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Abstract. Many microorganisms and artificial microswimmers use helical appendages in order to generate
locomotion. Though often rotated so as to produce thrust, some species of bacteria such Spiroplasma,
Rhodobacter sphaeroides and Spirochetes induce movement by deforming a helical-shaped body. Recently,
artificial devices have been created which also generate motion by deforming their helical body in a non-
reciprocal way (A. Mourran et al. Adv. Mater. 29, 1604825, 2017). Inspired by these systems, we investigate
the transport of a deforming helix within a viscous fluid. Specifically, we consider a swimmer that maintains
a helical centreline and a single handedness while changing its helix radius, pitch and wavelength uniformly
across the body. We first discuss how a deforming helix can create a non-reciprocal translational and
rotational swimming stroke and identify its principle direction of motion. We then determine the leading-
order physics for helices with small helix radius before considering the general behaviour for different
configuration parameters and how these swimmers can be optimised. Finally, we explore how the presence
of walls, gravity, and defects in the centreline allow the helical device to break symmetries, increase its
speed, and generate transport in directions not available to helices in bulk fluids.

1 Introduction

In the early 1950s, G.I. Taylor offered the first fluid me-
chanical explanation of how microscopic organisms are
able to swim at low Reynolds number [1]. Since then,
decades of close collaborations between experimentalists
and theorists have greatly improved our knowledge of
fluid-based motion in the microscopic world [2–5]. We now
understand how, at these small scales, the creation of net
movement critically depends on the anisotropy of the vis-
cous drag within the fluid [6], and requires a non-reciprocal
swimming stroke to break the time-reversal symmetry of
the underlying equations of motion [7]. The motion of
model cellular swimmers, such as spermatozoa, bacteria,
and algae, have been studied at length in order to char-
acterise how they swim in bulk fluids [4, 8–14], find food
sources [15–18], behave near boundaries [19–23] and move
in complex fluids [24–27].
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These investigations have also prompted the creation
of artificial microswimmers. While some synthetic devices
have been designed to prove theoretical models [28,29] or
to exploit propulsion mechanisms for rigid shapes [30,31],
many artificial swimmers are directly inspired by propul-
sion methods used in the biological world [32–39]. Two
popular biological methodologies to induce motion at
small scales are the planar waving of slender filaments,
commonly used by spermatozoa [4, 35], or the rotating
of semi-rigid helical structures, commonly used by bacte-
ria [5, 9, 32].

Though the rotation of rigid helices is associated clas-
sically with swimming at low Reynolds numbers, the de-
formation of a helix can also produce motion [36,40]. The
helical flagellar filaments of Escherichia coli (E. coli), for
example, are polymorphic [41, 42] and can switch forms
when rotated in a different direction [12, 43–45], leading
to random reorientations of the bacteria as a whole [5,46].
For the bacterium Rhodobacter sphaeroides, these reori-
entation events were previously thought to be governed
by Brownian rotation, but recent results suggest that
the polymorphic change itself actively rotates the swim-
mer [47].

A different phylum of bacteria, the Spirochaetes, can
also use the deformation of helix to generate propul-
sion. These bacteria encase their flagellar filaments within
a thin sheath around their body [48–50]. When the helical
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Fig. 1. Net rotating motion of a deforming gel helix [37]. (a) Schematic diagram of the helix of length 2Lh (measured along
the helix axis) and diameter 2rh, with a definition of the two angles (θ, Ω) by which it may rotate. (b) Angular displacements
of the helix as it periodically deforms in a non-reciprocal manner. Light yellow regions indicate when the light is on, while dark
blue regions reflect when the light is off. Figure adapted from ref. [37] under the Creative Commons License.

filaments are rotated, their motion deforms the cell body
through a set of waves and helical shapes, that in turn
creates motion [51–53]. Similarly Spiroplasma, a group of
small helical unflagellated bacteria, are able to generate
thrust by propagating a switch in helix handedness along
its body length [40,54,55].

Recently Mourran et al. developed a novel deform-
ing helical microswimmer composed of a temperature-
sensitive gel [37,56]. When periodically heated and cooled
with a laser, these gels retain a helical shape while chang-
ing their helix radius and axial length in a non-reciprocal
manner. These non-reciprocal deformations lead to a net
rotation parallel and perpendicular to its helix axis and,
when near walls, a net translation (fig. 1).

Motivated by these recent experimental results and by
the common occurrence of deforming helices in biological
systems, this paper explores how a deforming helix can
generate motion. First we consider the dynamics of an
inextensible helix that changes its axial length, helix ra-
dius and wavelength in time in order to move in an infinite
fluid. We demonstrate that this simple shape can generate
a non-reciprocal swimming stroke and that, in an infinite
fluid, it may translate and rotate in only one direction by
symmetry. The physics of this motion is elaborated upon
in the limit of small helix radius before we determine the
general trends of these swimmers and the optimal con-
figuration loops. Finally, we consider how the presence of
gravity, walls or imperfections in the helical shape can be
used to break symmetries and to allow the deforming helix
to move in any direction.

This article is organised as follows. In sect. 2 we de-
scribe the configuration of the helix in an infinite fluid, its
deformation velocity, symmetries, and the low Reynolds
number hydrodynamic model used to calculate its mo-
tion. In sect. 3 we then use this model to determine the
dynamics of the deforming helix in the limit of small he-
lix radius and demonstrate that the leading-order motion
is very sensitive to the path taken in configuration space.

The general behaviour of the swimmer and its optimal
configuration loops are then explored in sect. 4. Finally in
sect. 5 we consider how gravity, walls and imperfections in
the helix can break the symmetry of the swimmer and de-
termine the leading-order dynamics when the helix radius
is small.

2 Kinematics and dynamics

Although helices have long been associated with swim-
ming at low Reynolds number, the physics governing the
swimming of a deforming helix has not yet been addressed.
This can, however, be achieved through simple consider-
ations of the helical shape and its deformation. In this
section we set up the problem by mathematically describ-
ing the shape of a deforming helix, the symmetries of its
motion, and the hydrodynamic modelling which will be
exploited to quantify the motion.

