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The rotary motor of bacteria is a natural nano-technological marvel that enables cell locomotion by

powering the rotation of semi-rigid helical flagellar filaments in fluid environments. It is well known that
the motor operates essentially at constant torque in counter-clockwise direction but past work have
reported a large range of values of this torque. Focusing on Escherichia coli cells that are swimming and
cells that are stuck on a glass surface for which all geometrical and environmental parameters
are known (N. C. Darnton et al.,, J. Bacteriol., 2007, 189, 1756-1764), we use two validated numerical
methods to compute the value of the motor torque consistent with experiments. Specifically, we use
(and compare) a numerical method based on the boundary integral representation of Stokes flow and
also develop a hybrid method combining boundary element and slender body theory to model the cell
body and flagellar filament, respectively. Using measured rotation speed of the motor, our computations
predict a value of the motor torque in the range 440 pN nm to 829 pN nm, depending critically on the
distance between the flagellar filaments and the nearby surface.
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embedded in a 3-layered cell wall. Structures outside the cell
wall include a rigid helical flagellum attached to the motor via a
short elastic hook, while those inside include a basal body and
a short rod. The rod acts as a drive shaft and rotates the elastic

1 Introduction

The study of bacteria is not only important in order to understand
many pathogenic diseases, it also serves as a model system for

microorganisms locomotion' and their response to environ-
mental cues.’” Bacteria are present in great abundance on Earth
in all kinds of environments ranging from living creatures such
as plants and animals to non-living bodies like soil,® rock,”
oceans® and sea ice.’

Bacteria have devised different techniques to perform locomotion
contingent on their surrounding. As many as six different types
of translocation have been reported in literature,'>"" namely
(i) swarming, requiring excessive development of flagella;
(ii) swimming, depending crucially on interactions between
flagella and fluid; (iii) gliding, dependent on an intrinsic motive
force; (iv) twitching, using an intrinsic motive force on type IV
pili (slender appendages that attach to substrates and pull on
the cell body); (v) sliding, requiring growth and reduced friction;
and (vi) darting, dependent on growth of capsulated aggregates.

In this article, we consider the swimming mode of bacteria
locomotion and focus on the model organism Escherichia coli
(E. coli). A lot is known about this bacterium from the point of
view of genetics and biochemistry, which enables researchers to
induce behavioural changes and elucidate its motility mechanisms."

The locomotion of E. coli is powered by rotary motors
rotating helical flagellar filaments, see Fig. 1. Each motor is
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hook which plays the role of a universal joint, so that it can
rotate the semi-rigid flagellar filament even in situations when
the rod and filament are not aligned coaxially.™*?
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Fig. 1 Schematic diagram of the bacterial flagellar motor (adapted from
Berg!?). The primary components include a rigid filament attached to an
elastic hook rotated by torque generating protein units MotA and MotB
that act as stator while the MS-ring and C-ring form the rotor.
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Directional reversibility of the rotary motor is the main
mechanism behind the “run and tumble” motion of bacteria
searching for favourable environments.’® On an average, an
E. coli cell has four such motors located randomly on its
surface."* During a run event, left-handed flagella arising from
these motors form a helical bundle behind the cell and rotate
counter-clockwise (CCW), when viewed from behind the cell,
thereby pushing it forward. To initiate a tumble event, at least
one of the motors starts to rotate clockwise (CW), the flagellum
attached to this motor comes out of the bundle and transforms
from a left-handed to a right-handed helical shape, still pushing
the cell forward. This enables the cell to change its course of
motion. After a short period, the reversed motor switches back
to CCW rotation and the flagellum returns to its normal left-
handed configuration, rejoining the bundle.™

Torque in the motor is generated by interactions between
the rotor (MS-ring and C-ring) and the stator (MotA and MotB
proteins) units, the latter functioning as proton channels, see
illustration in Fig. 1. Experiments have reported at least 11 torque
generating units, each consisting of a stator.'® Proton flux
through the proton channels due to an electrochemical gradient
causes the rotor to rotate. The work done per unit charge that a
proton does in crossing the cell membrane is called the proto-
nmotive force (pmf). Though the motor’s speed is known to be
proportional to pmf, the exact mechanism of torque generation is
still an active area of research.”'® Central to the work in our paper
is the exact value of the torque generated by the motor. A variety of
experimental methods have been used to measure the torque-
speed relationship for a number of bacteria species.'” For E. coli,
the torque is approximately constant up to a speed of a few 100 Hz,
before rapidly decreasing to zero at a critical zero-torque speed.

A wide range of values have been reported in the literature
for the constant torque at frequencies below the constant
speed. Early work indirectly measured the motor torque using
(i) electrorotation®® where the cells are made to rotate using
electric fields; (ii) tethered cell experiments'® where the flagella
is tethered to a glass surface and the cell body rotates about a
fixed point; and (iii) tethered bead experiments'> where the
flagellar filament is sheared off and a spherical bead is attached
to the remaining flagellar stub. The relatively slower rotation
speeds and simpler spherical geometry make it easier to track the
rotation speed of these beads, allowing to obtain an estimation of
the value of the motor torque. More recent experiments® used
spherical magnetic beads to replace the filament and an external
applied magnetic field to stop them from rotating, allowing
measurement of the stall motor torque.

Alternatively, the value of the motor torque could be inferred
directly by combining modelling with a measure of the rotation
speed of flagellar filaments of a swimming E. coli. Swimming
bacteria typically actuate independently between four and
seven filaments which are gathered behind the cell in a thick
helical bundle,'* a geometrical setup which presents modelling
challenges due to filament-filament interactions.>' A clever
alternative was reported by Damnton et al** who, in addition to
focusing on swimming cells, considered bacteria stuck on a glass
surface which only rotate a single flagellar filament. This simplified
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situation makes it an ideal case to analyse from a modelling and
numerical simulation viewpoint.

In this paper, we combine the boundary element method
and slender body theory in order to develop a mathematical
model of the flagellated bacterium £. cou and numerically
simulate the experiments of Darnton et al.”* We first address
the case where the cell is freely swimming, despite some
experimental unknowns, in order to compare the experimental
observables with those obtained in the numerics. We then
consider the situation where the cell body is stuck on the wall,
a configuration where all characteristics of the experiments are
precisely known. Boundary element methods have long been used
to study problems in bacteria locomotion including flagellar
propulsion,?® interaction between two swimming bacteria,*
bacterial behaviour and entrapment close to surfaces,”>*® and
locomotion using multiple flagella.”” Similarly, slender-body
theory has been used to address problems in bacterial swimming
such as bacterial polymorphism and optimal propulsion®® and
microscale pumping by bacteria near walls.® In addition to our
two numerical studies, we compare our results with two recent
attempts to simulate the experiments of Darnton et al.>® using
mesoscale hydrodynamic simulations® and bead-spring model.**

Our paper is organised as follows. We describe the geometry
and parameters of the problem in Section 2.1 and the basics of
rigid body boundary element method in Section 2.2. We next
introduce the two computational approaches used in this
study, based solely on boundary element method in Section
2.3 and a hybrid method based on boundary element and
slender body theory in Section 2.4. We validate the two models
with existing semi-analytical results in Section 2.5. The results
of our numerical simulations are presented in Section 3, first
for free-swimming cells, and then for cells stuck on surfaces,
followed by a comparison with previous work in Section 4 and
discussion in Section 5. The results of various tests performed
to validate the numerical method against tractable analytical
solutions and details of mesh generation are provided in appendices.

