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Physics of Bubble-Propelled Microrockets

Giacomo Gallino, François Gallaire, Eric Lauga, and Sebastien Michelin*

A popular method to induce synthetic propulsion at the microscale is to use 
the forces created by surface-produced gas bubbles inside the asymmetric 
body of a catalytic swimmer (referred to in the literature as microrocket). Gas 
bubbles nucleate and grow within the swimmer and migrate toward one of 
its openings due to asymmetric geometric confinement, generating a net 
hydrodynamic force which propels the device. Here, numerical simulations 
are used to develop a joint chemical (diffusive) and hydrodynamic (Stokes) 
analysis of the bubble growth within a conical catalytic microrocket and of the 
associated bubble and microrocket motion. With this computational model, 
the bubble dynamics are solved for over one bubble cycle ranging from its 
nucleation to its exiting the conical rocket, and the propulsion characteristics 
are identified as a function of all design parameters (geometry and chemical 
activity of the motor, surface tension, physicochemical constants). The 
results suggest that hydrodynamics and chemistry partially decouple in 
the motion of the bubbles, with hydrodynamics determining the distance 
travelled by the microrocket over each cycle while chemistry sets the bubble 
ejection frequency. This numerical model allows for the identification of an 
optimal microrocket shape and size for which the distance travelled per cycle 
duration is maximized.
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biomedical context to perform such tasks 
as drug delivery,[1,2] nanosurgery,[3] and 
cell sorting.[4,5] Two of the main challenges 
are to overcome the restrictions inherent 
to propulsion in highly viscous environ-
ments such as reversibility and symmetry 
breaking[6] as well as miniaturization.

Proposed designs can currently be clas-
sified into two broad categories, namely 
i) “actuated” systems which rely on an 
externally imposed forcing, most often 
at the macroscopic level, in order to self-
propel (e.g., an unsteady magnetic or 
acoustic field[7–9]) and ii) “catalytic” (or 
fuel-based) systems which rely on local 
physico-chemical processes (e.g., chem-
ical reactions at their surface) to convert 
chemical energy into a mechanical dis-
placement.[10–13] For the latter, this energy 
conversion may follow different routes, 
a popular one being the generation of 
gas bubbles whose growth and dynamics 
enable propulsion.[14]

These so-called microrockets repre-
sent one of the most promising designs 
for applications. In contrast with active 

phoretic colloids[15–18] that swim exploiting local physico-chem-
ical gradients in order to generate hydrodynamic forcing,[19] 
microrockets move due to the production of gas bubbles inside 
the asymmetric body of the swimmer. More precisely, bub-
bles nucleate and grow within the catalytic motor and migrate 
toward one of its openings under the effect of the asymmetric 
geometric confinement, thus generating a net hydrodynamic 
force which propels the device.

Such a configuration has been studied experimentally, 
focusing primarily on the rocket velocity and resulting tra-
jectory.[20–22] In parallel, the first in vivo application of this 
technology for drug delivery was recently conducted.[23] Funda-
mental understanding is still needed of the role played by the 
different hydrodynamic and chemical mechanisms involved 
as well as their couplings, in order to identify optimal design 
rules for such microrockets. Several studies have proposed par-
tial modeling of the problem, focusing more specifically on the 
motion of the bubble inside the rocket[24,25] or during and after 
its ejection.[26,27]

The purpose of the present work is to propose a detailed 
chemical and hydrodynamic analysis of the bubble growth 
within the catalytic microrocket, and associated bubble and 
microrocket motion, in order to identify the role of the different 
design parameters in setting the propulsion speed. To this 
end, we propose an accurate numerical simulation of the dis-
solved gas diffusion and fluid motion both inside and outside a 

Synthetic Propulsion

1. Introduction

Artificial microswimmers have recently attracted much atten-
tion across many scientific disciplines: from a fundamental 
point of view, they represent alternatives to biological systems 
(e.g., bacteria and algae) to characterize and control individual 
propulsion at the micrometer scale and collective organiza-
tion in so-called active fluids. They also present many oppor-
tunities for engineering applications, in particular, in the 
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conical catalytic microrocket, assuming that the predominance 
of capillary effects ensures that the bubble remains spherical 
while translating inside the conical body. Focusing specifically 
on the bubble growth within the motor, we monitor the bubble 
dynamics over one bubble cycle ranging from its nucleation 
to its exiting the conical rocket. The propulsion characteristics 
are clearly identified in terms of the design characteristics (i.e., 
geometry and chemical activity of the motor, surface tension 
phenomena, and ambient conditions).

The bubble dynamics is observed to be composed of two 
different phases, which are characterized in detail in terms of 
bubble and microrocket motion as well as hydrodynamic signa-
ture, an information of particular importance which conditions 
the hydrodynamic interaction of the artificial swimmer with its 
environment (e.g., boundaries or other swimmers) and critically 
influences its trajectory and its control. Our results further sug-
gest that for such bubbles, hydrodynamics and chemistry par-
tially decouple, the former determining the distance travelled 
by the microrocket over each cycle, while the latter determines 
the cycle duration or bubble ejection frequency. Moreover, we 
are able to identify an optimal microrocket shape and size for 
which the swimming velocity is maximized.

