 _ G g In(epd) 37rY 6D
ed? ¢ Ine, s+’
which clearly leads to
e, . V=0 — (62)
Substituting Egs. (60) and (62) into Eq. (59), we have
*r®  ar® S
— yH)—=® 63
54 + o v , (63)
which, when using Eq. (61), transforms into
ar® gt 20 In(e;d) 9r) 64
R = —e — .
ot as4 ed? ¢ Ine, 0ds*

An inspection of the terms in Eq. (64) reveals the presence of two dimensionless groups. The first
one, which is multiplying the bending term, is given by a ratio of logarithms
_ 11’1(6 hd )

L= (65)
Ing,

Technically, this term is not a correct dimensionless group since it depends on the local filament-
filament distance, d. However, given the presence of two logarithms, it is expected to show only
weak dependence on it, and is thus approximately given by the ratio [44]

In(L/ ho)

Lo= ——7-
In(L/a)

The second dimensionless number, more important, controls the driving force in the bundling

dynamics. It is the one comparing the rotational component of the flow in Eq. (64) to the bending

(or viscous terms) which scales as €,. We term this dimensionless ratio the bundling number, Bu,
which is therefore defined by

(66)

Bu= -, (67)
€

where the extra factor of €, arises due to the scaling of r. Clearly, if different filaments have different
rotation rates then there will be more than one relevant bundling number characterizing the system.
Alternatively, given Eq. (15), the bundling number can also be written using the Sp number
2Q 4
€;S
Bu= 2P (68)

2
€
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and is given using dimensional quantities as

2L4
Bu— &‘”h‘;—“A (69)
0

where wy in Eq. (69) refers to its dimensional form. As a final note, we may write the final
dimensionless model projected along Cartesian coordinates, and obtain

i x® +3_4 @ _ng(()j) _y(i)+y(j) _ln(e;,d)8_4 () a0
o Ly0] T ast [y T T2ar | x® — x) Ine, 9%y

where d? = (xV — x®)? 4 (y(U — y@)2 This is the form which will be used below in our numerical
solution of the problem.

VI. BUNDLING AND UNBUNDLING OF ELASTIC FILAMENTS

We have derived above the local partial differential equation describing the time evolution of
the elastic filaments interacting hydrodynamically. It is given in Eq. (64) in vector form and in
Eq. (70) in Cartesian coordinates. We now study numerically (with technical details summarised in
Sec. VI A) the dynamics predicted by the model and focus on four situations of interest: Two filaments
with identical rotation rate (Sec. VIB); N > 2 symmetric filaments (Sec. VIC); an asymmetric
arrangement of three filaments (Sec. VID), and the unbundling of filaments (Sec. VIE). We will
next analyze the conformation instabilities observed numerically in Sec. VII.

A. Numerical procedure

In order to solve Eq. (64), we discretize the equation spatially using second-order central finite
differences. Each filament is assumed to be clamped at its rotated end (s = 0) and free on the other
end (s = 1) and thus the boundary conditions are written as

0
s =0.0) =T (=01 =¢, (71a)
S
3%r 3’r
aa=10=0. “o(s=10=0, (71b)

where r( refers to the location of the end point of the particular filament of interest. Each filament
starts initially from a straight shape parameterized by

ris,t=0)=rg+se,, 0<s <1, (72)

from which Eq. (64) is solved in time using a second-order Crank-Nicolson method. We use the
values €, = 0.001 and ¢, = 0.1 throughout the paper for the two shape dimensionless numbers.

In order to prevent the interacting filaments from touching each other and overlapping, we apply
numerically a short-range repulsive potential of the form

v, = (%) (73)
" Ehd '

In the results shown in the following sections, we choose the value g = 4 so that this repulsion only
comes into play when d ~ a and thus does not affect any of the long-ranged hydrodynamic features.
We also tried ¢ = 6 with no qualitative impact on the dynamics. In practice, the minimum distance
between the filaments in our simulations never goes below three filament radius, so lubrication
stresses are not expected to play any role. Note also that we assume that the drag coefficients remain
constant even at these short interfilament distances; although this is clearly a simplifying assumption,
we do not expect the results to strongly depend on it.
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B. Bundling of two filaments

We first consider the case of two filaments with identical rotation rate, wg. If we denote the
projection of r on the x-y plane as ¥ = r - (I — e;e,), then by symmetry we clearly have

(s, 1) + iP(s,1) = 0. (74)

|:x(1)] |:x(2)j|
+ =0. (75)
y(l) y(2)

Substituting this symmetry property into Eq. (70), we obtain that each filament shape satisfies
oF N |:1 B ln(ehd)]ﬁ 2Bu

Or in components,

e = —e, XT, (76)

lne, |0s?* d?