2 Model: geometry and computations
2.1 Geometry and parameters

We use the geometrical dimensions of bacteria reported in the
experiments of Darnton et al.>* The cell body is 2.5 um long and
0.88 um wide (see Fig. 2). The length of the helical flagellar

Fig. 2 Schematic diagram of a bacterium with a cell body modelled as a
prolate spheroid of length 2a, width 2b and a rigid tapered helical flagellum
of pitch 4, radius R, axial length L, filament cross-sectional radius p, placed
at a distance d parallel to a rigid wall and tilted at an angle 0 with respect to
the bottom surface.

This journal is © The Royal Society of Chemistry 2018
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filament measured along its centreline is ~7 um and the radius
of the helix is 0.2 um. The viscosity of the aqueous medium
where they reside ranges from u = 0.931 cP to 3.07 cP. In the
case of free-moving cells, the swimming speed of bacteria and
rotational velocity of the flagellar filaments are measured to be
29 um s~ ' and 21 x 131 Hz respectively. Taking the density of
water to be 1000 kg m >, the corresponding Reynolds numbers
for translation and rotation are ~7 x 107> and ~3 x 10>,
respectively, small enough that fluid inertia can be neglected.
This allows us to describe fluid motion around the bacteria
using the incompressible Stokes equation,

~Vp +uVu=0, Vu=0, (1)
where p and u are the pressure and velocity of the fluid.

2.2 Boundary element method (BEM)

We use boundary element method to solve the flow problem
around rigid bodies with prescribed motion.**** Consider a
rigid body experiencing a hydrodynamic stress that resists its
motion. The disturbance velocity field in a fluid domain V, free
of any additional localised forcing, is represented by a surface
distribution of flow singularities called stokeslets whose
strength is the modified boundary traction, f;, i.e. we have

1
ux0) =) = g | [ £ Glex)dse). @)
Tl ) s

In eqn (2), the integration points x are on S, the boundary of the
fluid domain (i.e. the surface of the body) and the evaluation point
X, is any point in V, the bulk fluid, and u., is an arbitrary external
flow set to zero here. The tensor G(x,x,) is the free space Green’s
function for Stokes equation, eqn (1), also called the Oseen-
Burgers tensor, representing fluid flow produced by a point force,
1 (x —x0)(x — x0)

Gl 7o) = lx — xo]

|[x — x| (3)
where I is the 3 x 3 identity tensor. The integral equation
relating the interfacial velocity and the surface traction via
distribution of stokeslet is referred to as single layer potential
(SLP) integral. When the evaluation point lies on the surface,
X, € S, the no slip condition prescribes the fluid motion to be
the same as the surface of the rigid body. The surface velocity of
a body translating with velocity U, measured at some arbitrary
origin inside the body, and rotating with velocity £, measured
about a point x,, is

Uxo) =U+Q X (Xg — Xm), Xo € S. (4)

The surface of the rigid body is discretised into 6-nodes curved
elements and each element is assumed to have a constant
velocity and force. Though 3-nodes flat elements are applicable
for this problem as well, curved elements are used for better
accuracy. When the evaluation point lies on the surface, x, € S,
the kernel in eqn (2) can become singular and the singularity is
removed by transforming the variables from Cartesian to polar
coordinates.’® For a prescribed velocity, u, the unknown hydro-
dynamic surface tractions on the surface f;, can be computed by
solving eqn (2) numerically. The net hydrodynamic force, F, and

This journal is © The Royal Society of Chemistry 2018
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torque, T measured about point x,,, acting on the body are then
computed as

F= ”th (x)dS(x),

(5)
T= JJS(x —xp) X fr(x)dS(x), xeS.

The linear system arising from the SLP formulation is known
for being ill-conditioned making it unsuitable for iterative
solvers like GMRES®* used in this work. However, in practice
this is only a problem for very fine discretisation giving rise to
large linear systems and the SLP formulation has been used
with success in many previous studies involving swimming
micro-organisms.>*>”*> The fluid dynamics of a swimming
bacterium involves solving the flow interaction between the
cell body and the flagella. Since the flagella are slender, we have
the option of discretising their entire surface and tackling it
also using BEM, as carried out in Section 2.3, or taking
advantage of slender body theories®® (SBT), thereby reducing
the surface integrals on the filaments to contour integrals, as
we do in Section 2.4.

2.3 Computational model I: BEM-BEM

In this first computational model (termed CM-I), both the cell
body and flagellum surfaces, denoted as Sy, and S respectively,
are discretised as illustrated in Fig. 3. The details of the surface
discretisation method are provided in Appendix A. The cell
body is modelled as a prolate spheroid with x-direction being
the symmetry axis, of equation
2 22
A ©

where a and b are the major and minor semi-axes length
respectively (a > b). The flagellum is modelled as a rigid left-
handed helix with tapered ends,*””*®

x = [s, E(s)Rsin(ks + ), E(s)Rcos(ks + )], s e [0,L;], (7)

Fig. 3 Computational model I: posterior view of the boundary element
mesh of an E. coli bacterium with the cell body and flagellar filament
modelled as a surface distribution of stokeslets on a prolate spheroid and a
rigid left-handed helix, respectively.

Soft Matter, 2018, 14, 5955-5967 | 5957
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where the tapering function is E(s) =1 — e~ and where kgis a
constant that determines how quickly the helix grows to its
maximum amplitude R and k is the wavenumber. We use
ke = k in this work. Notably, while many previous studies
have used a right-handed helix and rotated the helix in a
CW direction,”*7® in reality the bacterial flagellum is a left-
handed helix that rotates CCW when viewed from behind
(though one situation is just the mirror-image symmetric of
the other).