2. Model

The dynamics of an isolated microrocket is considered here 
in a fluid of density ρ = 103 kg m−3 and dynamic viscosity 
µ = −10 Pa s3  (i.e., water). The axisymmetric microrocket geo-
metry is that of a cone of radius R = 1 μm, aspect ratio ξ = L/R, 
thickness h/R, and opening angle θ (see Figure 1). Throughout 
this study we use cylindrical coordinates (r, z) measured in 
units of cone radius R, and set ξ = 10 and h/R = 0.2, which are 
compatible with experimental designs.[14,24,26] The inner sur-
face of the cone is chemically active and catalyzes a chemi cal 
reaction. One of the products of this reaction is a soluble gas. 
We pick O2 as a specific example, produced by the decompo-
sition of hydrogen peroxide on platinum, which diffuses in 
the liquid with molecular diffusivity 2 10 m s9 2 2D = × − − ; note 
that our mode ling approach is generic and easily applicable 
to other chemi cal situations. The production of oxygen on 
the surface of the catalyst is modeled here as a fixed molar 
flux 10 mol m s2 2 1= − − −A  (considering the experimental data in 
ref. [24]). The rate of production of the gas is large enough that 

the fluid is saturated so that a spherical gas bubble of radius 
rb(t) grows within the rocket. Throughout this study, we con-
sider the dynamics of a bubble on the axis of symmetry (see 
Section 3.1 for more details). The viscosity and density of the 
gas are negligible compared to that of the liquid, and, although 
in experimental conditions the surface tension value is often 
affected by the presence of surfactants, we initially consider γ = 
7.2 × 10−2 N m−1. In Section 3.5, we will then systematically 
vary the value of γ in order to study the effect of surfactants, 
which play a crucial role in real applications by stabilizing the 
bubble.

Based on the above characteristics and the experimentally 
measured microrocket velocity 5 10 m sc

4 1U ≈ × − − ,[14,24,26] the 
effect of inertia and gravity can be neglected (the Reynolds Re = 
ρUcR/μ ≈5 × 10−4 and Bond numbers Bo = gR2ρ/γ ≈10−6 are 
both small). The Peclet number Pe = RUc/D ≈0.2 is less than 1,  
and we may neglect gas advection and unsteady diffusion 
within the rocket as a first approximation. Finally, because the 
typical hydrodynamic stresses are negligible compared to those 
due to surface tension (the capillary number Ca = μUc/γ ≈10−5 
is small), the bubble is expected to remain spherical during its 
entire evolution, and hydrodynamic effects do not contribute to 
the bubble inner pressure.

2.1. Gas Diffusion

Following these dimensional considerations, the non-dimen-
sional dissolved gas concentration xxc( ), relative to its far-field 
concentration and measured in units of R D/A , satisfies the 
steady diffusion equation in the liquid domain Ω

∇ =c 02  (1)

and decays in the far-field (c → 0 for xx → ∞). The dissolved gas 
is produced through chemical reaction on the inner surface of 
the cone, and xxc( ) therefore also satisfies

− ⋅ ∇ = ∈∂Ωfor0 1nn xxc  (2)

− ⋅ ∇ = ∈∂Ωfor1 2nn xxc  (3)

where ∂Ω1 and ∂Ω2 refer to the inert and active cone sur-
faces, respectively (see Figure 1b). At the bubble surface, the 
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Figure 1. Microrocket: a) dissolved oxygen (O2) is produced by the decomposition of hydrogen peroxide onto a platinum-coated surface. The satu-
rated oxygen environment in the confined motor leads to bubble nucleation and growth. Bubbles exit from the larger opening while the microrocket 
is propelled in the opposite direction. b) Schematic of the problem and side view of the axisymmetric microrocket in a plane containing the central 
axis. Red solid surfaces are inert (no oxygen production), while reactive surfaces where oxygen emission occurs are shown as dashed purple lines.
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dissolved gas is in thermodynamic equilibrium with the gas 
pressure inside the bubble, and c is therefore given by Henry’s 
law c = Hccpb, where γ=H H D Rcc cp / 2A is the nondimensional 
volatility constant and pb is the pressure inside the bubble 
measured in units of γ/R. The volatility constant is an intrinsic 
property of the dissolved gas (e.g., Hcp = 4 × 10−7 kg m−3 Pa−1 
for oxygen in water[28]). The bubble pressure pb is given by 
Laplace law (Ca ≪ 1), so that in non-dimensional form

β ∂= +





∈ Ω2
for

b

c H
r

cc
33xx  (4)

where β γ= p R/0  is the ratio between the dimensional ambient 
pressure p0 and capillary pressure. Equations (1)–(4) determine 

xxc( ) uniquely. Using this solution, the flux of dissolved gas into 
the bubble is computed as
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Using mass conservation of the gas species and the ideal 
gas law, the time evolution of the bubble radius is finally deter-
mined in non-dimensional form as
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where the time is measured in units of πγ T4 /3 0AR , 
= − −8.314 J mol K1 1R  is the universal gas constant and T0 ≈ 293 K  

is the ambient (room) temperature.