2.1 Helical geometry and kinematics

The deforming helix varies its helix angle, helix radius
and wavenumber uniformly across its length to generate
motion. As such its centreline, r(s, t), is a helix at all times
and so can be described parametrically as

r(s, t) = {α(t)s, rh(t) cos(k(t)s), rh(t) sin(k(t)s)}, (1)

in the Cartesian coordinate system {x, y, z} (fig. 2). In the
above equation, t is time, α(t) is the cosine of the helix
angle, rh(t) is the helix radius, k(t) is the wavenumber,
s ∈ [ℓ,−ℓ] is the arc length and 2ℓ is the total length of
the helix along its centreline. The surface of a deforming
helix, with a circular cross-section, is then given by

S(s,Θ, t) = r(s, t) + rf (s)êρ(s,Θ, t), (2)
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Fig. 2. Illustration of a helix undergoing a non-reciprocal deformation with a centreline described by eq. (1) and a circular
cross-section. In this example, either the helix radius or the length along its helix axis is changed while the other is fixed. The
wavenumber is set through the inextensibility condition α2 + k2r2

h = 1 where α = Lh/ℓ and 2ℓ is the total length of the helix
centreline.

where rf (s) is the radius of the filament, êρ(s,Θ, t) is the
radial unit vector perpendicular to the centreline tangent
t̂(s, t) = ∂sr(s, t), and Θ ∈ [−π,π] is the azimuthal co-
ordinate of the surface. In this configuration, the length
along the helix axis is given by 2Lh(t) = 2α(t)ℓ. For an in-
extensible helix, s must describe the conserved arclength
of the curve for all t. This is equivalent to enforcing the
derivative of the curve with respect to s to be the cen-
treline tangent, t̂(s, t) = ∂sr(s, t). The inextensible con-
straint can therefore be written as [∂sr(s, t)]2 = 1 or

α(t)2 + rh(t)2k(t)2 = 1, (3)

at all times. In what follows, we scale all lengths in the
problem by ℓ.

The centreline, eq. (1), and inextensibility constraint,
eq. (3), show that a helix is uniquely defined by any two
of the three conformation parameters: α, rh, and k. A
deforming helix therefore has two independent degrees of
freedom which can be varied to generate motion. As fa-
mously discussed by Purcell in his seminal article on lo-
comotion at low Reynolds numbers [7], two independent
degrees of freedom are sufficient to create a non-reciprocal
stroke (i.e., not identical under a time-reversal symme-
try) and thus are the minimal requirements needed to in-
duce net motion. An example non-reciprocal stroke, gen-
erated by a deforming helix, is shown in fig. 2. This stroke
was obtained by alternatively varying the axial length,
Lh = α(t)ℓ, and helix radius, rh, while keeping the other
parameter fixed.

The surface velocity, due to the deformation of the
helix, is given by V = ∂tS(s,Θ, t). In the limit that rf ≪ ℓ
this velocity simplifies to ∂tS(s,Θ, t) ≈∂tr(s, t). This so-
called slender-body limit is often sufficient to capture the
leading physics of many microscopic swimming systems [2,
50, 57, 58]. Hence, assuming that our helices are slender,
we can approximate the deformation surface velocity as

V(s, t) ≈

{

dα

dt
s,

drh

dt
cos(k(t)s) − rh(t)s

dk

dt
sin(k(t)s),

drh

dt
sin(k(t)s) + rh(t)s

dk

dt
cos(k(t)s)

}

= s

(

r2
h(t)k(t)

dk

dt
+ α(t)

dα

dt

)

t̂ −
drh

dt
n̂

−srh

(

α(t)
dk

dt
− k(t)

dα

dt

)

b̂, (4)

where the tangent, t̂, normal, n̂, and bi-normal, b̂, vectors
to the centreline are

t̂ = {α(t),−rh(t)k(t) sin(k(t)s), rh(t)k(t) cos(k(t)s)}, (5)

n̂ = {0,− cos(k(t)s),− sin(k(t)s)}, (6)

b̂= {rh(t)k(t),α(t) sin(k(t)s),−α(t) cos(k(t)s)}. (7)

When the helix is located in a fluid, the deformation kine-
matics in eq. (4) creates hydrodynamic forces and torques
on the body which must balance the viscous drag from
the swimming motion of the helix.

2.2 Symmetry conditions

Due to the linearity of the low Reynolds number hydro-
dynamic equations (the Stokes equations), the swimming
motion of the deforming helix is subject to the same sym-
metries as the helical shape, eq. (1), and its deformation
velocity, eq. (4). The deforming helix, when located in an
infinite fluid, has one such symmetry; namely a π rotation
symmetry around a director perpendicular to the helix
axis. In our parametrisation of the helix this symmetry
axis coincides with ŷ = {0, 1, 0}. If, at any time, a he-
lix is rotated by π around the symmetry axis the system
is identical to before it was rotated. Therefore any net
motion perpendicular to ŷ, in our parametrisation, must
be equal to its negative after this rotation and is thus
zero. Hence the deforming helical swimmers only gener-
ate force, or motion along ŷ. Note as the experimental gel
helical swimmer rotates around both the helix axis and
perpendicular to it [37, 56], this rotation symmetry must
be broken. In principle this could be caused by deviations
in the shape of the helix, or the presence of walls. Such
influences will be discussed further in sect. 5.
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2.3 Hydrodynamics

The net translation and rotation of the deforming heli-
cal swimmer is governed by its interaction with the sur-
rounding viscous fluid. The details of these hydrodynamic
interactions dictate how the forces and torques on the
body relate to its shape and velocity. For long slender
swimmers in viscous environments, many semi-analytical
approaches exist to compute the distribution of hydrody-
namic forces [57–62]. These techniques fall broadly into
two classes: slender-body theories (SBT) [58–60] and re-
sistive force theories (RFT) [57]. While SBTs relate the
local force on the body to the surface velocity through
integral equations (which in general have to be inverted
numerically), RFTs relate the local force to the local ve-
locity at that point through an anisotropic drag matrix
(and as a result can be evaluated analytically). The for-
mer method is typically accurate to order rf/ℓ while the
latter is accurate to order 1/ log(rf/ℓ). The linear rela-
tionship between the local force and velocity in RFT is
known to capture much of the governing physics and the
qualitative behaviour of the filament. Hence, as RFT is
analytical, it is a very useful method to explore and op-
timise the dynamics of a filamentous swimmer. We will
therefore use RFT to describe the hydrodynamic forces
of the deforming helix swimmer. Specifically, for a slender
body in a quiescent unbounded fluid, the relationship be-
tween the local velocity of the body centreline, U(s), and
the hydrodynamic force per unit length acting from the
body on the fluid, f(s), is given by

f(s) =
[

ζ∥t̂t̂ + ζ⊥ (I − t̂t̂)
]

· U(s), (8)

where ζ∥ and ζ⊥ are the drag coefficients for motion
parallel and perpendicular to the filaments tangent, re-
spectively. The drag relationship in eq. (8) is anisotropic
when ζ∥ ̸= ζ⊥ , and for very slender bodies in an un-
bounded low Reynolds numbers flow becomes approxi-
mately ζ⊥ ≈2ζ∥ [2, 57,63].