The axial length of the helix is L, while its contour length is
L = L,/cos(¢), and the angle ¢ = arctan(Rk) is the helix
pitch angle. Changing the phase angle { simply rotates the
helix around its axis in the x-direction. The linear (or axial)
wavelength and wave speed are 4 = 2n/k and V = w/k respectively.
The curvilinear (or contour) wavelength A = A/cos ¢ and wave
speed ¢ = V/cos ¢ are not constant in the ‘end region’ but vary
negligibly outside of it. The cross-sectional radius of the helix is
p and the aspect ratio is defined as ¢ = p/L. The velocity on the
surfaces of cell body and flagellum surfaces satisfies

: ” Gx. x0) - £ (x)dS(x)
St

u(xo) = — %

1 (8

_ %JJSfG(x,XQ) Sr(x)dS(x), xo € Spr-

If the bacterium is swimming or held in place by an optical
trap in an infinite fluid medium, the free-space Green’s
function G given by eqn (3) is used. However, if the bacterium
is swimming close to a glass surface or stuck on it, the Oseen-
Burgers tensor G is replaced with appropriate wall-modified
Green’s function G satisfying the no-slip velocity condition on
the semi-infinite wall.>® The expression for G* is provided in
Appendix B.

For a free-moving bacterium, the total hydrodynamic force
and torque acting on it should be zero, i.e.

F, +F;=0, T,+T;=0. 9)

The torques are calculated about the point where the flagellum
is attached to the cell body. The kinematic conditions stipulate
that the flagellum remains attached to the body and thus

u(xp) = U+ Qp X X9, Xo € Sp, (10)
u(xy) = U+ (Qp + Q) X X9, Xo € S, (11)

where U and €}, are the translational and angular velocities of
the cell body while ,, is the angular velocity of the motor
(equal to the relative rotational velocity of the flagellum with
respect to the cell body). The lab frame angular velocity of the
flagellum is Q¢ = Qp, + Q,,,. The angular velocities and torque
acting on the cell body and flagellum are measured at the point
where the motor is located, x,,, which is taken to be the origin
in our simulations.

The cell body and flagellum are discretised into N, and N¢
elements respectively. The total number of unknowns to be
solved for is 3Ny, + 3N¢ + 6, namely the 3N}, + 3Ny components of
surface tractions on the cell body and the flagellum and 6
components of the translational and rotational velocity of the
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cell body. The relative rotational velocity of the flagellum Q,
serves as the forcing for the system. Eqn (8) provide us with
3N, + 3N; equations while eqn (9) provide us additional 6
equations.

In the situation where the body of the bacterium is stuck to
the wall, we now have U = 0 and Q, = 0. Therefore, the
kinematic conditions simplify to

u(xy) =0, X, € Sp, (12)
u(xo) = Qpy, X X9, X9 € Sp. (13)

There is a net force and torque required to hold the bacteria
stationary. The hydrodynamic traction acting on the cell body
and flagellum is unknown. Hence, we need to solve 3N}, + 3N¢
unknowns using 3Ny, + 3N; equations provided by the boundary
integral eqn (8).

2.4 Computational model II: BEM-SBT

In our second computational model (termed CM-II), the cell
surface is discretised in the same way as in Section 2.3 but the
flagellar hydrodynamics are described using slender body
theory,*® as illustrated in Fig. 4. Since the bacterial flagellar
filament is a very slender helix of aspect ratio ¢ ~ 0.002, we can
take advantage of past classical work on the dynamics of
slender filaments in viscous fluids. Using the formulation of
Johnson,®® the velocity u of the centreline C¢ of a slender body is
linearly related to the hydrodynamic force per unit length, f,
acting on it through the integral relationship,

u<x0>:—ﬁAmxo)—ﬁm}(m xeCr  (14)

where 0 < s < L is the arclength along the centreline of the

filament. In eqn (14), the local, A, and non-local, K, operators
are given by*®

ALfal(xo) = [—clI + 88) + 2(I — $3)]:fu(x0),  (15)

L I+5s

KUfy) () = | (fh<x> G~ (xo))ds%x»

(16)

where ¢ = log(e’¢). Note that in this formulation, the cross-
sectional radius of the body varies slowly as r(s) = 2e/s(L — s)
where ¢ = r(L/2)/L, ensuring algebraically-accurate results. The
cross-sectional radius at the midpoint s = L/2 is taken to be
equal to the radius of the flagellum, ie. r(L/2) = p. Eqn (16)

becomes formally singular when s = s’ and this singularity is
1‘40

0

removed by regularising the integra

&

Fig. 4 Computational model II: side view of the boundary element mesh
of an E. coli bacterium with the cell body modelled as a surface distribution
of stokeslets on a prolate spheroid and the flagellar filament modelled
as a line distribution of stokeslet on the centreline of a rigid left-handed
helix.

This journal is © The Royal Society of Chemistry 2018
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The hydrodynamics of the bacterium is then described with
a surface and a line distribution of stokeslet, representing the
cell body and the flagellum respectively,

1
wm=f@ﬂj<Lqu)<> .
17
—§%Lﬁ(xM)fM) S(x), %o € Sb,
and
wm:—éﬂ%umym>(> "

1 1
——A —-—K Cr.
S [f](xo) Sma [ful(x0), xo€Cy
For a free-swimming cell, the force and torque balance
equations are the same as in eqn (9), except that the force
and torque on the flagellum are now computed by integrating

fn along the centreline,

:jnwmm7n:jxxnmmm7
Cr

Cy

x € Cy. (19)

The velocity of the cell body is same as before, i.e. eqn (10),
while the velocity of the flagellum centreline is now given by,

uxg) = U+ (Qp + Q) X X9, Xy € Cp. (20)

The cell body surface and flagellum centreline are discretised
into Ny, and N elements that requires us to solve for 3Ny, + 3N; + 6
unknowns.

In the situation where the cell is stuck to the wall, we now
have U= 0 and Qj, = 0. The kinematic conditions for the body is
same as eqn (12) and that for the flagellum simplifies to,

u(xy) = Qy, X X5, X € Ct. (21)

We need to solve 3N}, + 3N; unknowns tractions on the cell body
and flagellum using 3N, + 3N; equations provided by the
boundary integral eqn (17) and (18).

2.5 Validation of the computational models

We first validate computational model I by performing simulations
relevant for the hydrodynamics of (i) a pair of spheres approaching
each other, as detailed in Appendix C and (ii) a slender cylinder
rotating in an infinite fluid and translating next to a wall, as shown
in Appendix D. In both case we compare our numerical results with
exact solutions with excellent agreement.