2.2. Hydrodynamics

The change in bubble size imposed by the chemical reaction and 
gas diffusion dynamics, Equation (6), sets the fluid into motion 
within the rocket. Since Re ≪ 1, the non-dimensional fluid 
velocity u and hydrodynamic pressure field p (now measured 
in units of πγT R3 /40AR  and µ πγT3 /40AR , respectively) satisfy 
the incompressible Stokes’ equations in the liquid domain Ω

uu uu−∇ + ∇ = ∇ ⋅ =p 0, 02  (7)

The cone and bubble are translating along the axis of sym-
metry with respective velocities c cz zUU ee=  and b bz zUU ee= , with 
zc(t) and zb(t) being the axial positions of the cone’s narrow 
opening and of the bubble center, respectively. One of the main 
purposes of this paper is to compute the time-dependent values 
of both UUc and UUb. At the surface of the solid cone, the no-slip 
boundary condition imposes

= ∈∂Ω ∂Ωfor ,c 1 2uu UU xx  (8)

and the hydrodynamic flow decays in the far-field (u → 0 and 
p → p0 as xx → ∞). The bubble is inflating while translating, 
and its surface is free of any tangential stress, so that mixed 
boundary conditions must be satisfied

d
d

and ( ) forb
br

t
0 3uu nn UU nn II nnnn nn xxσσ⋅ = ⋅ + − ⋅ ⋅ = ∈∂Ω  (9)

with nn being the normal unit vector to the bubble surface and s 
is the stress tensor. The coupling between chemistry and hydro-
dynamics enters only in Equation (9) through the inflation rate. 
The problem is closed by imposing that the cone and the bubble 
are each force free during their axisymmetric translation along 
the axis (inertia is negligible here, as explained previously)

( ) d = ( ) d = 0
1 2 3

S Sz znn ee nn ee∫ ∫σσ σσ⋅ ⋅ ⋅ ⋅
∂Ω + ∂Ω ∂Ω

 (10)

a closure relationship which implicitly determines the instanta-
neous bubble and cone velocities.

2.3. Numerical Method and Validation

Both the diffusion (Laplace) and hydrodynamic (Stokes) equa-
tions are solved numerically using axisymmetric boundary 
element methods. The boundary integral equation for the 
axisymmetric solute concentration on the boundaries is classi-
cally written for 0xx ∈∂Ω  as (see Equation (4.5.5) in ref. [29])

∫
∫

= − ⋅ ∇

⋅ ∇
∂

∂

Ω

Ω

( ) 2 ( , )[ ( ) ( )] ( )d ( )

+2 ( )[ ( ) ( , )] ( )d ( )

0 0

PV

0

c G c r l

c G r l

xx xx xx nn xx xx xx xx

xx nn xx xx xx xx xx
 (11)

where ( , )0G xx xx  is the axisymmetric Green’s function of the 
Laplace equation (see Equation (4.5.6) in ref. [29]), PV denotes 
the principal-value integral, and nn is the normal vector pointing 
into the liquid domain Ω, whose boundaries ∂Ω consist in the 
cone and bubble surfaces. Discretizing these boundaries into 
N piecewise constants elements, and applying boundary con-
ditions, Equations (2) and (3), Equation (11) provides a N × N 
linear system for the value of the concentration on each element, 
which is solved using classical matrix inversion techniques.

Similarly, using the fundamental integral representation of 
Stokes flows,[30] the fluid velocity u is expressed on the bounda-
ries ∂Ω as

4 ( ) ( , ) ( )d ( )

( ) ( , ) ( )d ( )

0 0

0

PV

∫
∫

π = − ⋅
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∂

∂

Ω

Ω

l

l

uu xx MM xx xx ff xx xx

xx qq xx xx uu xx xxnn
 (12)

where M and q are the axisymmetric Stokeslet and associated 
stress, respectively (we follow the notation of ref. [30]) and 
ff nnσσ= ⋅  is the traction acting on the boundaries. Equation (12) 
can be rewritten more conveniently on the cone and bubble 
surfaces, respectively, by using the no-slip and mixed-boundary 
conditions, respectively, Equations (8) and (9), as[31,32]
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where urel is the relative velocity of the bubble surface to its 
center of mass whose normal component is set by the bubble 
growth rate, ⋅ = reluu nn br . The principal value integral appears only 
in Equation (13), when 0xx  belongs to the integration path ∂Ω3.