The total hydrodynamic force, F(t), and torque, L(t),
acted on the fluid by a specific centreline velocity is then
found through the integrals

F(t) =

∫ 1

− 1

f(s, t) ds, (9)

L(t) =

∫ 1

− 1

r(s, t) × f(s, t) ds. (10)

For a force-free swimmer, the forces and torques from de-
formation must balance the drag from translation and ro-
tation, thereby determining the swimming velocities. In
the following sections we will apply this method to the
dynamics of a deforming helical swimmer.

3 Small helix radius deformations

Though the RFT modelling approach can be applied to
all body kinematics relevant to the motion of the deform-
ing helix, the full equations are in general not tractable

analytically and reveals little about the physics govern-
ing its motion. Hence it is more useful to first consider a
limiting configuration. Specifically we consider the limit
in which the helix radius is small, rh ≡ ϵr′h, where ϵ ≪ 1
is a small parameter and r′h is fixed, so that the helix is
approximately a straight rod with small-amplitude devi-
ations. In this limit, the inextensibility condition can be
used to eliminate α through the equation

α(t) = 1 −
ϵ2r′2h (t)k2(t)

2
+ O(ϵ4), (11)

thereby making the r′h-k configuration space the most
practical to work in. In this space, we first identify the
different forces and torques on the body before balancing
them with rigid-body drag in order to obtain the swim-
ming velocity and the net displacement generated from a
given configuration loop.

3.1 Deformation forces and torques

Consider the force and torque generated from the defor-
mation of the helix. In the limit of small helix radius,
ϵ ≪ 1, the deformation velocity becomes

V(t) = −sϵ2r′h(t)k2(t)
dr′h
dt

t̂ − ϵ
dr′h
dt

n̂

−sϵr′h(t)

[(

1 +
ϵ2r′2h (t)k2(t)

2

)

dk

dt

+ ϵ2r′h(t)k3(t)
dr′h
dt

]

b̂+ O(ϵ4). (12)

Hence, using eqs. (8), (9), and (10), the net force and
torque on the fluid from this motion are

F=
2ϵζ⊥
k2

[(

k
dr′h
dt

− r′h
dk

dt

)

sin(k)+kr′h
dk

dt
cos(k)

]

ŷ

+2ϵ3kr′2h
dr′h
dr

(ζ⊥ − ζ∥) (k cos(k) − sin(k)) ŷ + O(ϵ4),

(13)

L=−
2ϵζ⊥
k3

[

dr′h
dt

(

k sin(k) − k2 cos(k)
)

+ r′h
dk

dt

(

2k cos(k) + (k2 − 2) sin(k)
)

]

ŷ

+
r′2h ϵ3

k

(

k
dr′h
dt

[

(6ζ∥ − 5ζ⊥ )k cos(k)

+ ((5 − 2k2)ζ⊥ + 2(k2 − 3)ζ∥) sin(k)
]

+ ζ⊥ r′h
dk

dt

[

4k cos(k) + (k2 − 4) sin(k)
]

)

ŷ + O(ϵ4).

(14)

As anticipated from the symmetry arguments above, both
the forces and torques are directed in the ŷ direction. It
is also apparent that they are strictly odd functions of the
helix radius, ϵr′h. This is because changing the sign of ϵr′h
is mathematically equivalent to rotating the helix around
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its axis, x̂, by π. Since the rotational symmetry axis, ŷ,
is perpendicular to x̂, this rotation must also switch the
sign of the forces generated by the deformation, thereby
requiring the forces and torque to be odd in the helix
radius.

3.2 Rigid-body forces and torques

In Stokes flow, the net hydrodynamic force and torque
arising from rigid-body motion are linearly related to the
linear and angular velocity of the body through a symmet-
ric resistance matrix [64]. In the case of the deforming he-
lix, the rotational symmetry around ŷ means only a subset
of the coefficients of this matrix are required. Specifically,
only the coefficients relating the force and torque in ŷ to
the linear and angular velocity in ŷ are needed. The linear
relationship in this case can then be written as

(

F y

Ly

)

=

(

Ra Rb

Rb Rc

) (

Uy
r

ωy
r

)

, (15)

where Ur is the rigid-body translational velocity of the
helix, ωr is the rigid-body angular velocity, and the su-
perscript y denotes the ŷ component of each vector. The
values of the desired resistance coefficients coefficients, Ri,
can again be found using eqs. (8), (9) and (10) by calcu-
lating the net hydrodynamic force and torque arising from
unit linear and angular velocities. Performing such calcu-
lations in the limit of small helix radius we find

Ra = 2ζ⊥ − ϵ2(ζ⊥ − ζ∥)r
′2
h k (k − cos(k) sin(k)) + O(ϵ4),

(16)

Rb =
ϵ2r′2h

4
(ζ⊥ − ζ∥) (4k + 2k cos(2k)− 3 sin(2k))+O(ϵ4),

(17)

Rc =
2ζ⊥
3

+
ϵ2r′2h
12k

[

12kζ∥ − 18(ζ⊥ − ζ∥)k cos(2k)

−4(3ζ⊥ − ζ∥)k
3

+ 3((3 − 2k2)ζ⊥ − (5 − 2k2)ζ∥) sin(2k)
]

+ O(ϵ4).

(18)

Note that the leading-order values of these coefficients are
simply the resistance coefficients of a straight rod, while
the ϵ2 terms reflect the small helical deformation. Fur-
thermore, unlike the deformation forces and torques, the
resistance coefficients are even functions of helix radius,
ϵr′h, because the drag in ŷ is invariant to rotations of π
around the helix axis.

3.3 Instantaneous swimming velocities

The instantaneous swimming and angular velocities of a
deforming helix are then found through balancing the de-
formation and rigid-body forces and torques. Specifically,

adding the forces and torques together and setting the
result to be zero creates a linear system of equations for
both Uy

r and ωy
r , whose solution determines the swimming

velocities of the helix. Using the results above, the instan-
taneous velocities of the swimmer are

Uy
r = −ϵ

d

dt

(

r′h sin(k)

k

)

−
ϵ3r′2h (ζ⊥ − ζ∥)

16ζ⊥ k3

(

2k
dr′h
dt

f(k)

− r′h
dk

dt
g(k)

)

+ O(ϵ4), (19)

ωy
r = 3ϵ

d

dt

(

r′h sin(k)

k2
−

r′h cos(k)

k

)

+
3ϵ3r′2h
16ζ⊥ k4

(

k
dr′h
dt

h(k) + 2r′h
dk

dt
m(k)

)

+ O(ϵ4), (20)

where we have defined four functions

f(k)=(4k2 − 9)(1 + 2k2 − cos(2k)) cos(k)

