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Hydrodynamics of bacteriophage migration along bacterial flagella

Panayiota Katsamba* and Eric Lauga†

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, United Kingdom

(Received 18 September 2018; published 4 January 2019)

Bacteriophage viruses, one of the most abundant entities in our planet, lack the ability
to move independently. Instead, they crowd fluid environments in anticipation of a random
encounter with a bacterium. Once they land on the cell body of their victim, they are
able to eject their genetic material inside the host cell. Many phage species, however, first
attach to the flagellar filaments of bacteria. Being immotile, these so-called flagellotropic
phages still manage to reach the cell body for infection, and the process by which
they move up the flagellar filament has intrigued the scientific community for decades.
Berg and Anderson [Berg and Anderson, Nature (London) 245, 380 (1973)] proposed
the nut-and-bolt mechanism in which, similarly to a rotated nut that is able to move
along a bolt, the phage wraps itself around a flagellar filament possessing helical grooves
(due to the helical rows of flagellin molecules) and exploits the rotation of the flagellar
filament in order to passively travel along it. One of the main pieces of evidence for
this mechanism is the fact that immotile mutants of bacterial species such as Escherichia
coli and Salmonella typhimurium equipped with straight, but rotating, flagellar filaments
with a preserved helical groove structure are still infected by their relative phages.
Using two distinct approaches to address the short-range interactions between phages and
flagellar filaments, we provide here a first-principles theoretical model for the nut-and-bolt
mechanism applicable to mutants possessing straight flagellar filaments. Our model is fully
analytical, is able to predict the speed of translocation of a bacteriophage along a flagellar
filament as a function of the geometry of both phage and bacterium, the rotation rate of the
flagellar filament, and the handedness of the helical grooves, and is consistent with past
experimental observations.

DOI: 10.1103/PhysRevFluids.4.013101

I. INTRODUCTION

As big as a fraction of a micrometer, bacteriophages (in short, phages) are “bacteria-eating”
viruses (illustrated in Fig. 1) that infect bacteria and replicate within them [4]. With their number
estimated to be over 1031 on the planet, phages are more abundant than all other organisms on earth
combined [3,5–10].

Phages have been used extensively in genetic studies [4,7,11], and their future use in medicine
is potentially of even greater impact. The global rise in antibiotic resistance, as reported by the
increasing number of multidrug-resistant bacterial infections [12], poses one of the greatest threats
to human health in our times, and phages could offer the key to its resolution. Indeed, phages have
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FIG. 1. Bacteriophages. (a) Typical morphology of a bacteriophage, such as the Enterobacteria T4 phage
[1]. (b) Electron micrograph of bacteriophages attached to a bacterial cell [2]. Phages come in various shapes
such as: (c) Myoviridae, (d) Podoviridae, and (e) Siphoviridae [3]. [Panels (c)–(e) have been reprinted with
permission from Ref. [3].]

been killing bacteria for way longer than humanity has been fighting against bacterial infections,
with as many as 1029 infections of bacterial cells by oceanic phages taking place every day
[13,14]. Phage therapy is an alternative to antibiotics that has been used for almost a century and
offers promising solutions to tackle antibiotic-resistant bacterial infections [15]. Furthermore, the
unceasing phage-bacteria war taking place in enormous numbers offers the scientific community
great opportunities to learn from. For example, the ability of phages to update their infection
mechanisms in response to bacterial resistance could offer us valuable insight into updating
antibiotics treatment against multidrug-resistant pathogenic bacteria [16]. In addition, the high
selectivity of the attachment of a phage to the receptors on the bacterial cell surface and the species
it infects could help identify possible target points of particular pathogenic bacteria for drugs to
attack [17]. In general, extensive studies of bacteriophage infection strategies not only could reveal
vulnerable points of bacteria, but may help uncover remarkable biophysical phenomena taking place
at these small scales.

Infection mechanisms can vary across the spectrum of phage species [17,18]. Lacking the
ability to move independently, phages simply crowd fluid environments and rely on a random
encounter with a bacterium in order to land on its surface and accomplish infection using remarkable
nanometer size machinery. Typically, the receptor-binding proteins located on the long tail fibers
recognize and bind to the receptors of the host cell via a two-stage process called phage adsorption
[17]. The first stage is reversible and is followed by irreversible attachment onto the cell surface.
Subsequently, the genetic material is ejected from their capsid-shaped head, through their tail, which
is a hollow tube, into the bacterium [19,20].