When discretizing the boundaries into N piecewise constant 
elements, Equations (13) and (14), together with the force-
free conditions, Equation (10), provide a (2N + 2) × (2N + 2) 
linear system for i) the axial and radial components of the fluid 
traction on the cone surface, ii) the tangential relative fluid 
velocity and normal traction on the bubble surface, and iii) the 
bubble and cone axial velocities. A particular technical point 
deserves special attention: when 0xx xx→  the Green’s function in 
Equations (11)–(14) become singular and special (but classical) 
treatment is needed in order to maintain good accuracy.[29,30]

The Laplace and Stokes solvers described above were vali-
dated by computing the chemical field around a Janus particle 
and its swimming velocity due to diffusiophoretic effects and a 
good agreement was found with the analytical solution.[33]

The bubble grows within a confined environment. As observed 
in Section 3, the liquid gap between the bubble and cone may 
become small during the bubble formation and expulsion. Adap-
tive mesh refinement is therefore needed to maintain sufficient 
numerical accuracy; the elements are split into two when their 
size is larger than the gap. However, accurately resolving the 
hydrodynamic stresses when the bubble approaches the cone 
wall would require a prohibitive number of mesh elements for 
thin gaps. The physical effect of these hydrodynamic lubrica-
tion stresses is however essential to prevent overlap between the 
bubble and cone surfaces. We therefore introduce short-ranged 
repulsive forces to prevent such overlap numerically. The force-
free conditions along the axial direction now write

2 ( ) d = –2 ( ) d
1 2 3

F r l r lz znn ee nn ee∫ ∫σσ σσπ π= ⋅ ⋅ ⋅ ⋅
∂ ∂ ∂Ω + Ω Ω

 (15)

where, similarly to what was done in ref. [34], the axial repulsive 
force F is defined as
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where dd is the minimum distance vector between the bubble 
and the cone and dd=d || ||. This simply adds a repulsive inter-
action between the bubble and cone and the global system 
remains overall force free. In the following, B = 107 and 
δ = 0.1 are used; varying these parameters does not significantly 
affect the numerical results. The system of first-order differen-
tial equations for rb(t), zc(t), and zb(t) is marched in time using 
Matlab’s ODE23t routine, which uses a semi-implicit, adaptive 
time-stepping scheme.

3. Results

3.1. Dissolved Gas Distribution and Bubble Growth

When θ = 0°, the microrocket is cylindrical and the concentra-
tion of dissolved gas is left–right symmetric with a maximum in 
the center of the microrocket due to the geometric confinement 
(Figure 2a). When θ ≠ 0°, the left–right symmetry is broken 
and the maximum concentration moves toward the smaller 
cone opening (Figure 2b). It is worth noting that the overall 
concentration level becomes smaller due to the increased dis-
solved gas diffusion out of the cone resulting from the weaker 
confinement.

We are now interested in understanding how the chemical 
field generated by the microrocket impacts and controls the 
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Figure 2. Dissolved gas concentration inside and around the microrocket for a) θ = 0° and b) θ = 5°. c) Effect of the presence of the bubble on the local 
dissolved gas concentration for θ = 0°. The top panel is the concentration with no bubble while the central and bottom panels show the concentration 
around a growing i.e. (1) or shrinking i.e. (2) bubble, and d) the associated evolution of the bubble radius. The black arrows indicate the direction of 
the diffusive flux of dissolved gas. e) Critical radius as a function of bubble position along the axis for θ = 0° obtained numerically results (with error 
bars) or from the estimation rcrit = 2Hcc/(c(z, 0) − βHcc). For all panels, Hcc = 0.1 and β = 1.
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growth of a bubble. To this end, it should be reminded that a 
gas bubble placed in a uniform concentration of dissolved gas 
shrinks (respectively grows) when its surface concentration cb 
is higher (respectively lower) than the background concentra-
tion c∞. Namely, when cb < c∞, the diffusive flux of gas species is 
oriented toward the bubble and vice versa. Since cb decreases as 
the bubble radius rb increases, see Equation (4), large bubbles 
are more likely to grow than small bubbles.

In the microrocket geometry, a bubble located outside the 
cone will shrink more easily than the one located inside, due to 
the lower level of gas concentration outside the rocket. But even 
when a bubble is inside the conical microrocket, it is still expected 
to shrink if its concentration is higher than the background con-
centration established by the microrocket (e.g., for small enough 
bubbles). The concentration of the bubble surface is set by the 
thermodynamic equilibrium at the bubble surface (Henry’s law, 
Equation (4)) and it increases when Hcc (inversely proportional 
to the surface flux A) or β increases. Based on experimental 
estimates,[24,27] we set Hcc = 0.1 and β = 1, and numerically com-
pute the net flux of dissolved gas into the bubble in order to 
determine whether a bubble will grow or shrink depending on 
its radius and axial position. For each bubble position, a critical 
radius rcrit(zb) is identified as the minimum radius for which 
bubble growth is observed at a fixed location (Figure 2e).