written in components as

a[x In(e;,d)] 8* [x]  2Bu[—y ) s
R Il MR B
This equation was solved numerically for a wide range of values of Bu. As will be detailed
below, we obtain three qualitatively different dynamics which we now illustrate by focusing on
three representative values of Bu (specifically, Bu = 2, 30, and 60). The time-varying shapes of
the filaments in these cases are shown as a function of time in Fig. 4 while in Fig. 5 we plot the
dimensionless bending energy of each filament as a function of time. The entire dynamics shown in
Figs. 4 and 5 can also be visualized in the movies available in the Supplemental Material [54].
The bending energy for each filament, E}, is equal to the bending modulus times the integral of
curvature squared, i.e.,

L A 5
Ep, = —|rsslds. (78)
0o 2
Nondimensionalizing as above, we may write
A 5.
Eb = EGhEb, (79)

where the dimensionless bending energy, £, is given by

1
E, = / (x5 + yz)ds. (80)
0

In all three cases, the long-time steady-state shapes are illustrated in Fig. 6. For a small value,
Bu < 2, the rotating filaments each bend toward each other until converging on steady weakly
bent shapes [Figs. 4-6(a)]. For an intermediate value, Bu = 30, the initial dynamics is similar but
then at a critical time the filaments undergo a rapid conformation change and snap into a crossing
configuration in which they remain [Figs. 4-6(b)]. In contrast for a high value, Bu = 60, the filaments
do not remain in a crossing configuration but instead they quickly transition to a bundled state where
the filaments wrap helically around each other along the portion of the filament located after the
crossing point [Figs. 4-6(c)].

In order to further characterize the different steady-state conformations, we plot in Fig. 7 the value
of the long-time dimensionless bending energy of the filaments as a function of Bu. The results show
two branches: The black solid line represents numerically results obtained while increasing the
values of Bu while the red dashed line captures the computational results obtained by starting with
a high value and decreasing Bu. Interestingly, we see that the two transitions (bent <> crossing and
crossing <> bundle) both show hysteresis loops. When Bu increases from zero, the transitions occur
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FIG. 4. Bundling of two elastic filaments as a function of time for three representative values of Bu.
(a) Bu=2, with a weakly bent final configuration; (b) Bu =30, with a final crossing configuration;
(c) Bu = 60, with a final bundled state. The bending energies corresponding to these shapes are plotted in
Fig. 5. The dynamics illustrated in this figure can be visualized in the movies available in Supplemental
Material [54].

approximately at Bu & 2.1 and 42, while in the decreasing case, the critical values are Bu &~ 10
and 1.5.

C. N symmetric filaments

After focusing on two filaments, we can consider the more general case of N filaments distributed
symmetrically along a circular base from which they are all rotated with equal angular velocity. This
situation is sketched in Fig. 8.
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FIG. 5. Dimensionless filament bending energy for each filament, £}, as a function of time for the dynamics
illustrated in Fig. 4 with specific times shown in circles. (a) Bu = 2; (b) Bu = 30; (c) Bu = 60. Here also the
dynamics illustrated in this figure can be visualized in the movies available in the Supplemental Material [54].

The location of filament » is written as
r™(s) = [hox"(s),hoy " ()],
which maybe related to the displacements [¢™,n™] as

in(n — 1)0
) sin(n )

cos(n — 1)0
. _coste =16 .

+ C (n) , y(") — 7

In order to simplify the system, we define the complex number
2 = x4y
which, due to the expected symmetry of the N-filament configuration, satisfies

Z(n) — zei(’“m i

(81)

(82)

(83)

(84)

In order to derive the dynamics equation, we first extend Eq. (64) to the case of N arbitrary
filaments by adding up the flows arising from hydrodynamic interactions. Using dimensional
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FIG. 6. Steady-state filament shapes for Bu = 2, 10, 30, 45, and 60 obtained in the long-time limit. The
three possible final states are (a) weakly bent; (b) and (c) crossing; and (d) and (e) bundled.

quantities, the position of the nth filament satisfies

arm A ™ e, x (" —r) A Y In(je™ — ¥|/L) gtr)
@ Z 2 G

+—— = —
ar £, ost kW — D2 | ~ In(@/L) st

The two summations in Eq. (85) maybe be expressed explicitly by exploiting symmetries. Focusing
on the filament with n = 1, for which we write r') = r, we observe that

S 2[2 — lU=18 _ i(N+1=))0]
Z DIARETE ; 21 anl(q =2 (86)
e 12— 20 |z|“[(1 — cos(j — 1)0)” +sin*(j — DO] |z
which is independent of j. As a result, we have a first summation given by
N
e, x (r —rY) e xXr
=(N-1 . 87
12 Ir — r()|? = ) 2r|? (87)