While all phages need to find themselves on the surface of the cell body for infection to take
place, there is a class of phages, called flagellotropic phages, that first attach to the flagellar
filaments of bacteria. Examples include the χ phage infecting Escherichia coli (E. coli) and
Salmonella typhimurium (Salmonella), the phage PBS1 infecting Bacillus subtilis (B. subtilis),
and the recently discovered phage vB_VpaS_OWB (OWB) infecting Vibrio parahaemolyticus
(V. parahaemolyticus) [21], illustrated in Fig. 2.

Given the fact that phages are themselves incapable of moving independently and that the
distance they would have to traverse along the flagellar filament is large compared to their size,
they must find an active means of progressing along the flagellar filament. In Ref. [24], electron
microscopy images of the flagellotropic χ phage, shown in Figs. 2(c) and 2(d), were provided to
show that the mechanism by which χ phage infects E. coli consists of traveling along the outside of
the flagellar filament until it reaches the base of the flagellar filament where it ejects its DNA.

A possible mechanism driving the translocation of the χ phage along the flagellar filament was
proposed in Berg and Anderson’s seminal paper as the nut-and-bolt mechanism [25]. Their paper
is best known for establishing that bacteria swim by rotating their flagellar filaments. One of the
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FIG. 2. Flagellotropic phages. (a) Attachment of phage OWB to V. parahaemolyticus [21]. Red arrows
indicate phage particles. (b) Phage PBS1 adsorbed to the flagellar filament of B. subtilis, with its tail fibers
wrapped around the flagellar filament in a helical shape with a pitch of 35 nm [22]. The phage hexagonal head
capsid measures 120 nm from edge to edge [23]. [Panel (b) has been reprinted (amended) with permission
from Ref. [22].) (c) The χ phage of E. coli [24]. The head measures 65–67.5 nm between the parallel sides of
the hexagon [24]. (d) The χ phage at different times between attachment on the flagellar filament of E. coli and
reaching the base of the filament [24]. Arrows point to the bases of the flagella. [Panels (c) and (d) have been
reprinted (amended) with permission from Ref. [24].]

supporting arguments was the proposed mechanism where the phage plays the role of the nut and
the bolt is the flagellar filament, with the grooves between the helical rows of flagellin molecules
making up the flagellar filament serving as the threads [25] [Figs. 3(a) and 3(b)]. A phage would
then wrap around the flagellar filament and the rotation of the latter would result in the translocation
of the phage along it, just like a nut being rotated will move along a bolt.

A mutant of Salmonella that has straight flagellar filaments but possesses the same helical
screwlike surface due to the arrangement of the flagellin molecules [26] is nonmotile due to the lack
of chiral shape yet fully sensitive to the χ phage [28], i.e., the phages manage to get transported to
the base of the flagellar filament. This is consistent with the nut-and-bolt mechanism and was used
as evidence that the flagellar filament is rotating [25].

More evidence in support of the nut-and-bolt mechanism was provided 26 years after its inception
in a work studying strains of Salmonella mutants with straight flagellar filaments whose motors
alternate from rotating clockwise (CW) and counterclockwise (CCW) [29]. The directionality of
rotation is crucial to the mechanism as CCW rotation will only pull the phage toward the cell body
if the phage slides along a right-handed groove. In order to test the directionality, the authors used a
chemotaxis signaling protein that interacts with the flagellar motor, decreasing the CCW bias. They
found that strains with a large CCW bias are sensitive to χ -phage infection, whereas those with
small CCW bias are resistant, in agreement with the proposed nut-and-bolt mechanism.

Details of the packing of the flagellin molecules that give rise to the grooves can be found in
Ref. [27] and examples are shown in Figs. 3(a) and 3(b). It is important to note that the packing of
flagellin molecules produces two overlapping sets of helical grooves, a long-pitch and a short-pitch
set of grooves which are of opposite chirality [26]. Once in contact with a rotating flagellar filament,
it is anticipated that the phage fibers will wrap along the short-pitch grooves. Indeed, the findings
of Ref. [29] show that the directionality of phage translocation correlates with the chirality of the
short-pitch grooves.
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FIG. 3. Bacterial flagellar filaments, grooves and polymorphism. (a) Structure of straight flagellar filament
from a mutant of Salmonella typhimurium [26]. [Panel (a) has been reprinted with permission from Ref. [26].]
The L-type straight flagellar filament (left) has two types of helical grooves, left-handed long-pitch and right-
handed short-pitch grooves, whereas the R-type straight filament (right) has right-handed long-pitch and left-
handed short-pitch grooves. Examples of short-pitch grooves are marked by thin blue lines and indicated by
arrows. (b) Schematic of some polymorphic states of the flagellar filament, from left to right: L-type straight,
normal (left-handed shape), curly (right-handed shape), and R-type straight. The top panel shows the shape
of the filaments, while the bottom panel displays the arrangements of flagellin subunits. Examples of short-
pitch grooves are marked by thin blue lines and indicated by arrows [27]. [Panel (b) has been reprinted with
permission from Ref. [27].]