Throughout this study, an axisymmetric problem is consid-
ered where the bubble center is located on the axis of symmetry. 
This assumption seems reasonable when considering an iner-
tialess bubble translating in a channel,[35] although it neglects 
the initial bubble migration from the catalyst surface, where it 
most likely nucleates, toward the axis. Bubble nucleation on a 
catalyst surface, considered in some recent studies,[28] is a com-
plex physico-chemical phenomenon which is beyond the scope 
of the present study that focuses on the coupling of gas diffu-
sion and hydrodynamics resulting in the rocket propulsion.

Figure 2c shows the dissolved gas concentration for a bubble 
of radius slightly larger (respectively smaller) than rcrit, corre-
sponding to a growing (respectively shrinking) bubble. The gas 
concentration around the bubble is locally lower (respectively 
higher) due to the bubble presence, as a result of the diffusive flux 
of gas toward (respectively away from) the bubble (the flux direc-
tion is indicated with arrows in the lower panels of Figure 2c).

The critical radii found numerically are small compared to the 
cone size. Assuming further that the bubble is small compared to 
the local length scale for the gas concentration changes with no 
bubble, the bubble is expected to grow if its surface concentration, 
Equation (4), is lower than the local background concentration 
(i.e., when the bubble is not present). This provides an estimate 
of the critical radius as rcrit = 2Hcc/(c(z, 0) − βHcc). This estimate 
agrees qualitatively with the numerical solution (see Figure 2e); 
the estimated critical radius is of the same order as the numer-
ical solution, and is smaller in the middle of the motor, where the 
concentration is higher. The quantitative discrepancy most likely 
arises from finite-size effects of the bubble; while critical radii are 
small compared to the cone radius, they are not negligible over the 
characteristic length scale introduced by the local gas concentra-
tion gradients within the conical motor.

In the following simulations, the initial bubble conditions 
(radius and position) are chosen as those for the smallest bubble 
that can grow; its position zb(0) and radius rb(0) are identified 

by the location of the minimum of the critical radius rcrit along 
the axis and the corresponding critical radius. A small constant  
C0 = 0.1 is added to rb(0) in order to ensure bubble growth and 
avoid spurious bubble shrinking due to numerical inaccuracy.

3.2. Definition and Dynamics of the Bubble Cycle

Starting from the initial conditions described in the previous 
section, the diffusion and hydrodynamic equations are solved 
numerically, and the bubble and motor displacements are 
investigated during a single “bubble cycle,” i.e., the growth of 
a single bubble. This bubble cycle is defined starting from the 
initial condition described previously (nucleation) and finishing 
when the bubble center exits the cone (Figure 3a). The bubble 
cycle is shown in Video S1 of the Supporting Information.

The evolution of the bubble and cone displacements zb(t) and 
zc(t), as well as that of the bubble radius rb(t), is shown over one 
bubble cycle in Figure 3b,c for fixed Hcc, β, and cone geometry. 
The bubble is initially small and not confined by the cone geo-
metry. It is growing, thanks to the absorption of dissolved gas by 
diffusion at its surface, thereby lowering the concentration in its 
vicinity. In this first phase, the bubble is not confined geometri-
cally; the bubble growth pushes fluid out through the small and 
large openings of the cone, and both the cone and bubble dis-
placements are small. Hydrodynamically, the microroket is a so-
called pusher during this phase (see Figure 3f). Like swimming 
bacteria, it pushes fluid away along its axis of symmetry while 
pumping fluid toward it in the equatorial plane.[6]

A transition to a second phase is observed for t ≈0.12 when 
the bubble has grown sufficiently for the confinement by 
the walls of the motor to become significant. As it continues 
growing under the effect of the dissolved gas diffusion, the 
bubble translates rapidly toward the larger opening. Figure 3b 
shows that most of the cone displacement occurs during this 
second phase. Because of the fast relative translation of the 
confined bubble with respect to the motor, fluid is sucked in 
from the smaller opening and pushed out of the rocket at the 
larger opening (Figure 3e). Overall, the hydrodynamic signa-
ture of the microrocket is reversed in this phase as it now acts 
as a so-called puller although higher-order contributions to the 
hydrodynamic signature create more complex flow structures 
in the vicinity of the rocket such as the recirculation zone in 
the back (see Figure 3g). We conjecture that these different 
(and unsteady) flow signatures might play an important role in 
the flow mixing generated by the displacement of the micro-
rocket.[36] When the bubble exits the cone, the bubble cycle 
ends. Following the bubble motion toward the exit, the con-
centration of dissolved gas within the microrocket recovers its 
initial levels, allowing for a new bubble cycle (Figure 3d).

3.3. Influence of Physico-Chemical Properties on the 
Microrocket Displacement

As emphasized above, the chemical properties of the catalyst and 
gas species (e.g., the flux of dissolved gas A or it volatility Hcp) and 
the background pressure p0 influence the magnitude of the dis-
solved gas concentration within the microrocket and at the bubble 
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surface. The effect of such quantities, and of their nondimensional 
counterpart Hcc and β, on the motor and bubble dynamics is inves-
tigated in Figure 4 for a given rocket geometry.