Similarly for the second summation, we have

4

34z
Injz — z¥
2, Inle—2155

I=j,N+2—j

=2cos(j — 1)0[In|z| +In /2 — 2003(]—1)9]84, (88)

so that

4

N Pr otr &
() — i i
Ezln|r r |8s4 =5 jEZCOS(J DO[In|r| +1n\/2 2cos(j — 1)0]

d*r
= (ayln|r| + ﬁN)ﬁ’ (89)
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FIG. 7. Dimensionless bending energy for each filament, Ej, as a function of the bundling number, Bu. The
black solid line displays the steady states when increasing the values of Bu while the red dashed line shows the
states obtained when decreasing Bu, showing two hysteresis loops. The critical Bu values at the transitions in
the increasing branch are Bu & 2.1 and 42, while for the decreasing branch they are Bu ~ 10 and 1.5.

where the coefficients oy and By are given by

N N
ay =Y cos(j— DI =—1, By=) cos(j—1)Iny/2—2cos(j — Dp. (90)

Jj=2 j=2

Substituting Egs. (87) and (89) into Eq. (85), we obtained the simplified equation in the case of
N symmetric filaments

I | ADE g, O = Des A gy — /Lot 1)
—+ —— =a"w — —In —,
ar £, 954 0 2|2 £ In(a/L)" " st

which may also be written using dimensionless variables as

oF (By —In[EDT9*F  €2@o(N — 1) e, x F
=+t =" : 92
or + |: Ing, a5* 2 |F|2 ©2)
where a N-filament Bundling number is naturally defined as
20(N — 1
u= 6(/16‘)0( - ) (93)
€

Note that the case N = 2 which was considered earlier in the paper may be recovered under this
framework. Indeed, we have in this case

gzg,&:_mz (94)
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FIG. 8. (a) Configuration of N filaments symmetrically distributed along a circle of diameter hg; (b) top
view of the N filament configuration; v/~ @ denotes the velocity generated by jth filament near the ith one
while & = 2w /N. By exploiting the symmetries of the setup, the net flow generated by jth (j = 2,3,...,N)
and (N + 2 — j)th filaments is independent of j.

leading to

% N [1 ~ 1n(2|1"|):| d'F _ Cdpe, xF ©5)

Ine, |95% 2 |F]?

Since 2r = ¢;d, the equation is identical to Eq. (77).

The final equation (92), allows us thus to exploit symmetries in order to significantly simplify the
complicated multifilament problem. Qualitatively, we obtain the same three regimes (weakly bent,
crossing, bundling) as with two filaments. Numerical results showing the time dependence of the
shapes are illustrated in Fig. 9 for N = 3 filaments (top) and N = 6 (bottom) in the case of a large
bundling number, Bu = 60, leading to crossing at intermediate times and a final bundled state.

D. Asymmetric filaments

In the situation where the distribution of filaments is not symmetric, it is possible to apply our
model by solving the coupled system of equations in Eq. (85). As an illustration, we show in Fig. 10
the dynamics in the case of N = 3 filaments clamped and rotated with a 3:1 separation distance
along their base. The initial position of the filaments is given in a dimensional form by

rl” =[0,-0.05L], ¥ =10,0.25L], r’ =1[0,0.05L]. (96)

For Bu = 30 (¢, is chosen as the largest ratio between filament-filament distance and L, which is
0.1 in this case), the two filaments which are the closest to each other bundle first together and then
bundle as a pair with the third filament located further away.
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FIG. 9. Time dynamics of a symmetric arrangement of N = 3 filaments (top) and N = 6 (bottom) for
Bu = 60 showing crossing at intermediate times followed by a transition to a bundled state at long times.

E. Unbundling

In the biological world, swimming bacteria change their swimming direction by reversing the
rotation direction of at least one of their rotary motors, leading the bundle of helical flagella to
come apart [30]. This process may be addressed with our simple model. We consider N identically
rotating filaments in the steady bundled state and may then switch the rotation direction of one of the
filaments (i.e., switching its bundling number to a negative value). This is illustrated in Fig. 11 for
N = 2 filaments (top) and N = 3 (bottom). In both cases, the unbundling process is fast compared
to the initial bundling dynamics shown in Figs. 4 and 9 and it results in a separation between the
negatively rotating filament and the other ones. With more filaments, different numbers of motors
may switch directions, leading to different unbundled states. This is illustrated in Fig. 12 in the case
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FIG. 10. Asymmetric bundling of three filaments clamped and rotated with a 3:1 ratio in their relative
separation for Bu = 30.

of N = 6 filaments where we show the long-time conformation of the rotating shapes as a function
of the number of negatively rotating filaments and their location (indicated by a red dot at their base).