The flagellar filaments of bacteria can take one of the 12 distinct polymorphic shapes, 4 of which
are illustrated in Fig. 3(b). The authors in Ref. [29] examined flagellar filaments with different
polymorphic forms, since the different arrangements of the flagellin subunits give rise to grooves
with different pitch and chirality [27], as shown in Fig. 3(b). The L-type straight flagellar filament
(f 0) that was used by Ref. [29] has both left-handed long-pitch grooves and right-handed short-
pitch grooves [26]. Given that the short-pitch grooves are relevant to the wrapping of the fibers, the
findings of Ref. [29] that bacteria with their flagellar filament in the f 0 polymorphic state (i.e., with
right-handed short-pitch grooves) and with a large CCW bias are sensitive to χ -phage infection are
in agreement with the nut-and-bolt mechanism.

The same study also argued that the translocation time of the phage to the cell body is less than the
time interval of CCW rotation of the flagellar filament, a necessary condition for successful infection
by the phage of wild-type bacteria whose motors alternate between CCW and CW rotation. Their
estimated translocation speeds on the order of microns per second can give a translocation time
which is less than the CCW time interval of about 1 s [29].

Relevant to the nut-and-bolt mechanism are also the findings of an alternative mechanism for
adsorption of the flagellotropic phages φCbK and φCb13 that interact with the flagellar filament of
Caulobacter crescentus using a filament located on the head of the phage [30], instead of the tail
or tail fibers that other flagellotropic phages use, such as χ and PBS1. This study also reports on
a higher likelihood of infection with a CCW rotational bias that is consistent with the nut-and-bolt
mechanism. Notably, phages can also attach to curli fibers, which are bacterial filaments employed
in biofilms; however, due to the lack of helical grooves and rotational motion of these filaments,
phages are unable to move along them [31].

In this paper we examine theoretically the nut-and-bolt mechanism from a quantitative point of
view and perform a detailed mathematical analysis of the physical mechanics at play. We focus on
the phage translocation along straight flagellar filaments in mutants such as the mutant of Salmonella
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FIG. 4. Schematic model of the translocation of a flagellotropic phage along the straight flagellar filament
of a mutant bacterium. The phage, illustrated in dark green, is wrapped around the straight flagellar filament
(light blue cylinder) using its fibers, with its tail and head protruding in the bulk fluid.

used in Ref. [25]. A flagellotropic phage can wrap around a given flagellar filament using its tail
fibers (fibers for short), its tail, or in some cases a filament emanating from the top of its head [30]
and the models we develop can address all these relevant morphologies. A schematic diagram of the
typical geometry we consider is shown in Fig. 4, where the phage uses its fibers to wrap around the
filament.

A phage floating in a fluid whose fibers suddenly collide with a flagellar filament rotating at high
frequency will undergo a short, transient period of wrapping, during which the length of the fibers
that are wrapped around the filament is increasing. In this paper we study the translocation of the
phage once it has reached a steady, postwrapping state and assume that it is moving rigidly with no
longer any change in the relative phage-filament configuration.

In order to provide a first-principles theory for the nut-and-bolt mechanism, we build in the paper
a hierarchy of models. In Sec. II we start with a model of drag-induced translocation along smooth
flagellar filaments that ignores the microscopic mechanics of the grooves yet implicitly captures
their effect by coupling the helical shape of the fibers with anisotropy in motion in the local tangent
plane of the flagellar filament. Having acquired insight into the key characteristics of the mechanism,
we proceed by building a refined, more detailed model of the guided translocation of phages along
grooved flagellar filaments by incorporating the microscopic mechanics of the grooves in Sec. III.
This is done by including a restoring force that acts to keep the fibers in the center of the grooves,
thereby guiding their motion, as well as a resistive force acting against the sliding motion. In both
models, we proceed by considering the geometry, and the forces and torques acting on the different
parts of the phage. We use the resistive-force theory of viscous hydrodynamics in order to model
the tail and tail fibers which are both slender [32,33].

The portion of the phage wrapping around the flagellar filament is typically the fibers. They
experience a hydrodynamic drag from the motion in the proximity of the rotating flagellar filament
along which they slide in the smooth flagellum model, or a combination of the guiding and resistive
forces in the grooved flagellum model. Parts sticking out in the bulk away from the flagellar filament
experience a hydrodynamic drag due to their motion in an otherwise stagnant fluid.