Increasing the value of Hcc (see Figure 4a,c) is equivalent to 
reducing the chemical activity of the catalyst, A, or increasing 
the gas volatility. For instance, recent experimental studies 
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Figure 4. Influence of the physico-chemical parameters for θ = 2°. Evolution in time of a,b) the bubble position zb(t) and c,d) the cone position zc(t) 
for different values of a,c) Hcc and b,d) β. In panels (a) and (c) β = 1 and in panels (b) and (d) Hcc = 0.1. In each panel, the figure on the right shows 
the evolution of zb or zc with respect to rb.

Figure 3. Chemical and bubble dynamics over one bubble cycle for Hcc = 0.1, β = 1, and θ = 2°. a) Sketch of one bubble cycle, starting when the bubble 
is in the initial position and ending when it exists the cone. b,c) Time dependence of the cone and bubble positions. d) Time dependence of the bubble 
radius rb. d,e) Snapshots of the dissolved gas concentration and velocity field (streamlines and intensity) for the four instants in panels (b) and (c). 
f,g) Large-scale velocity field which is a pusher/puller when the bubble is nonconfined/confined while the arrows indicate the swimming direction.
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have shown that enhanced surface activity can be achieved by 
varying the roughness of the catalysts.[37,38] Although we con-
sider in our model only smooth surfaces, such effects could be 
described, as a first approximation, by a decrease of the effec-
tive value of Hcc. Figure 4a,c shows that the total displacement 
of the bubble over one cycle is almost unchanged when Hcc 
is varied. Changing Hcc modifies however the duration of the 
bubble cycle. Moreover, for Hcc = 2, the bubble stops inflating 
before leaving the cone (the diffusive flux of gas at its boundary 
is not sufficiently large); in that case, the bubble cycle is not 
closed and the microrocket will not be able to reach a contin-
uous motion. Similarly, the time required for a full bubble cycle 
is observed to increase with β, but this does not significantly 
affect the total displacement (Figure 4b,d).

This independence of the kinematic displacement from the 
chemical characteristics is an illustration of the decoupling 
between the chemical and hydrodynamic problems due to the 
negligible deformation of the spherical bubble. The shape of 
the bubble is here solely described by the growth of its radius, 
and because the bubble grows monotonously, a bubble cycle can 
be parameterized by the bubble size (rather than time) starting 
from the initial critical radius and up to its final radius at the 
exit. At leading order, the latter is solely determined by the cone 
geometry since the bubble surface is very close to the wall in 
the second part of the cycle. Starting from given initial condi-
tions, the subsequent bubble and motor displacements depend 
only on the bubble radius (see images on the right of each panel 
of Figure 4), and hydrodynamics and geometry are observed to 
fully determine the total displacement of the motor, Δzc.

In contrast, the chemical problem, set by the properties 
Hcc and β, does affect the bubble growth rate by setting the 
amplitude of the dissolved gas flux, Q, and the duration of the 
bubble cycle, ΔT, is therefore set by the chemical and diffusion 
dynamics. This decoupling between the hydrodynamic and 
chemical problems obviously breaks down when the bubble is 
unable to exit the cone (e.g., for large values of Hcc).

3.4. Microrocket Displacement and Average Velocity 
for Different Opening Angles

With this understanding, we now turn to the role of motor 
geometry and study the dependence of the average velocity, 

= ∆ ∆U z T/c , on the opening angle, fixing the values Hcc = 0.1  

and β = 1. The cone displacement is plotted as a function of 
time for different opening angles θ on Figure 5. The total 
displacement achieved over one bubble cycle is observed to 
increase with the opening angle, θ, whereas the ejection fre-
quency defined as 1/ΔT decreases with θ (Figure 5b). As a 
result, the average velocity U becomes negligible for small and 
large opening angles, because either the displacement is too 
small (small angles) or the cycle period diverges (large angles). 
As a result, an optimal opening angle θopt = 10° is identified for 
which U is maximum, as shown in Figure 5c.

3.5. Optimal Microrocket Design

In Figure 6a, we extend the results of Section 3.3 and plot the 
variation of the average velocity with the physico-chemical para-
meters Hcc and β. Given the results of Figure 4, it comes as no 
surprise that the average velocity is a decreasing function of both 
Hcc and β, since an increase in either of these parameters effec-
tively increases the bubble cycle period until it becomes infinite 
(i.e., the bubble stops inflating before reaching the cone exit).