+k(21 − 4k2 + 15 cos(2k)) sin(k), (21)

g(k)=(18 + 53k2 + 8k4) cos(k) + (19k2 − 18) cos(3k)

+2k[(4k2 − 27) sin(k) + (2k2 − 15) sin(3k)], (22)

h(k)= [(9+9k2+16k4)ζ⊥ − (15+30k2+16k4)ζ∥] cos(k)

+[(27k2− 9− 2k4)ζ⊥ +(15− 30k2+2k4)ζ∥] cos(3k)

−k[(18+3k2− 8k4)ζ⊥ +(9k2− 54+4k4)ζ∥] sin(k)

+k[(25k2− 54)ζ⊥ +(66− 25k2)ζ∥] cos(2k) sin(k),

(23)

m(k)= [(16k4− 15k2− 9)ζ⊥ +(15+39k2− 40k4)ζ∥] cos(k)

+3[(3 − 7k2)ζ⊥ + (7k2 − 5)ζ∥] cos(3k)

+2k[(9− 10k2+8k4)ζ⊥ +(22k2− 27− 8k4)ζ∥] sin(k)

+2k[(27− 4k2)ζ⊥ +(4k2− 33)ζ∥] cos(2k) sin(k). (24)

As one may expect, both the translational and angular
velocities are odd functions of the helix radius, ϵr′h, again
reflecting the relationship between changing the sign of
ϵr′h and rotating the helix around its axis, x̂.

Furthermore, the leading-order contributions (order ϵ)
in eqs. (19) and (20) are exact time derivatives of con-
figuration space parameters and thus cannot generate net
motion over a period of deformation. This general result
arises from the helix’s ability to only swim in one dimen-
sion. For one-dimensional motion, the net displacement
from a given loop in configuration space is given by

(

∆Y

∆θ

)

=

∮

∂V

(

Uy
r

ωy
r

)

dt, (25)

where ∆Y is the translational displacement in ŷ, ∆θ is the
rotational displacement around ŷ, t is time, and ∂V is a
closed loop in configuration space. As the net displacement
is a direct integral of the velocity over a closed loop, it is
clear that components of the velocity that can be written
as exact time derivatives cannot generate motion. Physi-
cally this result is due to the leading-order shape of the
system. At order ϵ, the body is effectively a straight rod
with a prescribed velocity across its length. As a straight
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Fig. 3. Net translational (a) and rotational (b) displacement generated from a small-radius helix deforming according to
eqs. (26) and (27), as a function of the phase, φ. For this deformation loop, the parameter values are ᾱ = 0.903, ∆α = 0.047,
r̄h = 0.077, and ∆rh = 0.026 to reflect the typical dimensions of the experimental gel swimmer in ref. [37].

inextensible rod has no configurational degrees of freedom,
the system cannot break the time symmetry of Stokes flow
and so any motion must be the derivative of a periodic
function.

As a result, net displacements of the swimming he-
lix can only occur at orders in which the core shape has
become helical and can break time-reversal symmetry (or-
der ϵ3 or above). It is worth noting that if the drag on the
helix was isotropic (i.e. ζ⊥ = ζ∥), the order ϵ3 terms of
the linear velocity become identically zero. Hence, consis-
tent with the current understanding of swimming as low
Reynolds numbers, a deforming helix cannot generate net
translation in a isotropic drag medium [6]. Notably, un-
der the same conditions, the order ϵ3 terms of the angular
velocity are non-zero and so net rotation is still possible
under isotropic drag. This rotation is a consequence of the
anisotropy of the swimmer’s shape alone [65].

3.4 Sensitivity of the net displacements

In order to gain further understanding, we consider how
the net displacements, in eq. (25), depend on a particular
configuration loop. For this purpose we use the typical di-
mensions of the deforming gel swimmer from ref. [37]. The
mean (scaled) helix radius of the reported gel swimmer’s
deformation was r̄h ≈0.077 and it varied by ∆rh = 0.026
throughout one cycle. Similarly the mean (scaled) axial
length was ᾱ ≈0.903, and it varied by ∆α = 0.047. These
dimensions are consistent with the small helix radius as-
sumption of eqs. (19) and (20). An approximate deforma-
tion loop of the gel helix can be parametrised as

α(t) = ᾱ + ∆α sin(t), (26)

ϵr′h(t) = r̄h + ∆rh cos(t + φ), (27)

where φ is the phase between the two oscillations and k
is given by eq. (11). For φ = π/2, 3π/2, eq. (26) describes
reciprocal motion and therefore no net motion is induced.
We note that a different deformation loop would generate
different net displacements, as would be expected for any
change in a swimming stroke.

The configuration loops for ϵr′h and k can be inserted
into eqs. (19), (20) and (25) to determine the net dis-
placements from one period of deformation. These results
are illustrated in fig. 3. For the loops considered, each
displacement shows a different non-sinusoidal dependence
on the phase lag, φ. Hence, for typical experimental val-
ues, the dynamics of the gel swimmer could vary wildly.
In fig. 3 we observe the maximum linear displacement,
∆Y , to be ≈0.003 while the maximum angle, ∆θ, to be
≈0.015 rad. Though determined using a RFT model, this
maximum rotational displacement is close to the exper-
imentally measured displacement of 0.019 rad [37]. Fur-
thermore, the experiments observed no net translation,
in agreement with our prediction that ∆Y is small. This
agreement suggests that some of the experimentally seen
motion is governed by similar physics to the deforming
helix and so may be understood and optimised using the
same principles.

4 Arbitary deformations

The motion of the helix generated by an arbitrary, periodic
configuration loop can also be computed using the RFT
formalism. In doing so, it is best to consider the dynamics
in the α-rh configuration space. As α is the scaled axial
length and rh is the scaled helix radius, both variables
have clear connections to the physical shape of the helix.
Furthermore as α ∈ [0, 1], rh ∈ [0,∞) and k ∈ [0,∞) and
the three parameters are related through the inextensibil-
ity condition, eq. (3), the physical region of the α-rh space
is rectangular and easier to visualise than the rh-k space,
which is bounded by 0 and rh = 1/k.

In the α-rh configuration space, the instantaneous ve-
locity resulting from a general deformation of the helix
can always be formally written as

(

Uy
r

ωy
r

)

= Mr,α
d

dt

(

rh

α

)

, (28)
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where the matrix

Mr,α ≡

(

MY,r
r,α MY,α

r,α

Mθ,r
r,α Mθ,α

r,α

)

(29)

relates the instantaneous velocities to the rate of change
of the helix configuration parameters. The coefficients of
this matrix are determined by balancing the forces and
torques on the helix. For completeness these coefficients
are listed in the appendix in the limit of asymptotically
slender filaments, i.e. ζ⊥ /ζ∥ = 2. The linear relationship in
eq. (28), between the deformation variables and the rigid
swimming velocity, is the basis for our investigation into
general swimming behaviours.