VII. CONFORMATION INSTABILITIES

One of the main results predicted by our model is the occurrence of instabilities in the conformation
of the filaments. This is best seen by inspecting Fig. 7. The dimensionless bending energy of the
steady-state shape of each filament clearly indicates that sharp transitions occur from weakly bent
to crossing (Bu &~ 2.1) and from crossing to bundling (Bu &~ 42). In addition, each transition is
associated with a strong hysteresis loop.

Both crossing and bundling instabilities share the same physical origin. Hydrodynamic
interactions bend the filaments and are resisted by elastic forces. At a critical rotation rate, the
bending resistance is unable to balance the hydrodynamic stresses, and the filament transition to a
new conformation.

From a kinematic standpoint, if two nearly straight filaments cross at some point along their
length, their crossing is expected to take place at either a single point or along many points; indeed
if two filaments happen to cross at one point, and then are made to cross at a second location along
their length, then the remaining portion of the filaments is expected to remain in close continuous
contact. It is therefore expected that two crossings implies in fact many crossings.

A. Crossing instability

Intuitively, we propose therefore that the fundamental instability to understand is the first, crossing
instability. In this section, by focusing on the case of two filaments, we present a theoretical approach,
together with a simple two-dimensional model, to show how to predict that instability.

1. Small Bu analysis

We start by solving the problem for the steady-state shape of the filaments in the small-Bu limit.
The steady state of Eq. (77) satisfies the equation

In(e;d)| 8* [x]  2Bu[—y
el NN .
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FIG. 11. Hydrodynamic unbundling of rotating filaments. Top: cases of two bundled filaments where at
t = 0 the bundling number of the filament on the left (with red dot at bottom) is switched to Bu = —50, while
for the other is maintained at Bu = 50. Bottom: three filaments where the filament with the red dot at bottom
is switched to Bu = —40, while the other two are maintained at Bu = 40.

Based on the symmetries in the geometry, we expect x to be odd in Bu while y is expected to be
even. In the limit of small values of Bu, we thus look to solve Eq. (97) as a regular series expansion

1
x =Bux; + Bo’xs + - -, y=—§+BU2)72+"', (98)

and we aim to solve for the leading-order deflections (x1,y,). In order to proceed with the solution,
we also need to choose values for the small dimensionless parameters €, and €;,. Given the numbers
relevant to the bundling of bacterial flagella discussed in Sec. Il A, we choose the relevant values
€, = 0.001 and ¢, = 0.1.
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FIG. 12. Steady unbundled states for N = 6 filaments. Filaments with a red dot at their base have negative
rotation and Bu = —40 while all other ones are maintained at Bu = 40. Counter-rotation is implemented for
(a) one filament, (b) two adjacent filaments, (c) two every-other filaments, and (d) two opposite filaments.

With these assumptions, the solution of Eq. (97) at O(Bu) is

84)61 3
- . 99
st 2 ©9)
With the boundary conditions given in Eq. (71), we obtain the solution as
A + 37 (100)
X1 =— — — —_—
"T16 4 8
At next order, O(Buz), we have to solve
'y
Fre 3x1, (101)
whose solution satisfying the boundary conditions in Eq. (71) is
8 7 6 3 2
N s s 3s 13s
v2 PP R (102)

T 8960 1120 ' 320 80 160

We compare the numerical solution to the asymptotic solution in Fig. 13(a). We find that for
Bu = 1, the agreement with between the two is very good; however, for Bu =2 (close to the
instability point), the difference between the computational solution and the theoretical one is more
important.
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FIG. 13. (a) Comparison between the asymptotic solution for the deflection of the filaments (thin red lines)
with the numerical solution (thick black lines) for Bu = 1 (solid) and Bu = 2 (dashed); (b) A closer look at the
numerical solutions for for Bu = 1 (solid) and Bu = 2 (dashed) indicated that up to a rescaling they have the
same shape (s, is the value of the arclength at which the distance between the filaments is minimum).

2. Analytical ansatz

In order to build a more accurate analytical model for the deflection of the filaments, we need to
correct the asymptotic solution so it remains valid up to the instability point. To do so, we examine
the shape of the filaments as obtained numerically for Bu = 1 and Bu = 2 and plot the rescaled
distance between the filaments in Fig. 13(b) as a function of the arclength scaled by the arclength
where the minimum distance occurs, s., by linearly mapping d so it reaches zero at the minimum
point, 1.e.. to

o4t (103)
dmin -1
We see that, up to a rescaling, the shapes at Bu = 1 and Bu = 2 are identical and the only difference
is how their magnitude scale with the change in Bu.