Although this map provides useful information and physical 
insight, since both Hcc and β combine different parameters that 
are critical in experimental applications, it is not sufficient to 
disentangle the role of dimensional characteristics such as the 
cone radius, R, the chemical activity, A, or surface tension, γ, 
which can be tuned during the fabrication process of the motor 
(R, A) or by using surfactants (γ). In Figure 6a, we overlap 
lines following the variations R, γ and A, respectively, all other 
parameters being held constants and equal to those introduced 
in Section 2, starting from Hcc = 0.1 and β = 1 for which a 
motor radius R = 1 μm and surface tension γ = 7.2 × 10−2 N m−1 
lead to an average dimensional velocity 4.2 10 m sdim

4 1U = × − −  
(we refer to this in the following as the “reference conditions”). 
The variations of the corresponding average velocity, U , along 
these lines are shown in Figure 6b,c, together with the corre-
sponding dimensional velocity, Udim. One should note that the 
motor radii maximizing the nondimensional and dimensional 
average velocities differ slightly, the former reaching its peak 
for a radius slightly larger than the reference configuration, 
while the latter peaks at lower values of R. Similarly, the non-
dimensional velocity increases monotonically with surface ten-
sion γ, while the dimensional velocity presents a maximum 
at intermediate values of γ. This is a result of the reference 

Adv. Funct. Mater. 2018, 28, 1800686

Figure 5. Impact of the value of the opening angle, θ, on the propulsion over one cycle for Hcc = 0.1 and β = 1. a) Evolution with time of the microrocket 
displacement for different opening angles. b) Influence of the opening angle, θ, on the total cone displacement over the cycle, Δzc, and bubble ejection 
frequency, 1/ΔT. c) Corresponding evolution of the average cone velocity, = ∆ ∆/cU z T . The maximum value is reached for θ = 10°.



www.afm-journal.dewww.advancedsciencenews.com

1800686 (8 of 10) © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

velocity scale chosen here, namely πγR T3 /40AR  so that 
γU R U~ ( / )dim . Similarly, since U  remains almost constant with 

A (see Figure 6a), U U~dim A  increases monotonically with A 
as is observed experimentally.[26]

Focusing on the influence of the microrocket size, an 
increase of R leads to a decrease in the nondimensional velocity 
U as it inhibits bubble growth (β is increased, corresponding to 
an increase in the relative influence of the ambient pressure on 
the bubble inner pressure and surface concentration). However, 
increasing R also leads to a larger dimensional velocity for fixed 
Hcc and β. The competition of these two mechanisms results to 
negligible values of the dimensional velocity for both small and 
large R, and in the existence of an optimal motor radius.

We now repeat such a numerical experiment for dif-
ferent opening angles θ, retrieving a family of curves R U( , )dim  
(Figure 7a) and identifying for each value of θ, the optimal 
dimensional velocity, Udim

max, and the optimal radius, Rmax. As 
the cone angle increases, the maximum average velocity Udim

max is 
reached for a smaller cone radius, i.e., Rmax is a decreasing func-
tion of θ (Figure 7b). In order to work in optimal conditions, 

larger microrockets are thus required for smaller opening 
angles. Furthermore, a global optimum = × −U 4.78 10dim

max 4 m s−1 
is identified for θ = 10°, to which corresponds a cone radius 
Ropt ≈1.2 × 10−6 m.

3.6. Perspectives: Many Bubbles Interaction

In this section, we show preliminary results for the propulsion 
of the microrocket in the case where many bubbles are present 
in the cone. This scenario is of interest for real applications 
where a train of closely spaced bubbles is observed to exit the 
microrocket.

The results presented in the following use the same para-
meters as in Section 3.2 and more systematic investigations 
will be addressed in our future work. In order for the problem 
to remain tractable, we also enforce two additional rules:

•	 After the nucleation of the first bubble, which occurs as 
explained in Section 3.1, subsequent bubbles nucleate 

Adv. Funct. Mater. 2018, 28, 1800686

Figure 7. Optimal microrocket design. a) Evolution of the average dimensional velocity with the cone radius around the reference conditions for 
different opening angles. b) Evolution with cone opening angle θ of the average velocity, dim

maxU , and the corresponding cone radius at which the maximum 
is attained, Rmax.

Figure 6. Effect of the microrocket radius, R, chemical activity, A, and surface tension, γ, on the propulsion. a) Average microrocket velocity (nondimen-
sional) versus Hcc and β; the red diamond corresponds to the reference conditions Hcc = 0.1 and β = 1, and colored lines correspond to variations of 
the indicated dimensional parameter, all other remaining fixed. b,c) Evolution of the average microrocket velocity, nondimensional, U, and dimensional, 

dimU , with b) motor radius R and c) surface tension, γ, around the reference conditions denoted by a red diamond (see panel (a)).
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on the axis when the concentration exceeds a threshold 
value, cN, with radius rb(0) = 2Hcc/(cN − βHcc) + 0.1, simi-
larly to Section 3.1. The value cN = 20 was chosen as an 
illustration; note that this value is not derived from ther-
modynamic considerations, as it is challenging to pre-
cisely determine how bubble nucleation occurs on catalyst 
surfaces.[28] Instead, the value of cN is a tuning parameter 
selected in order to obtain a bubble ejection frequency com-
patible with the one observed in experiments.[24]

•	 The presence of multiple bubbles increases significantly 
the computational complexity of the system; thus, the num-
ber of coexisting bubbles is limited to two. Namely, when 
a third bubble nucleates, we eliminate the bubble farthest 
away from the cone. We expect that this assumption will 
not strongly affect these preliminary results, because elimi-
nated bubbles have already exited the cone and therefore 
weakly contribute to the cone displacement and the chemi-
cal environment within the cone. In fact, when out of the 
cone, bubbles receive a small chemical flux (or even shrink, 
see Figure 8b) which leads to a small fluid displacement 
(see the intensity of the fluid velocity in Figure 8d, snap-
shots 3 and 4).