We next validate both computational models using past
semi-analytical results for flagellar swimming. In a landmark paper,
Higdon®® used slender body theory to model a microorganism
swimming by propagating helical waves. Instead of discretising
the surface of the cell body, he used modified Green’s functions
satisfying the no-slip boundary condition on the cell body modelled
as a sphere. The swimming speed, U/V, normalised by the linear
wave speed, is plotted as a function of the number of waves, N, for
three different flagellar lengths with the parameters ok and k/kg kept
fixed in Fig. 5. Our computational results are in excellent agreement
with the results of Higdon.*®

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 Validation of the computational models, CM-I and CM-II, with the
semi-analytical results of Higdon.*® Average swimming speed plotted as a
function of number of waves with p/a = 0.02, ak = 1 and k/kg = 1 for three
different flagella lengths L = 5 (solid red lines), 10 (dotted blue line) and 20
(dashed black line).

However, it is important to note a few differences between
our two models. First, and unsurprisingly, solving the integral
equation on a line (CM-II) instead on a surface (CM-I) results in
faster computations. Second, the surface mesh of a helical
flagellum used in computational model I has a circular cross-
section of constant radius p, see Appendix A, while the slender
body theory used in computational model II a circular cross-
section of radius p at the centre that slowly tapers towards the
ends. Third, in situations where the flagellum is very close to
another body, for example a semi-infinite plane wall as in
Section 3.2, we expect near-field hydrodynamic interactions
with the wall to play an important role. In these situations,
slender body theory will fail to resolve the hydrodynamics,
necessitating full surface discretisation. This makes computational
model I a more accurate but also a costlier approach. For example,
simulations of swimming bacteria, presented in Section 3.1 using
CM-1, were performed with N, = 80 and N; = 4620 leading to a
system size of 14 106, requiring ~74 s to be solved. On the other
hand, simulations using CM-1I were performed with N, = 80 and
Nt = 300 leading to a system size of 1146, requiring ~1 s to
be solved. These simulations were performed on a computer with
3401 MHz CPU clock speed and 16 GB RAM.

3 Results

We use our computational models to address three sets of data
for E. coli from the experiments of Darnton et al.*> Data sets A and
B are concerned with E. coli bacteria swimming using a bundle of
helical flagellar filaments in two different fluids and our numerical
results in this case are given in Section 3.1. In contrast, the bacteria
in data set C are stuck on a glass surface with only one rotating
flagellum, with our results provided in Section 3.2. While the main
goal of our paper is to use the experiments on stuck bacteria to
infer the value of the motor torque, we also model the case of
swimming cells to compare our simulations with observable
physical quantities in the experiments, namely the cell swimming
speed and body rotation frequency.

In all cases, the helical flagellar filaments have identical
pitch, 4 =2.22 um, helical radius, R = 0.2 pm and cross-sectional
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Table 1 Geometrical and kinematic characteristics of the three data sets
from Darnton et al.?? Data sets A and B are measurements of swimming
E. coli cells in two different fluids using a bundle of flagellar filaments, while
C is that of a stuck E. coli bacterium with a single rotating flagellum. The
length and angular velocity scales for the problem are a and Q,
respectively

Body length  Body width  Axial length ~ Motor
Data set  (2a) (um) (2b) (um) (L) (um) speed (2m)
A 2.5 0.88 8.3 2m x 154 s~ *
B 2.0 0.86 10.0 21 X 87 s *
C 2.5 0.88 6.2 2m x 111 s *

radius, p = 0.012 pm. The other relevant parameters including
geometrical dimensions and motor rotation speed vary from
one data set to the next and are listed in Table 1. The number of
filaments in the bundle for data sets A and B is unknown and
we focus here on the case of a single filament (see discussion
below on the role played by the filament radius). In order to
model a bacterium, one needs to transform the sphere in
Section 2.5 into a prolate spheroid of appropriate dimensions.
The motor rotation speed, £, and the major semi-axes length,
a, are used as the angular velocity and length scale, respectively
(see Table 1). The major axes of the cell body and the flagella
are aligned with each other along the x-axis. We maintain a
small gap between the cell body and the helix ~0.0125 pum,
thereby avoiding a singularity in the boundary integral equation
(results are unaffected by alterations in this distance). Each
calculation presented below has been averaged over the phase
angle .

Numerically, all results in the following sections are computed
with N, = 80, Ny = 4620 and N; = 300. We have performed
convergence tests and verified that finer grid resolution than these
values produce negligible changes in our results.

3.1 Swimming bacteria

Using computational models I and II and first assuming that
the cell is propelled by a single helical filament, we prescribe
the dimensionless motor rotation velocity along the major axis
of the cell body, Q,, = 7 that acts as the forcing on the system
(see Table 1 for the dimensional values). The observable
physical quantities are the swimming speed, U, and the angular
velocity of the cell body, €, occurring in the negative x-direction
since the body counter-rotates compared to the flagella. Data set
A takes place in the fluid medium termed motility buffer (MB+)
for which the viscosity is 0.93 cP. The swimming speed U computed
using the two computational models I and 11, 20.6 pm s~ * is lower
than that measured in experiments, 29 um s~ . The angular velocity
of the body Q) using models I and II are 27 Hz and 25 Hz
respectively, slightly higher than that measured in experiments,
23 Hz. The hydrodynamic torque experienced by the flagella,
equal to the motor torque, were found to be 728 and 682 pN nm
with models I and II, respectively.

Data set B takes place in the MB+ fluid with added methyl-
cellulose (MC) for which the viscosity is 3.07 cP. The cell body
length and motor rotation speed are smaller while the flagella is
longer in this case when compared to data set A. The swimming
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Table 2 Comparison between measurements and computations for data
sets A and B relevant for swimming bacterium in fluids MB+ and MB+ with
MC, respectively, from Darnton et al. (2007).22 Data set A has dimensionless
body length 2a = 2, width 2b = 0.7, filament axial length L, = 8.3 and
viscosity = 0.93 cP. Data set B has dimensionless body length 2a = 2, width
2b = 0.86, filament axial length L, = 10.0 and viscosity = 3.07 cP. The motor
rotation speed is prescribed in the simulations

Expt CM-1 CM-TI
Data set A
Body rotation speed (Hz) 23 27 25
Filament rotation speed (Hz) 131 127 129
Cell speed (um s ) 29 20.6 20.6
Motor torque (pN nm) — 728 682
Data set B
Body rotation speed (Hz) 21 21.3 20.1
Filament rotation speed (Hz) 66 65.7 66.9
Cell speed (um s~ 1) 31 12.6 12.6
Motor torque (pN nm) — 1504 1418

speed U computed using the two computational models I and II,
is found to be 12.6 um s ', significantly lower than that
measured in experiments, 31 pm s '. The angular velocity
of the body @, using models I and II are 21.3 Hz and 20.1 Hz
respectively and agree very well with that measured in experi-
ments equal to 21 Hz. The hydrodynamic torque experienced by
the flagella in this case were found to be 1504 and 1418 pN nm
with models I and II, respectively. These results are summarised
in Table 2.