4.1 Net displacement and motility maps

For any periodic deformation of the helix, the net linear,
∆Y , and angular displacement, ∆θ, can be written as

∆Y =

∮

∂V

(

MY,r
r,α

drh

dl
+ MY,α

r,α

dα

dl

)

dl, (30)

∆θ =

∮

∂V

(

Mθ,r
r,α

drh

dl
+ Mθ,α

r,α

dα

dl

)

dl, (31)

where we have expanded eq. (28), and parametrised
eq. (25) by the arc length of the α-rh curve in configu-
ration space, l. The insensitivity of eq. (25) to arbitrary
re-parametrisations of time reflects the time invariance of
Stokes flow.

The general behaviours and optimal trajectories of the
deforming helix swimmer can then be determined by con-
sidering how eqs. (30) and (31) vary for different loops in
the α-rh configuration space. Typically this is difficult to
achieve due to the infinite number of loops possible. How-
ever, in this case, the trends and the optimal loops can be
determined through a mathematical trick involving the
use of Stokes’ theorem. Specifically, eqs. (30) and (31) can
be thought of as closed line integrals over vector fields with
strengths MY = (MY,r

r,α ,MY,α
r,α ) and Mθ = (Mθ,r

r,α ,Mθ,α
r,α ),

respectively. Stokes’ theorem classically states that the
value of such closed line integrals is equal to the flux of
the curl of this vector field through a surface bounded by
the loop. In two dimensions this relationship reduces to
Greens’ theorem and so eqs. (30) and (31) can be recast
as

∆Y =

∫∫

V

(

dMY,α
r,α

drh
−

dMY,r
r,α

dα

)

drh dα

=

∫∫

V

(∇ × MY ) · x̂3 drh dα, (32)

∆θ =

∫∫

V

(

dMθ,α
r,α

drh
−

dMθ,r
r,α

dα

)

drh dα

=

∫∫

V

(∇ × Mθ) · x̂3 drh dα, (33)

where V is the area within the loop in configuration space
and x̂3 is the unit vector perpendicular to the configura-
tion space. In last equality we have arbitrarily introduced
a new orthogonal coordinate x3 in which both vector fields
have 0 component, i.e. Mθ = (Mθ,r

r,α ,Mθ,α
r,α , 0), such that

the integrand can be written in terms of the curl. The
identities in eqs. (32), (33) show that the net translation
and rotation of a swimmer only depends on one functional
each: (∇× MY )·x̂3 for translation or (∇× Mθ)·x̂3 for rota-
tion. Plots of these functions over the configuration space
are known as motility maps or height functions [66, 67].
They reveal the general behaviour of the system while also
providing a quick way estimate the motion from any tra-
jectory. Furthermore, the loops which maximise the values
of ∆Y and ∆θ, under some length constraint, are just the
contours of these curl functions with the same arc length.
Hence these maps have been useful in applications of con-
trol theory and design optimisation [68–70].

4.2 General displacements of a deforming helix

In fig. 4, we plot the motility maps, (∇ × MY ) · x̂3 and
(∇ × Mθ) · x̂3, for a deforming helix swimmer. Though
shown on a log-log scale, the functions have been scaled
such that the values of ∆Y and ∆θ are still equal to
area integrals of the function within the loop. In both
panels, (∇ × MY ) · x̂3 and (∇ × Mθ) · x̂3 are seen to
oscillate, as the helix radius decreases, between positive
and negative values of almost equal magnitude but in-
creasing frequency. These oscillations are caused by the
changing number of coils within the helix. For an inexten-
sible helix the wavenumber, k, is always proportional to
1/rh. Hence as rh decreases, the number of wavelengths
along the length increases and can change the direction
of motion. This increasing rate of oscillation suggests that
it is better for the swimmer to have a larger helix ra-
dius as larger loops that do not cross a zero contour are
possible, thereby reducing the sensitivity of the results to
small changes while maximising the area within the loop.
These oscillations also allow a swimmer of a single chiral-
ity to move backwards or forwards when following loops
of the same handedness (clockwise or counter-clockwise)
and could be harnessed to create loops in which one of the
displacements is exactly 0.

Unlike with rh, the optimal behaviour of α is seen to
be different for translation and rotation. When optimising
translation, it is visible that (∇× MY )·x̂3 is larger when α
is closer to 1, while for rotation the maximum of (∇× Mθ)·
x̂3 in α is closer to 0.1 and it decreases as rh decreases.
This suggests that α can be used to tune the swimmer
to be better at either rotating or translating. Note that
deforming helices are inherently better at rotating than
translation since the maximum of (∇ × Mθ) · x̂3 is an
order of magnitude larger than (∇ × MY ) · x̂3, but the
physics causing this difference is yet unclear.

The results plotted in fig. 4 can also be used to estimate
the maximum displacements possible from a given loop.
For example, let us consider the value of the integral in
the rightmost loop shown in each panel, as these are the
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Fig. 4. Motility maps: density plots of the functionals (∇ ×MY ) · x̂3 ((a), translation) and (∇ ×Mθ) · x̂3 ((b), rotation) as
a function of the scaled helix radius, rh, and scaled axial length, α. The dashed lines represent iso-contours of the functionals.
The solid black loop represents an approximate path in configuration space taken by the deforming gel swimmer from ref. [37]
(eqs. (26) and (27) when φ = 0). Though on a log-log scale, the functions have been scaled such that the total displacement
over a loop is the integral of the function within the loop. All lengths have been scaled with respect to ℓ.

loops with the largest area. Integrating (∇ × MY ) · x̂3

over rh = [0.2,∞) and α = [0, 1], we find the translational
displacement of the right most loop to be ∆Y ≈0.08 in
dimensionless units, while similarly integrating (∇× Mθ) ·
x̂3 over rh = [0.15,∞) and α = [0, 1], we find ∆θ ≈2.25
radians. This again reinforces that the deforming helix is
better at rotating than translating. Interestingly the net
translational displacement of E. coli bacteria per rotation
of the flagella (∼ 100Hz), scaled by the size of the cell
body (∼ 2µm), is approximately 0.1 [9] and therefore is
of a similar magnitude to the maximum ∆Y obtainable
by a deforming helix; it is however one order of magnitude
larger than that predicted for the experimental deforming
swimmer.