To construct a better analytical model, we then proceed by choosing a steady reference state
[Bu,,x,(s),y,(s)] where the asymptotic solution provides a good estimate (we choose Bu, = 1).
We denote by [s,¢,%oc,Yoc] the critical point where the distance between the filaments, d, reaches
its minimum value. We then numerically track this same critical point as we increase the value of
Bu, which we denote [s.(Bu),x.(Bu), y.(Bu)]. From this, and given the similarity of the shapes seen
in Fig. 13(b), we can construct an analytical steady-state ansatz [Bu,x(Bu;s),y(Bu;s)] by simply
scaling in x, y, and s the reference analytical solution as

Xe Soc
x(Bu;s) = —x, (Buo; —s), (104a)
1 e+ 3 » 1
Y(Buss) = —= + 22 |:yo<Bu0; S—s) " —}. (104b)
2 Yoc + 3 Se 2

We show in Fig. 14(a) comparison for each component of the shapes x(s) [Fig. 14(a)] and y(s)
[Fig. 14(b)] between the computations (solid lines) and the analytical ansatz (dashed lines). We
see that the ansatz, obtained analytically for Bu = 1, is able to fully capture the shape obtained
numerically at Bu = 2.
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FIG. 14. Comparison between the numerical steady shapes (solid lines) and the shape predicted by the
analytical ansatz (dashed line): (a) x(s); (b) y(s). The shapes are compared for Bu = 1 (thick black lines) and
Bu = 2 (thin red lines).

3. Linear stability of analytical ansatz

We may then use this analytical ansatz as an accurate base state, [x;(Bu;s),y,(Bu; s)], around
which we may carry out a linear stability calculation. Assuming small deviations around the base
state and exponential growth, we decompose the general shape [x(s,?),y(s,?)] of the filament as

x(s,t) = xp(Bu; s) + £(s)e”",  y(s,t) = yp(Bu;s) + $(s)e’’, (105)

and substitute into Eq. (97), leading to the linear system,

G|:x:| . [2 In2,/x2 + yg} [x] _ AH’ 106)
4s

y 3 Ine, y y
where the matrix A is given by
Xp(Xp)as Bux,yp Vb (Xp)ag Bu(y; — x)
ne)( +y7)  (x24+y2)°  (ned(+35)  2(x2 +y2)
A= . (107)
Xp(Vb)as Bu(y; — x3) Yo (Ib)as Bux, yp,

ne)(xp +55) 207 +y7)° (e +35) (37 +7)°

We use fourth-order finite differences in order to solve numerically the eigenvalue problem in
Eq. (106). We plot in Fig. 15 the eigenvalue with the largest real part as a function of the bundling
number. The system is seen to become linearly unstable slightly above Bu = 2.5, a value close to
the computational result of Bu ~ 2.1 for the crossing instability.

4. Two-dimensional toy model

The analytical asymptotic solution with rescaling of its amplitude allows us to capture the
shape instability at a critical value of the bundling number, and thus the transition to the crossing
configuration. In order to understand intuitively the physics behind this instability, we consider a
simple toy problem displaying the same instability.

Instead of a continuous filament, consider two parallel rigid cylinders which are linked elastically
to a reference position. The cylinders are assumed to rotate at a constant rate in the fluid and thus
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FIG. 15. Solution of the eigenvalue problem in Eq. (106) with the largest real part as a function of the
bundling number, Bu. The red dot-dashed line indicated the critical point of transition from stable to unstable,
which takes places slightly above Bu = 2.5.

to interact hydrodynamically. This setup is illustrated schematically in Fig. 16 with the same axis
notation as for the two-filament case.

We denote the location of cylinder 1 by (x,y) in Cartesian coordinates. At ¢ = 0, it is assumed to
be at (x,y) = (0,—1/2). By symmetry, cylinder 2 is located at (—x,—y). Assuming a elastic force
simply proportional to the displacement of the cylinders away from their reference configuration,
its magnitude is simply given by (x,y + 1/2) for cylinder 1. The force balance among local viscous
drag, elastic restoring force, and hydrodynamic interactions leads therefore to the dimensionless

flow & 1/2 0
N -0
(7$, 71/)@ ....”“v‘)\\/ ’,o"
. "'u. . ~,‘~.."V\/\\ \q) K e
o elastic force’y elastic force ™. ") 5»
’i.,‘elastic force €y @
@(L Y) e,
flow %}
flow .,
R

(a) (b)
FIG. 16. (a) Setup for two-dimensional cylindrical toy model: two parallel rigid cylinders linked elastically

to a reference position interact hydrodynamically. (b) Geometric calculation of magnitude of forces (see text
for details).
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equation for the position (x,y) of cylinder 1 as

Ak ’ BI=y 108
il -all] o
2
where B is a dimensionless coefficient similar to the bundling number which includes geometry and
elasticity, and d = 2/x2 + y? is the distance between cylinders.