It is not specified in the experiments for data sets A and B
whether the bacteria are swimming close to a surface. In order
to investigate how the presence of a wall may effect the
swimming kinematics, we vary the distance of the bacterium
from the wall while keeping the rotation rate of the motor fixed
as in the infinite fluid medium case. The free-space Green’s
function G used in the models is replaced with G* to account
for the no-slip condition on the wall. The variation of the
swimming speed, rotational speed and motor torque with the
minimum distance between the cell body and wall d-b (see
notation in Fig. 2), are shown in Fig. 6 for data set A (the same
trends are seen for data set B, the corresponding plots of which
are not presented here for brevity).

As expected, we find that the swimming and rotational
speed of the cell body decrease monotonically while the motor
torque increases as the cell is moved closer to the wall. As the
distance between the bacterium and the wall increases, the
computed velocities and torque asymptotically reach their
infinite fluid medium values.

In the freely swimming cells experiments of Darnton et a
it is observed that some flagella can wrap around the cell body.
While the distance between a wrapped flagellum and the cell
body is unknown, we may estimate its effect on the torque
generation by assuming a worst-case scenario where this dis-
tance is 0.1 nm. The viscous torque arising from lubrication
forces due to rotation of the flagellum near a cell body can be
estimated using Jeffrey’s analytical result for the torque per unit
length, T, experienced by a cylinder of radius p rotating with
angular velocity ©Q at a distance d from a plane wall, namely

22
L,
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Fig. 6 Top: Variation of the bacterium swimming speed, U (um s™3), with
the minimum distance between the cell body and the wall, d-b (um), for
data set A. Circles (wall effect) and solid red line, 20.6 pm s~ (infinite
medium) correspond to model | while squares (wall effect) and dotted blue
line, 20.6 pm s~ (infinite medium) correspond to model II. The swimming
speed in the experiments of Darnton et al.?> was found to be 29 pm s~*
(not shown). Middle: Dependence of the rotational speed of the cell body,
Q,/271 (Hz), with the distance to the wall. Circles (wall effect) and solid red
line, 27 Hz (infinite medium) correspond to model | while squares (wall
effect) and dotted blue line, 25 Hz (infinite medium) correspond to model
II. Black dashed line corresponds to rotational speed of 23 Hz measured in
experiments of Darnton et al?? Bottom: Variation of the motor torque,
T (pN nm), with the minimum distance between the cell body and the wall.
Circles (wall effect) and solid red line, 728 pN nm (infinite medium)
correspond to model | while squares (wall effect) and dotted blue line,
682 pN nm (infinite medium) correspond to model II.
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Ty = —4nuQp*d/+/d* — p2.*' Assuming that the length of the
flagellum rotating next to the cell body is approximately half
the cell body length, a, and substituting in this formula the
relevant values from Tables 1 and 2, we obtain additional
torques for data set A and B of 16 pN nm and 7 pN nm
respectively. These values do not add significantly to the torque
values obtained from the simulations.

Quite remarkably, and except for the value of the swimming
speed in data set B, the agreement between our simulations
with a single flagellar filament and the experiments is excellent.
Since the number of filaments in the helical bundle is unknown
in the experiments, we then use an alternate method to account
for the effect of multiple filaments. In a controlled experi-
mental study,*® it was shown that the flow field generated by
a bundle of two filaments is well approximated by the flow
generated by a single rigid helix with twice the filament radius.
For data sets A and B, we thus used computational model I to
carry out additional simulations varying the cross-sectional
radius of the effective helical filament, taking values of either
2p, 3p or 4p, where p = 0.012 pm is the radius of an isolated
filament. The results of these simulations are summarised in
Table 3. We find that, as the thickness of the filament
increases, the mismatch between our numerical results and
the experiments increases, indicating that the hydrodynamics
of a bundle is closer to that of an isolated filament.

The discrepancy between the experimental and our com-
putational results with a single filament may be attributed to
the fine details of the filament interactions. Firstly, the effect of
hydrodynamic interactions between the filaments is absent in
the simulations. Secondly, steric interactions between filaments
could also play a significant role.** However, it was noted
previously that including filament interactions does not lead
to a linear increase in swimming speeds or rotational speeds,
both seen in experiments** and numerical simulations.** The
viscosity for data set B is three times that of data set A but it is
believed that the motor torque is independent of the medium
viscosity. Hence, it is quite surprising that the motor torque for
data set B is almost twice as high as that for data set A. It might
be that the fluid medium surrounding the rotating flagellum is

Table 3 Comparison between measurements and computations using
CM-| for data sets A and B relevant for swimming bacterium in fluids MB+
and MB+ with MC, respectively, from Darnton et al. (2007)?? with varying
cross-sectional radius of the helical filament (from twice the radius of a
single filament to four times); all other parameters as in Table 2

Expt 2p 3p 4p

Data set A

Body rotation speed (Hz) 23 32.5 37.4 42.2
Filament rotation speed (Hz) 131 121.5 116.6 111.8
Cell speed (um s %) 29 20.6 19.4 18.1
Total torque (pN nm) — 877 1012 1144
Data set B

Body rotation speed (Hz) 21 25.3 28.7 31.9
Filament rotation speed (Hz) 66 61.7 58.3 55.1
Cell speed (um s %) 31 12.0 10.9 10.4
Total torque (pN nm) — 1784 2026 2256
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not perfectly Newtonian and the presence of polymers could
induce additional stresses in the flow, despite the fact that the
24 nm diameter flagellar filament might be comparable in size
to both the radius of gyration of the polymer molecules and to
the distance between them.

3.2 Bacteria stuck on a surface

The most important result of our study is the situation where
the bacterium is stuck on a (glass) surface with an immobile
cell body rotating a single flagellar filament, termed data set C
in Table 1. All other geometric and kinematic parameters are
known in this case, apart from the distance to the surface,
making it an ideal situation to model in order to predict the
value of the torque exerted by a single rotary motor. The forcing
for this system is Q¢ = Q,,, but unlike the swimming bacterium
case there are no direct observables in the experiments to
compare with as the cell body is not moving, i.e. U = 0 and
Qy, = 0. Note that the bacterium is not force and torque free in
this case.

We first consider a flagellum rotating in an infinite fluid
medium in the absence of the cell body. Using computational
models I and II, we get motor torque values equal to 474 pN nm
and 438 pN nm, respectively which are significantly higher than
that obtained by resistive force theory calculations, 370 pN
nm*? (and reproduced in Table 5). We then place an immobile
cell body that simply acts as a hydrodynamic obstacle to the
rotating flagellum and find the torques increase negligibly to
475 pN nm and 440 pN nm for models I and II respectively. The
increase in the force experienced by the flagella, ~6% is also
small but higher than the increase in the torque, ~0.2%. These
results prove that an immobile cell body does not produce
significant hydrodynamic resistance to the rotating flagellum.