Finally the motility maps also explain the sensitivity
of the net displacements to the phase, φ, in fig. 3. In cal-
culating fig. 3 we used typical dimensions of the experi-
mental gel swimmer from ref. [37]. The black solid loops
plotted in each panel of fig. 4 display such a deformation,
as described by eqs. (26) and (27) when φ = 0. Clearly
these loops encircle regions with both positive and nega-
tive amplitude. It is therefore immediately obvious that
the net motion observed would depend critically on how
this loop interacts with the contours of the motility maps
and that loops crossing zero contours would generate less
displacement than those aligned.

5 Breaking additional symmetries

The deforming gel helix studied experimentally in ref. [37]
was seen to rotate both around and perpendicular to the
helix axis. From the theoretical discussion in sect. 2 we
know that the deforming helix in an unbounded fluid can
only translate and rotate in one dimension due to a rota-
tion symmetry. Experimental helices must therefore break

this rotation symmetry in order to generate this differ-
ent behaviour. Hydrodynamically, this symmetry breaking
could either result from i) the presence of nearby surfaces,
ii) external forces such as gravity, or iii) asymmetric im-
perfections in the shape of the helix.

In this section we consider each of these influences sep-
arately and address how they would affect the dynamics
of the deforming helix. For simplicity, all three cases are
only considered in the asymptotic small helix radius limit,
with the configuration loop set by eqs. (26) and (27) (a
different configuration loop will, in general, generate dif-
ferent displacements). Furthermore, as breaking the he-
lix symmetry allows full three-dimensional motion, it be-
comes necessary to specify the configuration of the helix
in the laboratory frame. In what follows the position of
the helix in the laboratory frame is defined by a position
vector, R, the rotation around the helix axis, Ω, the angle
between the helix axis and the wall, Φ, and the rotation
around the wall normal, θ (see notation in fig. 5). If x̂,
ŷ and ẑ denote unit vectors associated with the body-
centred coordinate system (consistent with the previous
notation), the three-dimensional dynamics of the position
and orientation of the helix are then determined by [50]

dR

dt
= Ur, (34)

dx̂

dt
= ωr × x̂, (35)

dŷ

dt
= ωr × ŷ, (36)

dẑ

dt
= ωr × ẑ, (37)

and the definition of the three angles follows from these
unit vectors accordingly.
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Fig. 5. Diagram depicting the orientational configuration of the helix in the laboratory frame, x̂l, ŷl, ẑl. Here R is the position
of the helix in the laboratory frame, Ω is the rotation angle around the helix axis, Φ is the angle between the helix axis and
the wall, θ is the angle for rotation around the wall normal, and x̂, ŷ, and ẑ are the body frame unit vectors. When relevant,
gravity will be defined in the laboratory −̂yl direction while hc denotes the distance from the centre of the helix to the wall
(grey).

5.1 Surfaces

In experiments, both biological and artificial swimmers
are often located close to surfaces either as a result of
their swimming characteristics [19, 22, 71] or because of
their differences in density [32,37]. Walls therefore play a
significant role in the swimmers behaviour, and, in the case
of the deforming helix, can break the rotation symmetry
if ŷ is not aligned parallel (or anti-parallel) to the wall
normal.

The breaking of symmetry in this case occurs because
the viscous drag on a body depends on its distance to,
and orientation from, any nearby no-slip surface. The in-
fluence of walls on slender filament is, therefore, a difficult
theoretical problem and so typically requires the use of
numerical techniques [72–75]. Hence no general version of
RFT exists in this case. However, if the filament is ori-
ented perpendicular to the wall normal (i.e., parallel to the
wall itself) resistance coefficients have been determined in
certain asymptotic limits. In particular, if the pointwise
distance between the filament and the wall, h, is much
less than the body length ℓ (i.e., h ≪ ℓ) the resistance
coefficients are approximately given by

ζt ≈
2πµ

log(2h/rf )
, (38)

ζy ≈
4πµ

log(2h/rf ) − 1
, (39)

ζz ≈
4πµ

log(2h/rf )
, (40)

where rf is the radius of the filament, ζt is the resistance
coefficient for drag along the filament axis, ζy is the re-
sistance coefficient for drag in the normal direction of the
wall and ζz is the resistance coefficient for drag in the
last direction (see the review in ref. [76] and references
therein).

In the small rh limit, the helix is nearly a rod and so, if
the angle between the helix axis and the wall, Φ, is small,
these resistance coefficients can be used to quantify the
locomotion of the helix. Near the wall, the resistive force
relationship in eq. (8), in this limit, becomes

f ≈
[

ζtt̂t̂ + ζyŷhŷh + ζz ẑhẑh

]

· U, (41)

where ŷh = ŷ · (b̂̂n − n̂b̂), ẑh = − ẑ · (b̂̂n − n̂b̂), h =
ŷl · R = ŷl · r + hc and hc is the height of the centre of
the helix above the wall. This formalism makes it possible
to then investigate how the wall affects the motion of a
deforming helix. This can be done while maintaining the
helix rotation symmetry, if ŷ is aligned with or against the
wall normal, or breaking it. When the rotation symmetry
is kept, an analytical form of the velocity can be found,
however for the full motion (including movement relative
to the wall) the solution must be solved numerically.

5.1.1 Maintaining the helical symmetry

When the helix symmetry axis, ŷ, and the wall normal
remain aligned, the helix retains its π rotation symmetry.
Under these conditions, the motion from any deformation
can still only be in ŷ and the leading-order linear and
angular velocity becomes

Uy
r =−ϵ

d

dt

(

r′h sin(k)

k
+ϵ

r′2h (2k2− 4 sin(k)2+k sin(k))

8hpk2

)

−
ϵ3r′2h

96h2
pLk3

(

fw
dr′h
dt

+24r′hgw
d log(k)

dt

)

+O(ϵ4), (42)

ωy
r =3ϵ

d

dt

(

r′h sin(k)

k2
−

r′h cos(k)

k

)

+
ϵ2r′h
8hLk

(

3nw
dr′h
dt

+ r′hmw
dk

dt

)

+ O(ϵ3), (43)
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where we have introduced the four functions

fw = 12h2
pk

3 cos(k)(2(L − 1) cos(2k) − (5L + 7))

+48h2
p(L + 1)k5 cos(k)

−24h2
p(3L + 1)k4 sin(k) + 96L sin3(k)

−6(L + 3)k sin(k) sin(2k)(3h2
p + 2L)

+k2(2 sin(k)(4L(L − 3) + 3h2
p(11L + 9))

+ sin(3k)(4L(L + 1) − 9h2
p(L − 5))), (44)

gw = −3k3 cos(k)(8L(L + 1) − 3h2
p(19L + 17)