For which values of B can a steady state be found? At steady state, the hydrodynamic force has
to balance the elastic resistance. If both cylinders are located at a distance d from each other, the
magnitude of the hydrodynamic force is given by B/2d while the elastic restoring force is given by
the distance to the reference point. Since the hydrodynamic force acts at right angle to the vector
joining the cylinders, each cylinder is constrained mechanically to remain on a circle of diameter
1/2 [see Fig. 16(b)]. The distance between the cylinder and its reference configuration may then
be obtained using the Pythagorean theorem as \/ 1/4 — d?/4 = /1 — d?/2. Force balance between
elasticity and hydrodynamics requires therefore that

B =dy1—d> (109)

The right-hand side of this equation is bounded from above by 1/2 and thus there exists a steady state
only for B < 1/2, which corresponds to a finite critical distance between the cylinders of d = 1/+/2.
This simple elastohydrodynamic model allows us therefore to reproduce the same physics of a
continuous elastic deformation induced by hydrodynamic interactions until a critical finite distance
and a shape bifurcation.

5. Continuous anaytical model

Inspired by the success of the simple cylindrical model, we adapt a similar idea to the case of two
elastic filaments by focusing on the elastic deformation at their tips. Using the asymptotic results
in Egs. (99)—(102), we see that for small values of Bu the components at tip (s = 1) of the elastic
forces and the displacements are given by

3 3
xg(s = 1) = EBu, x(s=1)= EBH’ (110)
9 1 413

(s=1)=—Bu}, y=-—-+—Bu 111

yas(s = 1) TR 5> 1 3060°" (111)
Using these results, we can then infer a linear force-displacement relationship valid at the tip at

small Bu
5040 1
s = 8x, = — —. 112
X4 X, Ya N (y+ 2) (112)

Using Eq. (112) to replace the continuous elastic forcing by one proportional to the displacement
of the tip away from its reference point, we may replace Eq. (97) by an algebraic equation as

8x

-] ] 2]
413 2
Since the two vectors in Eq. (113) are proportional to each other, their cross product is zero, leading
to the identity
) 630 1
. :_my<y+§>. (114)

As a consequence, we have
d? 5 5 217 , 315

a _ _ 2 Sl 115
vty 413° " a13” (113)
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)

FIG. 17. Numerical value of Bu as a function of y according to the analytical model, Eq. (116), showing a
maximum possible bundling number of approximately 2.

We then use the first row of Eq. (113) to obtain Bu as an explicit function of y

1 4xd?
Bu=—<1— nehd) xd” (116)
Ine, y

with x given by Eq. (114) and d by Eq. (115).

The value of the right-hand side of this equation may be computed for all y in the interval
—0.5 < y < 0, with results shown in Fig. 17. We see that Bu reaches its maximum value around
Bu ~ 2 at position (x,y) = (0.31,—0.23), corresponding to the tip-to-tip distance d =~ 0.76 (note
that this maximization may also be done by hand, leading to a transcendental equation due to the
presence of logarithms). When Bu is larger than this critical value, no steady-state solution exists,
which confirms the filament’s transition to a new state. This analytical estimate (Bu =~ 2) agrees
very well with the critical value of Bu found numerically (Bu & 2.1) and allows us therefore to
successfully capture the physics of the crossing instability.

B. Bundling instability

In order to propose an estimate for the critical bundling number at the second instability (from
crossing to bundled state), we need to examine the dependence of Bu on the physical parameters of
the problem. We recall that Bu is defined by

2L4
Bu — &%.
hiA

The important point from Eq. (117) is that if the distance between the filaments, %, is made to
increase or if the length of the filaments, L, is made to decrease, the critical rotation rate needed to
get an instability has to increase in order to compensate for it.

Examining the typical shape of the filaments in the crossing configuration (see Fig. 6), we see
that the crossing point it located about one third of the way along the filament, so that the end-to-end
distance between the free ends of the filaments is about twice the original distance at their clamped
ends. If it is true that the physics responsible for the crossing <> bundling transition is similar to the
one responsible for the bent <> crossing, we can then propose a heuristic estimate for the second

(117)
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FIG. 18. (a) Schematic of the experimental arrangement. (b) Illustrative image of crossing state (note that
the driving in the experiments is located at the top, and thus the experimental pictures are inverted vertically
compared to the numerical shapes shown earlier).

critical Bu number. We approximate the crossing configuration as a new initial configuration with
L decreased to 2L /3 and hg increased to 2h¢; i.e., we consider only the shape after the crossing
point. That shape is expected to display a conformation instability when its bundling number is
approximately equal to 2.1 (i.e., the value for the first instability), meaning that we expect

£ wa*(2L/3)*

2.1, 118
(2h)?A (118)
which leads to the estimate for the original Bu number at the second transition as
2 L4
Bu= 22 s, (119)
hgA

This estimate is in very good agreement with our numerical results, conforming a posteriori the
similarity of the physics for the two transitions. Note that the configuration of the filaments past the
crossing state does not satisfy the separation of scales assumed in our original theory, so the agreement
between the estimate above and our numerical simulations need to be taken as qualitative at best.