We next consider the effect of the wall on the torque
experienced by a flagellum with and without the cell body
while keeping the flagellum parallel to the wall and the rotation
speed of the motor fixed at the experimentally-measured value
of 2t x 111 Hz. As shown in Fig. 7 (top), the value of the motor
torque increases as we get closer to the wall. We may also place
a cell body next to the rotating flagellum, exactly reproducing
the experimental conditions of a bacterium stuck on a glass
surface. The results of computational model I in Fig. 7 (top) are
plotted using triangles when there is no cell body and circles if
we add the cell body; similarly, for computational model II we
use diamond (cell body absent) and squares (cell body present).
For both models, we see the two sets of symbols overlap with
each other, indicating that the torque values is essentially
unaffected by the presence of the cell body, consistent with
our results in the infinite fluid medium case. The maximum
values of motor torque obtained for computational models I
and II are 829 pN nm and 739 pN nm when the flagellum is
placed very close to the wall at a distance d = 0.22 um, slightly
above the mathematically minimum gap between the flagellum
and the wall of 0.02 um.

To give an indication of the magnitude of the torque for a
more realistic value of the distance to the wall, we may pick the
value d = 0.46 um, so that the gap between the cell body and the
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Fig. 7 Top: Variation of motor torque T (pN nm) as a function of the
distance d (um) of the flagellum’s centreline from the wall. Triangles and
diamonds correspond to motor torque values in the presence of wall but
without a cell body, circles and squares correspond to those in the
presence of both wall and cell body while the red and blue lines corre-
spond to torque values in an infinite fluid medium without wall or cell
body. The vertical black dashed line is d = R = 0.2 pm while the vertical
dash-dotted brown line is at d = b = 0.44 um. Bottom: Variation of motor
torque, T (pN nm), as a function of the tilt angle, 0, of the flagellar axis
relative to the wall. The distance between the major axis of the cell body
and the wall is kept constant at d = 0.46 pm.

wall is 0.02 pm. In this case, the value of the motor torque with
and without the cell are 540 pN nm and 539 pN nm for model I
and 498 pN nm in both cases for model II. Note that in either
case we can not have zero distance between the wall and the
flagellum or the cell body as the integral equations become
singular. The full dependence of T on the value of d is shown
in Fig. 7 (top).

Just as for freely swimming cells, it is likely that in some
cases a portion of the flagellum is wrapped around the cell
body. We can carry out an analysis similar to the one in Section
3.1 using the same assumptions to find that the lubrication
torque due to a flagellum rotating close to a cell body is now on
the order of 11 pN nm (a smaller value than above due to a
smaller rotation frequency). Here again, this contribution to
the torque is small and can be neglected.

3.2.1 Tilted flagellum. The exact orientations of the flagellar
filaments relative to the surface have not been reported in
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the experiments but they are likely to play an important role.
Keeping the cell body’s major axis fixed at a distance of
d = 0.46 um from the wall, we vary in our simulations the value
of the tilt angle, 6, between the axis of the flagellar filament and
the direction of the surface. The results are shown in Fig. 7
(bottom). Note that the minimum value of tilt towards the wall
is dictated by the minimum separation distance of the flagel-
lum from the wall; specifically in the simulations, we limit
ourselves to 0, = —0.0121 corresponding to a minimum distance
of 0.0165 um of the flagellum from the wall. Unsurprisingly, we
find that the axial torque required to rotate the flagellum at a
constant angular velocity (111 Hz) systematically increases with an
increase of tilt angle towards the wall as parts of the flagellum
move closer towards it. The maximum values of the torque at the
minimum tilt angle are equal to 611 pN nm and 556 pN nm for
models I and II respectively, almost 30% larger than the values
when the filaments are tilted away and far from the surface. These
results demonstrate the importance of the flagellum orientation
on the motor torque values.

3.2.2 Geometrical parameters uncertainties. In addition to
intrinsic biological variability, there are unavoidable uncertain-
ties in the measurements of geometrical parameters of the
bacteria. In order to estimate the impact of these uncertainties
on our results, we look at the variability of the motor torque, 7,
induced by a £10% variability in the geometrical parameters,
namely a, b, p, 4, R and L,. All the simulations are performed
with the minimum gap between the cell body and the wall
kept fixed at 0.02 pm and the results are summarised in
Table 4. We find that variations in the length and width of
the cell body and the cross-sectional radius and pitch of the
flagellum have negligible effect on the motor torque value. In
contrast, the torque varies linearly with the axial length of
the flagellum (consistent with the asymptotic resistive force
theory?) and varies the most with changes in radius of the
helical filament.

Table 4 Variation in the value of the motor torque with changes in the
geometrical parameters of the stuck bacterium with a rotating flagellum
next to a wall for both models. The minimum distance between the cell
body and the wall is kept fixed at 0.02 pm

Geometrical parameter (um) CM-I (pN nm) CM-II (pN nm)
a=2.5+10% 540 + 0.0% 498 + 0.0%
a=2.5—-10% 540 + 0.0% 498 + 0.0%
b =0.88 + 10% 540 — 2.0% 498 — 2.0%
b =0.88 — 10% 540 + 2.6% 498 + 2.6%
p =0.012 + 10% 540 + 3.1% 498 + 2.6%
p =0.012 — 10% 540 — 3.2% 498 — 2.7%
A =222+ 10% 540 + 0.8% 498 + 0.9%
A=222 — 10% 540 — 1.1% 498 — 1.2%

R=0.2 +10%
R=0.2 - 10%

540 + 18.5%
540 — 17.2%

498 + 18.8%
498 — 17.5%

L; = 6.2 +10%
L; =62 — 10%

540 + 10.5%
540 — 10.5%

498 + 10.5%
498 — 10.5%
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4 Motor torque: comparison with past
experiments and simulations

Our simulations in the case of bacteria stuck on a surface

122 and allow

exactly reproduce the experiments of Darnton et a
us therefore to provide a computational prediction for the value
of the motor torque. Our results, shown in Fig. 7, were seen to
range between 440 pN nm (minimum value, in bulk fluid) to
829 pN nm (maximum value in the extreme case where the
flagellum all but touches the surface). In order to compare with
past experiments and simulations, we summarise in Table 5 a
list of the previous studies that have attempted to find the value
of the motor torque of E. coli.