+ cos(2k)(3h2
p(7L − 19) − 4L(L + 1)))

+2k2 sin(k)(cos(2k)(27h2
p(L − 5) − L(11L + 29))

−L(L + 1) − 27h2
p(5L + 7))

+36h2
p(3L + 1)k5 cos(k) − 144L sin3(k)

+18h2
pk

4(2(L + 1) sin(k) − (L − 1) sin(3k))

+36k cos(k) sin(k)2(2h2(L − 1)2(L + 3)

+L(L + 6)), (45)

nw = 12(2 + k2) − 2 cos(2k)(12 − 18k2 + k4)

+k sin(2k)(13k2 − 48), (46)

mw = 6 cos(2k)(24 − 48k2 + 7k4) + 4(k6 − 9k4 − 36)

+3k sin(2k)(96 − 49k2 + 2k4), (47)

hp = hc(L− 1) and L = log(2hc/rf ). The above expansion
shows that, in the presence of a wall, the net leading-order
angular velocity becomes of order ϵ2r′2h while the leading-
order linear velocity remains at ϵ3r′3h . The presence of a
surface therefore causes a significant increase in the angu-
lar velocity while maintaining a similar magnitude linear
velocity.

Significantly, the ∼ϵ2r′2h nature of the angular velocity
indicates that the direction of rotation is independent of
whether the symmetry axis is parallel or anti-parallel to
the wall normal. Hence, since the free motion must be an
odd function of ϵr′h, this motion arises uniquely from the
hydrodynamic interactions of the helical body with the
wall.

The net displacement of the deforming swimmer
can be determined by substituting these velocities into
eqs. (34)–(37). In doing so, care is needed to account for
the changing height of the swimmer above the wall, hc.
We show in fig. 6 the net linear and angular displacement
for different initial heights. As the body gets closer to the
wall, the magnitudes of both the net translation and rota-
tion increase. Hence walls could be exploited to enhance
the net motion of a deforming helix.

However, from our predictions, we see that this rate
of increase remains small as hc decreases. This is a con-
sequence of the logarithmic dependence of the resistance
coefficients, eqs. (38), (39) and (40), on the separation
from the wall. This logarithmic dependence will change
as the distance from the wall becomes less than the thick-
ness of the body, rf , and the systems enters the lubrication
limit [64]. In that case, the local drag on the cylinder is

Fig. 6. Net displacement in translation, ∆Y (a), and rotation,
∆θ (b), in the laboratory frame over one period of oscillation
using the near-wall resistive force coefficients. Here the cross-
sectional radius of the helix is rf = 0.0375 corresponding to
the effective radius of the gel swimmer in ref. [37].

known to increase as ∼1/
√

h − rf [77] and therefore the
presence of the wall would lead to a larger effect.

5.1.2 Breaking the helical symmetry

When ŷ is not aligned with the wall normal, the presence
of the surface breaks the helix’s π rotation symmetry. The-
oretically, such configurations can be achieved by rotating
r around its axis by an angle Ωi ̸= 0, ± π before placing
it near a wall. This configuration captures a deforming
helix “lying” near the bottom wall at an arbitrary initial
orientation.

In fig. 7 we show the (numerically determined)
laboratory-frame orientation and position of a helix with
an initial configuration Ωi = π/2, and hc = 0.3. Configu-
rations with different initial values for Ωi exhibit qualita-
tively similar behaviour. The results show that breaking
the helix rotation symmetry leads to motion in all direc-
tions. However, of all the components of translations and
rotations, motion in the ŷl direction still dominates. After
θ, Φ is the next largest angle. Since Φ represents the an-
gle between the helix axis and the wall (fig. 5), its change
indicates that the helix is also slowly aligning its helix
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Fig. 7. Net laboratory-frame displacement in translation (a) and rotation (b) over ten periods of oscillation using the near-wall
resistive force coefficients. This helix initially has an orientation of Ωi = π/2 and a distance from the wall of hc = 0.3. The
filament radius is rf = 0.0375 and φ = 0. The three angles are defined geometrically in the caption of fig. 5.

axis, x̂, with the wall normal. There is however little rota-
tion around said helix axis or displacement in x̂l and ŷl.
Therefore, though the wall can break the rotational sym-
metry, in our model it only tends to weakly increase the
net displacements over a period.

5.2 Gravity

The presence of gravity, acting as an external force, can
also generate motion and break the helix’s rotation sym-
metry. Though not actually related to the deformation
of the helix, this motion occurs simultaneously and so
can play part in the observed dynamics. The significance
of the gravitational motion is determined by the ratio
of the gravitational and viscous forces. Often called the
Archimedes number, Ar, this ratio is defined as

Ar =
g(ρb − ρf )V T

µℓ2
, (48)

where g = 9.8m s− 1 is the gravitational acceleration, ρb is
the mass density of the helix, ρf is the density of water, V
is the volume of the swimmer, µ is the dynamic viscosity
of the fluid (water in the experiments) and T is the period
of the shape oscillation. For the gel helix swimmer studied
in ref. [37], we have Ar ≈0.058.

The velocities generated by gravity can be found by
balancing the gravitational (buoyancy) force with the drag
force and torque from rigid-body motion. This is best done
in an infinite fluid. In the body frame the gravitational
acceleration is given by

g = −g {sin(Φ), cos(Φ) cos(Ω),− cos(Φ) sin(Ω)} . (49)

Balancing the resulting gravitational force with the vis-
cous drag, and expanding in small helix radius, ϵr′h, we
obtain the leading-order velocity due to gravity as

Ux
r = Ar

sin(Φ)

2ζ∥
+ O(ϵ), (50)

Uy
r = −Ar

cos(Φ) cos(Ω)

2ζ⊥
+ O(ϵ), (51)

Uz
r = Ar

cos(Φ) sin(Ω)

4ζ⊥ γ
{
[

cos(2k) − 1 − 2k2
]

(3 − k2)

−6k sin(2k)} + O(ϵ), (52)

ωx
r = Ar

k sin(Φ)

4ζ⊥ ζ∥γ
{2(ζ⊥ − ζ∥) [2 + cos(2k)] k2

−2(ζ⊥ − ζ∥)k
4}

+Ar
k sin(Φ)

4ζ⊥ ζ∥γ

[

6ζ⊥ sin2(k) − 3(2ζ⊥ − ζ∥)k sin(2k)
]

+O(ϵ), (53)

ωy
r = −Arϵ2r′2h

3 cos(Φ) cos(Ω)(ζ⊥ − ζ∥)

16ζ2
⊥

[2k(2+cos(2k))

−3 sin(2k)] + O(ϵ3), (54)

ωz
r = Ar

2k cos(Φ) sin(Ω)

2ζ⊥ γ
[sin(k) − k cos(k)] + O(ϵ), (55)

where we used the function γ

γ = k4 + 3k sin(2k) − (2 + cos(2k))k2 − 3 sin2(k). (56)

This result shows that gravity generates leading order mo-
tion in every direction except for the rotation around ŷ,
which occurs at order O(Ar ϵ2). Therefore, if the value of
Ar was large enough, gravity could create significant mo-
tion in the directions excluded by the helical symmetry.