VIII. EXPERIMENTS
A. Setup

In order to validate the analytical and numerical results described herein, a bespoke experimental
facility was designed and built, a schematic of which is shown in Fig. 18(a). The rig utilizes a geared
motor to drive a shaft, which, in turn, uses a belt and pulley system to rotate two interchangeable
stainless steel rods, of diameter 1.6 mm, each housed in its own bearing in the top supporting
structure. The motor is connected to a digital encoder which provides a direct read out of the rotation
speed wy. The separation of the two stainless steel rods can be adjusted at the bottom supporting
structure from a minimum of 10 mm to a maximum of 20 mm in steps of I mm. To ensure the accuracy
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FIG. 19. Critical angular velocity, wp, vs. h3 for first crossing instability. (¢, x), filament length L =
180 mm, filament radius ¢ = 0.44 mm. (A), L = 140 mm, a = 0.41 mm. (+,0), L = 160 mm, a = 0.35 mm.
(W), L =170 mm, a = 0.49 mm. For all data, the elastic modulus of the filaments is £ = 1 GPa and the
viscosity of silicon oil is 12.8 Pa s (at 20 °C). Straight lines are linear best fits to the data for ho/L < 0.09.
Inset shows same data converted to critical bundling number variation vs. ho/L. For hy/L < 0.09, the results
are consistent with a critical value of Bu = 2.15 £ 0.2.

of this separation, spacers of known separation were machined and used to set the filament spacing.
At the downstream end of the stainless steel rods, a 1-mm hole was drilled into each, into which
elastic filaments of various radii and length could be securely bonded. The elastic filaments were
made of polystyrene (Evergreen StripStryene supplied by Wonderland Models) and had nominal
diameters (2a) of 0.02, 0.025, 0.03, and 0.04 in. (508, 635, 762, and 1016 pum respectively) and
original length 350 mm. The Young’s modulus of the filaments E was measured using an Instron
tensile test machine and found to be 1 GPa (£0.02 GPa) up to 0.5% strain. The diameter of each
individual filament was measured using a digital micrometer at three locations along its length and
the average radii was found to be consistent within £10 pum or better. The filaments were cut to
specific lengths in the range 140-180 mm with an accuracy of +0.5 mm. These filaments where
rotated in a cubic bath (20 x 20 x 20 cm? in volume) of silicon oil (of viscosity 12.8 Pa s at 20°C
supplied by Basildon Chemical Co. Ltd.) and the temperature of each experiment measured using
a mercury thermometer. An Anton Paar MCR 302 controlled-stress rheometer was used to directly
measure the viscosity of the silicon oil over the range of different temperatures encountered. During
a typical run, the temperature of the fluid would change by less than 0.25°C and all experiments
were conducted between 19 and 21.5°C.

B. Experimental results

A number of different experiments were conducted with all results shown in Figs. 19. A filament
of given radius (0.35-0.44 mm) was selected, cut to a given length (140—-180 mm), and then placed
into the silicon oil at the smallest separation possible (10 mm). These values were selected to try to
ensure that a < hg < L (actual range 0.0175 < a/hy < 0.044 and 0.056 < ho/L < 0.143). Care
was taken to guarantee that the filaments were initially parallel within the fluid. The filament would
then be rotated at a low angular velocity (less than 0.5 rad/s) and allowed to reach a steady-state
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FIG. 20. Plot of critical angular velocity, wy, vs. 1/L* for first crossing instability. For all data, filament
radius a = 0.42 mm, filament separation 2, = 10 mm, elastic modulus of filaments G = 1 GPa, and viscosity
of silicon oil of 12.8 Pa s (at 20 °C). Straight line is linear best fit (R*> = 0.9993) to the data, giving a constant
critical Bu = 2.14.

configuration over a period of about 15 min. If the filaments remained parallel, the angular velocity
would then be incremented by a small amount (about 0.5 rad/s) and the process repeated until the
crossing state—illustrated in Fig. 18(b)—was observed. At this point, the motor would be switched
off and the filaments physically separated and realigned. The experiment would then be restarted at
an angular velocity slightly below the critical value and allowed to rotate for an extended period of
time to confirm the critical rotation speed. Once the critical value of wy was confirmed, the filament
separation would be incremented by 1 mm and the process repeated. In this manner, data sets of
critical angular velocity for different filament radii, length, and separation could be obtained.