4.1 Comparison with past experiments

The early experimental investigation of bacterial motor torque
were done with electrorotation method,'® however, absolute
values of torque were not reported. Since it is difficult to measure
the high rotation rates of individual flagella, Berry and Berg"®
tethered a single flagellum to a glass surface and measured the
slowly rotating cell body of E. coli cells. The rotation of the cell
body was stopped by using optical tweezers thereby providing an
estimate of the motor torque ~4500 pN nm. This high value
appears to be an outlier in the literature.

The preferred method used in experiments since then
involves shearing most of the flagellar filament and tethering
a small spherical bead to the remaining flagellar stub. The
rotation rate of the sphere is then measured and the viscous
torque acting on it directly relates to the motor torque. Chen
and Berg*® pioneered this tethered bead experimental method,
however, they did not give the absolute torque values but only
relative value of the torques at different frequencies. While
Chen and Berg*® used spherical beads of diameter 0.45 um and
changed the load by changing the viscosity of the medium,
Fahrner et al®® used the same method but used beads of
different sizes in order to change the load. Unfortunately,
neither the value of torque nor the viscosity of the fluid
medium are mentioned in the article. In the low-speed,
high-torque limit with spheres whose diameters ranged from
1.0-2.1 um, they obtained rotation rates ranging from 78 to
8.6 Hz. A mean torque of ~1370 pN nm is however mentioned

Table 5 List in chronological order of past experiments (exp) and numer-
ical simulations (num) or theory (th) investigating the value of the bacterial
motor torque with range of reported values

Motor torque Experiments vs.

Ref. (pN nm) numerics vs. theory
Berry and Berg (1997)"° ~4500 exp
Fahrner et al. (2003)"* 1370 + 50 exp
Chattopadhyay et al. (2006)** 500 exp

Reid et al. (2006)"° 1260 + 190 exp
Darnton et al. (2007)*? 370 4 100 exp + th
Shimogonya et al. (2015)** ~700 exp + num
Hu et al. (2015)*° ~1200 num
Kong et al. (2015)** ~1600 num

Van Oene et al. (2017)*° 874 + 206 exp
Present work 440-829 num
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by the same group in Darnton et al.>> Finally, using spherical
beads of diameter 1 pum for the tethered bead method,
Reid et al.’® found the motor torque to be ~1260 pN nm
corresponding to a motor speed of 63 + 7 Hz.

A different method was proposed Chattopadhyay et a
used optical traps to prevent E. coli bacteria from swimming.
The optical trap force compares directly with the thrust force
that propels the bacteria and can be used to find the torque and
swimming speed in an indirect manner (though the dimensions
of the flagellum are inferred and not directly measured in these
experiments). The rotation rate of the cell body and flagellum
were measured to be 19.6 Hz and 115 Hz respectively and the
thrust force was found to be 0.57 pN. In the absence of the trap,
swimming speeds of 22 pm s ' were measured using direct
video microscopy. Using these values, Chattopadhyay et al*
estimated the motor torque value to be 500 pN nm. These values
are close to that found in our simulations of an immobile
bacterium close to the glass surface, 475 pN nm (CM-I) and
440 pN nm (CM-II). In recent experiments, Drescher et al.*” used
flow field measurements to estimate the force dipole generated
for a bacterium swimming at 22 &+ 5 um s~ ', and obtained a
dipole consistent with a thrust force of 0.42 pN, close to the 0.57 pN
found by Chattopadhyay et al.** Our numerical simulations (CM-I)
for data sets A and B predict a thrust value of 0.28 pN and 0.49 pN
for cells swimming at speeds 20.6 pum s ' and 12.6 pm s~ with
their flagellum rotating at 127 Hz and 65.7 Hz respectively, in broad
agreement.

Shimogonya et al.*> performed tethered bead experiments
using gold particles of diameter 0.25 pm. They measured the
precession of these particles and predicted a motor torque of
the order of 700 pN nm using boundary element method.

Finally, the latest experiments using tethered beads method
on 1 um diameter spheres performed by Van Oene et al>°
suggest the motor torque to be 874 + 206 pN nm corresponding
to a motor speed of 30.5 £ 6.9 Hz. These experimental measure-
ments match our simulations in the case of a flagellar filament
rotating very close to a wall. In the same experimenters, Van
Oene et al.>® were able to stop the rotation of the spherical
magnetic beads by applying an external magnetic torque and
found the stall motor torque be 444 + 366 pN nm, surprisingly
much smaller than the prediction for the motor torque in the
case of rotating tethered beads.

L** who

4.2 Comparison with past simulations and theory

Using an analytical model based on resistive force theory,
Darnton et al.**> estimated the motor torque of E. coli to be
370 £+ 100 pN nm, the lowest value among all studies.
Mesoscale hydrodynamic simulations® have been performed for
a bacterium with cell body length 2a = 2.5 um, width 26 = 0.9 pm,
and a single flagellar filament with pitch 4 = 2.2 um, pitch angle
Y = 30° cross-sectional radius p = 0.012 pm and 3 turns
corresponding to an axial length of 4 = 6.6 pm (instead of
8.3 um or 10 um in the experiments). These simulations predict
a swimming speed of 14.5 pm s~ ' and flagellum rotation
frequency of 131 Hz resulting from applying a motor torque
equal to ~1200 pN nm. We note that the authors did not
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perform simulations of a stationary bacterium. However, by
invoking linearity of Stokes flows, we can infer that the flagellum
rotation frequency would be 111 Hz if a motor torque value of
~1000 pN nm was applied, allowing comparison with the data of
Darnton et al.**

Simulations based on bead spring model®' with three flagella
also attempted to reproduce the experiments of Darnton et al.**
with flagellum dimensions which are not exactly the same but
are close to the experiments. Specifically, the relevant dimen-
sions used in these simulations are: cell body length 2a = 2.5
pm, width 2b = 0.88 pum, pitch A = 2.5 pm (instead of 2.22 um in
the experiments), helical radius R = 0.5 um (instead of 0.4 pm in
the experiments), cross-sectional radius p = 0.012 pm and axial
length A = 8.3 pm. The motor torque applied in these simulations
is also 1200 pN nm. The cell, bundle rotation rate and swimming
speed were found to be 26 Hz, 62 Hz and 24 um s~ ', respectively.
On scaling the bundle rotation rate to the experimental value of
Darnton et al.,>* 111 Hz, we obtain the motor torque value to be
~2150 pN nm.