5.3 Imperfect helix shapes

Defects in the shape of the helix may also break the π
rotation symmetry and so generate full three-dimensional
motion, the specific form of the defect ultimately deter-
mining the resultant motion. As the range of defects pos-
sible is effectively infinite, in this section we focus on the
behaviour of a small conical defect causing the helix ra-
dius to monotonically increase from one side of the helix
to the other (see illustration in fig. 8). Mathematically the
centreline of the conical helix can be written as

r(s, t) = {α(t)s, ϵr′h(t)(1 + ξs) cos(k(t)s),

ϵr′h(t)(1 + ξs) sin(k(t)s)}, (57)
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Fig. 8. Configuration of a conical helix in its body frame.

Fig. 9. Net laboratory-frame displacement in translation (a) and in rotation (b) over one period of oscillation for a conical
helix with ξ = 0.1.

where ξ is a small parameter, so that α2+(1+ξs)2r′2h k2 ≈
1. This small change is enough to break the symmetry of
the shape and so enable fully three-dimensional motion.

We plot the net displacement after one period of defor-
mation as a function of the phase, φ, in fig. 9. In these plots
ξ = 0.1 and the configuration loop is again prescribed by
eqs. (26) and (27). For the conical helix, it is clear that all
displacements are non-zero and non-trivially depend on
the value of φ. Defects in the shape can therefore gener-
ate displacements in all possible directions, enabling full
three-dimensional motion.

6 Discussion

Helices are iconic shapes in the mechanics of small-scale
locomotion, with many types of swimmers rotating rigid
helices to generate thrust. However, deforming helices can
also create non-trivial motion. Inspired by the range of
systems displaying motion from the deformation of a he-
lix, we considered in this paper how an inextensible helix
can propel at low Reynolds number by changing its he-
lix angle, helix radius and wavenumber uniformly across
its body. We show that these deforming helices can create
non-reciprocal strokes and, in an infinite fluid, can only
move in one dimension, namely along a direction perpen-
dicular to the helix axis. In the limit of small helix ra-
dius, the velocity of these swimmers was shown to be an
odd function of the helix radius and could only gener-
ate displacement scaling as the cube of the helix radius.
For helices with dimensions similar to the deforming gel
swimmer of ref. [37], the value of the net displacements
over one period of oscillation depended strongly on the

configuration loop taken but could be of a similar order of
magnitude to the displacements found in the experiment.

The net translation and rotation of general unbounded
deforming helices were then explored using motility maps.
These maps use Stokes’ theorem to relate the closed line
integral representation of the net linear and angular dis-
placement of the swimmer to an area integral of a single
scalar function. Inspection of this function revealed the
general trends of the swimmer, and clearly showed the
optimal loops (the contours). For the deforming helix, the
changing number of wavelengths along the helix causes
these functions to oscillate. As a result larger displace-
ments were possible at larger helix radii for both the trans-
lational and angular displacement. The motility map func-
tions further revealed that the rotational displacement is
optimised at small axial lengths while translational dis-
placements is optimised at large axial lengths.

Using the small-radius approach, we next considered
how walls, gravity and a conical shape defect could break
the rotational symmetry of the deforming helical swim-
mer and how it would change the behaviour seen. In the
presence of a no-slip surface, the net displacement of the
helix, in the direction perpendicular to the wall, weakly
increased the closer to the wall it sat. However, the pres-
ence of the surface generated negligible motion in any
other direction. On the other hand, gravity was observed
to be able to create motion in every direction and so, pro-
vided buoyancy is relevant, could be a generator of the
motions that appear to break the rotational symmetry in
the experiments [37]. Similarly, a conical shape defect on
the swimmer was also shown to generate significant mo-
tion in every direction.
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Through our exploration, we have created a theoret-
ical basis to understand many of the motions generated
by deforming helices. These results in turn can then be
used to guide the design of other artificial deforming helix
systems, similar to the gel helix from ref. [37]. These pre-
dictions could be further improved through more accurate
hydrodynamic models or considering how gel extensibility
affects the dynamics. This investigation and optimisation
could also lead to the design of tunable artificial swim-
mers, by introducing how the swimmers react to external
fields to our model. Finally, the combination of this model
with deformation models for the body of a Spirochaetes or
the polymorphic transitions of a bacterial flagellum, could
also help improve our understanding into how biological
systems employ deforming helices to generate motion and
their efficiency in doing so.
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Appendix A. Mr,α coefficients

In this appendix we list the coefficients of the Mr,α as
found using RFT. Assuming ζ⊥ = 2ζ∥ these coefficients
become

βMY,r
r,α

8
=−3

(

α2− 1
)[

α4
(

k2− 4
)

+α2
(

2− 3k2
)

− 12
]

cos(3k)

−4k
[

5α6
(

k2 − 3
)

+ 12α4
(

k2 − 1
)

+3α2
(

5k2 − 4
)

+ 39
]

sin(k)

+
[

− 6
(

2α6 − 3α4 + 7α2 − 6
)

+8α2
(

α4 + 4α2 + 3
)

k4
]

cos(k)

+
(

−45α6 − 60α4 + 57α2 + 48
)

k2 cos(k)

+12
(

α6 − 2α4 + 2α2 − 1
)

k sin(3k), (A.1)

rhβMY,α
r,α

16α
=

[

3α2
(

4r2
h + 8k2 + 9

)

+ 3
(

r2
h + 6

)

+α4
(

8k2 − 45
) ]

cos(k)

+3
(

1 − 4α2
)

r2
hk sin(3k)

−k
(

20α4 + 12α2
(

5r2
h + 1

)

+ 33r2
h

)

sin(k)

−3
(

α4 + α2
(

4r2
h − 3

)

+ r2
h + 2

)

cos(3k),

(A.2)
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(
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−
(

α4 − 4α2 + 3
)

k sin(3k), (A.3)
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(
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(
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(
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)
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(

α4 − 10α2 + 17
)
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(A.5)

These coefficients are used to calculate the motility maps
in the main text. Note that in order to take the deriva-
tive of these coefficients k must be eliminated from the
equations using the inextensibility condition.
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