In Fig. 19, this data is plotted as critical angular velocity, wg, versus h% as the analytical and
numerical results predict that this should be a linear relationship all else being held equal [see
Eq. (69)]. As can be seen in Fig. 19, for sufficient small values of /L, different data sets exhibit
a good linear scaling (Pearson correlation R varying from 0.985 to 0.9985). When converted to a
critical bundling number, as shown in the inset to Fig. 19, this is seen to be approximately constant
for all data sets at Bu =2.15 4 0.2, in excellent agreement with the theoretical and numerical
values, provided that h/L remains smaller than approximately 0.09 (recall that the theory was
derived in the asymptotic limit so/L < 1). The small degree of scatter in the value of critical
bundling number arises from low values of critical angular velocity which, at these values, fluctuates
somewhat (£10%) as the motor is employed at the lowest end of its working range. Nevertheless, the
repeatability of the results is good as is illustrated in Fig. 19 for two nominally identical experiments
and the linear scaling appears robust across different filaments.

In Fig. 20, we show how the critical angular velocity varies with 1/L* for the smallest separation
possible (kg = 10 mm) to ensure that /1(/L remained in the asymptotic regime (0.056 < ho/L <
0.071). Once again, an excellent linear scaling (R? = 0.9993) is observed, in agreement with the
theory. For this experiment, the same filament was utilized, being successively cut to shorter lengths,
to ensure that the filament radius remained constant. The critical bundling number in this case is
Bu = 2.14 being, once again, in excellent agreement with theoretical and numerical results.

We note that the rig was designed such that both the crossing and bundling instabilities could be
studied; however, the larger filament deformations observed in the bundling instability resulted in
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filament failure or breakage at the point where it was bonded into the stainless steel rod. Such failure
is illustrated in the Supplemental Material where a video of the phenomena shows how the filaments
react to a constantly increasing angular velocity [55]. As a consequence, we restricted our interest
here to the first crossing instability. We confirmed that the maximum Reynolds number (=pa’w /L,
where p is the density of the fluid) remains vanishingly small, being, at most, about 2 x 10~* for the
largest diameter filament at the highest angular velocity studied. Finally, the possibility of hysteric
behavior was briefly examined and a marked effect was observed such that the filaments remained in
the crossed state at lower angular velocities when approaching “from above,” i.e., slowly reducing
the angular velocity from an already crossed state. Both effects form part of a larger experimental
study currently under way and will be reported on in detail elsewhere.

IX. CONCLUSION

In this paper, inspired by the bundling of bacterial flagella, we proposed a simple model of flow-
induced wrapping of flexible filaments. By deriving at leading order the hydrodynamic interactions
between two nearby straight elastic filaments of radius a and length L and separation h satisfying
a < hp < L, we have obtained a partial differential equation describing the shape of the filament
controlled by a single dimensionless bundling number, Bu. Based on this model, we studied the
bundling and unbundling dynamics of two or more filaments. We showed that the filaments undergo
two conformation instabilities from weakly bent to crossing and then to bundled at two critical values
of Bu. We analytically tackled the instability occurring in the first transition by building a small
Bu ansatz and a simplified two-dimensional model, leading respectively to predicted critical values
of Bu = 2.5 and 2, in good agreement with the numerically computed value of Bu = 2.1. We then
used a very simple estimate to predict the occurrence of second instability obtained numerically at
a much large value of Bu & 42. In order to validate our model and theoretical approach, we then
carried out macroscale experiments using polystyrene rods rotated in silicon oil. The experimental
results were in excellent agreement with the scalings predicted by the theory, and in particular we
measured a critical value of Bu = 2.15 % 0.2 for the transition to the crossing instability.

Beyond the far-field limit in which our model was derived, 4y >> a, the configuration where the
filaments almost touch each other has yet to be fully modelled. In our computations, we have used
repulsive interactions in order to keep the minimum distance between the filaments on the same
order of magnitude as the radius a (never less than three radii in practice). In the lubrication limit of
nearly touching filaments, hydrodynamic forces scale as O(a*?h,, /%), while in our calculation the
far-field result offers scaling of O0(a? / ho). In the cases where hy ~ a, as in our work, both forces are
O(a). If the filaments were made to approach any further, the far-field hydrodynamic forces should
be replaced by much smaller lubrication forces, and a more sophisticated model would be required
to untangle the matching of lubrication with far-field solutions.

The framework developed in this paper to calculate hydrodynamic interactions between filaments
is very general and could be extended to a number of situations where nearby slender filaments
interact through viscous fluids. The next logical step in the theoretical investigation of bacterial
bundling would be to quantify the role played by the helical geometry of bacterial flagellar filaments.
In that case, a third length scale enters the analysis, namely the radius of of the helix. As a result,
and notably different from the straight case we address here, an axial force will be generated by
each rotating helix, which will impact the flow generated and the dynamics of bundling. Beyond
the application to bacteria, we expect that our framework will be useful to tackle a wide range of
problems in soft matter and biological physics such as the flow of flexible filaments, the dynamics
of cilia arrays, and cytoskeletal mechanics.
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