5 Discussion

In this paper, we have used two computational approaches
based on the well established boundary integral equations and
slender body theory valid for Stokes flow in order to compute
the value of torque generated by the rotary motor of an E. coli.
We performed a number of tests to comprehensively validate
the numerical simulations with analytical results presented in
the appendices. The models are also validated with existing
semi-analytical solutions of Higdon®® relevant for micro-
organisms swimming due to helical waves. We note that the
model for the rotary motor used in the article is, in effect, a
lumped model that represents the whole motor by a single
rotation and associated torque. The hydrodynamics of the hook
is ignored owing to its small size compared to the flagellar
filament. Since, in steady state, the elastic hook simply rotates
with the rigid flagellum it does not change the amount of
torque transmitted to the flagellum. Equipped with our model,
we first simulated the dynamics of E. coli in the case where it
is swimming due to a single rotating flagellar filament. In
the former case, the agreement between our simulations the
experiments of Darnton et al.>* is quite remarkable even though
the swimming cells in the experiments are propelled by multiple
interacting flagellar filaments.

We next considered the situation where the cell has a
stationary cell body, an idealised situation to make a prediction
for the value of the motor torque given that all parameters from
the experiment of Darnton et al.>*> have been measured. Values
reported in the literature for the motor torque span a wide
range, mostly 500-1200 pN nm, and our computations are on
the smaller end of that spectrum. It is not clear at all what
causes these numbers to differ so much from each other, even
though many of the experiments employ the same techniques.
As we have demonstrated here, the distance between a rotating
flagellar filament and a nearby surface is crucial to obtaining
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the correct values, as hydrodynamic friction depends critically
on it, and suggests that perhaps hydrodynamic interactions
with surface might have played an important role in some of
the experimental investigations.
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Appendix
A Discretisation method

In order to create a spherical mesh, we use the subroutine
BEMLIB*® starting from an icosahedron and successively sub-
dividing the triangles. The transformation of the sphere to a
prolate spheroid is done by simply rescaling the coordinates,
y=(b/a)y and z = (b/a)z. To create a helical surface, we first specify
the number of points N along the centreline of the helix.
Around each point, we then create a circle of radius p having
12 points. These points either form a vertex or mid-points of the
6-nodes triangles. Each consecutive circle is shifted by n/24 so
that we have approximately uniform isosceles triangles rather
than right-angled triangles. A section of a discretised helix is
shown in Fig. 8. We attach 2 hemispheres of radius p on both
ends of the discretised helix to remove sharp corners.

B Green’s function for a stokeslet near a wall

Let us consider a stokeslet placed above a wall at z = 0 at a
distance /4 such that its location is (y,,,,/). The image singularities
are then accordingly located below the wall at (y4,y,,—h). The
Green’s function® due to the stokeslet at an evaluation point
(%¢1,%2,x3) i,

S+ Fify S+ RiR;

GY —
v r R
8 (hR; 65+ RR (22)
DYy P i 03 i3
iR\ R R '

where the vector pointing from the stokeslet location to the
evaluation point is r; = (x; — y1, X» — Y», X3 — h), the vector
pointing from the image location to the evaluation point is
R; = (X1 — Y1, X2 — Y2, X3 + h). The matrix 4 takes the value of
1 whenj=k=1,2, -1 whenj =k = 3 and 0 for every other
combination.

C Interaction between two spheres

In order to validate our numerical algorithm for two solid
interacting bodies in Stokes flow, we analyse the hydrodynamic

Fig. 8 Surface discretisation of a rigid helical object using 6-nodes curved
elements. Evenly spaced circles are created along the centreline of the
helix that are discretised into 12 points that either form a vertex or
midpoints of the individual elements.
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Fig. 9 Boundary element mesh (N, = 5120) of two spheres separated by a
distance d approaching each other with velocities, U, along the line
connecting the centres.

force acting on 2 spheres approaching each other, separated by
a distance d. Fig. 9 shows two discretised spheres, each made
with 5120 elements. The line joining their centres is along the
x axis. We essentially solve eqn (8) to find the tractions on the
2 spheres moving with a prescribed velocity of U = £0.5i, so
that the relative speed of approach is 1. We compare the
force computed by our numerical method for 3 different
discretisation levels, N, = 320, 1280 and 5120 with that
obtained using lubrication theory*® valid for small distances,
far-field asymptotic solution valid for large distances and exact
solutions based on bispherical coordinates, see Fig. 10. Our
numerical method based on boundary element method finds
excellent agreement with the theoretical predictions. Note
that as the distance between the spheres d decreases, finer
discretisation of the spheres near the closest point becomes
necessary to resolve the flow field accurately. In order to validate
the force-free and torque-free bacterium model, we can think of
sphere 2 as a rotating flagella and implement computational
model I. On imposing a relative velocity of Q,, = 7, we found the
body rotation rate to be , = — 0.51, as expected theoretically.
The swimming velocity U is found to be exactly zero as neither of
the bodies are chiral. This serves as another validation for
computational model I.

F/6mp

=== [,ubrication
=mmm Far-field
10!} === Bi-spherical .
® BEM N, = 320
B BEM N, = 1280
BEM N, = 5120

1072 '
1072 107! 1 10

d
Fig. 10 Comparison of hydrodynamic force acting on 2 spheres approaching
each other at a relative velocity of 1 along the line joining their centres obtained
by boundary element method and theoretical calculations.
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Fig. 11 Relative error in the hydrodynamic torque and force per unit
length acting on a slender cylinder rotating in an infinite fluid medium
and translating perpendicular to its axis next to a plane wall, respectively,
computed using boundary element methods for 4 levels of discretisation
N¢ = 1020, 2028, 4044 and 8076.

D Rotating and translating slender cylinder

As there are no exact solutions to problems of helices in viscous
flows, we test our numerical method for slender cylinders
rotating in an infinite fluid medium and translating next to a
plane wall. The length of the cylinder is L = 7 while the cross-
sectional radius is p = 0.01, so that the aspect ratio is ¢ = 0.0014,
comparable to that of a bacterial flagella. An infinitely long
cylinder rotating in a viscous fluid experiences a viscous torque
per unit length*® Ty, = —4nup®Q with the angular velocity
Q pointing along the axis of the cylinder. Using boundary
element method, we obtain the hydrodynamic torque per unit
length acting on the discretised rotating cylinder. Fig. 11 shows the
relative error between the numerical simulations and analytical
results for 4 different levels of discretisation, Ny = 1020, 2028, 4044
and 8076.

In order to validate our results that include wall effects, we
consider a slender cylinder translating perpendicular to its long
axis close to a wall such that the cylinder centreline is at a
distance d = 0.02 from the wall. The dimensions of the cylinder are
the same as consider before. The translating cylinder experiences a
hydrodynamic force per unit length' F, = —4rnuUlo, where
o =log[(d/p)+ /(d/p)> — 1]. Fig. 11 shows the relative error
between the numerical simulations and analytical results for 4
different levels of discretisation, Ny = 1020, 2028, 4044 and 8076.
In both these tests, we find excellent agreement between
numerics and theory and the accuracy increases as we increase
the grid resolution.
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