Under these two rules, we illustrate our computational 
results for θ = 2°, Hcc = 0.1, and β = 1 in Figure 8. The first 
part of the simulation is identical to the results illustrated in 
Section 3.2, namely a slow cone displacement when the first 
bubble B1 is not confined followed by a sharp cone accelera-
tion during the confined phase. At time t = 0.152, a second 
bubble B2 nucleates because max(c(z, 0)) > cN. Running very 
long simulations, we observe that from this instant, the 

dynamics repeats periodically roughly every 0.16 unit of time 
(see Video S2 in the Supporting Information). In order to inves-
tigate the microrocket dynamics, we can therefore focus on the 
periodic dynamics that defines the bubble cycle (shaded region 
in Figure 8a,b and corresponding snapshots in Figure 8c,d).

The nucleation of bubble B2 lowers the local concentra-
tion but does not strongly affect the flow because of its small 
size compared to B1. In fact, B1 keeps translating toward the 
larger opening, generating a flow that drags B2 along. Subse-
quently, B1 exits the cone and B2 inflates, but it does not yet 
feel the confinement; in this phase, the cone displaces slowly 
because none of the two bubbles are geometrically confined. 
When B2 becomes larger, it translates because of the geomet-
rical confinement and pushes B1 out of the cone. Because B1 
is now completely outside the cone, it absorbs less chemical 
flux and eventually shrinks. Finally, B2 keeps inflating and 
translating while the concentration in the left part of the 
cone recovers its original higher level. Shortly after t = 0.31, 
a third bubble B3 nucleates and the bubble cycle starts again. 
The computed average microrocket velocity is 4.6U ≈ , which 
is larger than that obtained in Section 3.2, where 4U ≈ . This 
difference is mostly due to the fact that, when B2 is inside 
the cone but is not geometrically confined (see snapshot 2 in 
Figure 8c,d), B1 is still partially confined and provides thrust 
to the microrocket. This situation is considerably different 
from the one-bubble case, where almost no thrust is provided 
while the bubble is not confined. In fact, the displacement 
attained when the bubbles are not strongly confined is consid-
erably smaller in the one-bubble case (Δzc = 0.017 from t = 0 
to t ≈0.12) compared to the two-bubble case (Δzc = 0.163 from 
t = 0.155 to t ≈0.29).

Adv. Funct. Mater. 2018, 28, 1800686

Figure 8. Chemical concentration and bubble dynamics when many bubble are present in the cone for the parameters Hcc = 0.1, β = 1, and θ = 2°. 
a) Time dependence of the cone position, with the shaded region highlighting one bubble cycle. b) Time dependence of the bubble radius, rb, with 
each line describing a different bubble. c,d) Snapshots of the dissolved gas concentration and velocity field (streamlines and intensity) at the four 
instants shown in panel (a).
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4. Conclusion

In summary, in this paper we used numerical simulations to 
develop a joint chemical and hydrodynamic analysis of the bubble 
growth within a conical catalytic microrocket and of the associ-
ated bubble and microrocket motion. Our computations revealed 
a number of important physical features. First, we found that 
most of the displacement of the microrocket is attained when 
the bubble is strongly confined by the conical-shaped swimmer. 
Second, we showed that the chemical and the hydrodynamic 
problem can be decoupled: the chemical problem determines 
the bubble ejection frequency while the hydrodynamic problem 
determines the microrocket displacement. Finally, we system-
atically studied the microrocket swimming velocity, finding the 
optimal cone shape and size which maximize it.

In future work, we plan to explore the role of the bubble 
deformation and the interaction between many bubbles, both 
relevant to real applications where a lot of bubbles are seen 
to be emitted close to each other. Preliminary computational 
results seem to indicate that, although the presence of many 
bubbles slightly modify the quantitative performance of the 
motor, it does not alter the qualitative picture obtained for the 
one-bubble case where a periodic bubble cycle establishes and 
essentially all the microrocket displacement is obtained when 
bubbles are geometrically confined by the conical-shaped 
swimmer. Overall, our results shed light on the fundamental 
chemical and hydrodynamic processes of the propulsion of cat-
alytic conical swimmers and will help the experimental design 
of optimal bubble-propelled microrockets.
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