We build in our paper a general mathematical formulation relevant to a broad phage morphology.
In our typical geometry of phages wrapping around flagellar filaments using their fibers, two limits
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FIG. 5. Mathematical model of drag-induced translocation along a smooth flagellar filament. The fibers
experience an anisotropic drag due to their motion in the proximity of the rotating flagellar filament. The
phage, shown in green, has a capsid head of size 2ah, a tail of length Lt , and fibers of helical shape with
helix angle α and cross-sectional radius rfib and is translocating along a straight flagellar filament, shown in
light blue, of radius Rf l . The flagellar filament is rotating at a rate ωf l . The phage is translocating at speed U

and rotating with rate ωp about the flagellar filament. The inset shows a short segment of the phage fiber at a
distance d from the local tangent plane of the flagellar filament.

arise for long-tailed and short-tailed phages. Long-tailed phages have their tail and head sticking
out in the bulk, away from the flagellar filament, whereas for short-tailed phages only the head is
exposed to the bulk fluid. The hydrodynamic torque actuating the translocation is mainly provided
by the parts sticking out in the bulk.

We compare the results from the two models addressing the two geometrical limits and find
these to be consistent with each other and with the predictions and experimental observations of
Refs. [25,29]. In particular, we predict quantitatively the speed of phage translocation along the
flagellar filament they are attached to and its critical dependence on the interplay between the
chirality of the wrapping and the direction of rotation of the filament, as well as the geometrical
parameters. Most importantly, we show that our models capture the correct directionality of translo-
cation, i.e., that CCW rotation will only pull the phage toward the cell body if the phage slides along
a right-handed groove, and predict speeds of translocation on the order of microns per second, which
are crucial for successful infection in the case of bacteria with alternating CCW and CW rotations.

II. DRAG-INDUCED TRANSLOCATION ALONG SMOOTH FLAGELLAR FILAMENTS

A. Geometry

As our first model we consider the flagellar filament as a straight smooth rod aligned with the z

axis and of radius Rf l . The phage has a capsid head of size 2ah, a tail of length Lt , and fibers that
wrap around the flagellar filament. We implicitly capture the effect of the grooves (i) by imposing
that the fibers that emanate from the bottom of the tail of the phage are wrapped around the flagellar
filament in a helical shape and (ii) via the anisotropy in the drag arising from the relative motion
between the fibers and the rotating flagellar filament. The helical shape of the fibers has helix angle
α, as shown in Fig. 5. With the assumption that the gap between the fibers and the flagellar filament
is negligible compared to the radius Rf l of the flagellar filament, the centerline rfib(s) of the fibers,
parametrized by the contour length position s, is described mathematically as

rfib(s) =
[
Rf l cos

(
s

Rf l/ sin α

)
, hRf l sin

(
s

Rf l/ sin α

)
, s cos α

]
, −L

(L)
fib < s < L

(R)
fib , (1)
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with total contour length Lfib = L
(L)
fib + L

(R)
fib , where we allow for fibers extending to both sides of

the base of the tail to have lengths L
(L)
fib (left side) and L

(R)
fib (right side). The helix wrapping is

right-handed or left-handed according to whether the chirality index h takes the value +1 or −1,
respectively.

Assuming the phage to move rigidly, translocating at speed U and rotating with rate ωp about
the flagellar filament and working in the laboratory frame, every point r on the phage moves with
velocity Uez + ωpez ∧ r. The flagellar filament is assumed to rotate at rate ωf l along its axis and
thus its velocity is given by ωf lez ∧ r in a fluid that is otherwise stationary, where the value of ωf l

is known. The purpose of our calculation is to compute the two unknown quantities U and ωp, in
terms of ωf l by enforcing the overall force and torque balance on the phage along the z axis.

B. Forces and moments

In order to calculate the forces and torques acting on the tail and fibers we use the resistive-force
theory (RFT) of viscous hydrodynamics [32,33]. This theoretical framework predicts the viscous
tractions due to the motion of a slender filament in a viscous fluid by integrating fundamental
solutions of the Stokes equations of hydrodynamics [34] along the centerline of the filament.

In an infinite fluid, the instantaneous hydrodynamic force per unit length exerted on a filament
due to its motion in an otherwise stagnant viscous fluid is given by

f (s) = −ζ⊥

[
v(s) −

(
∂r
∂s

∣∣∣∣
s

· v(s)

)
∂r
∂s

∣∣∣∣
s

]
− ζ‖

(
∂r
∂s

∣∣∣∣
s

· v(s)

)
∂r
∂s

∣∣∣∣
s

, (2)

where ∂r
∂s

|s and v(s) are the local unit tangent and velocity of the filament relative to the fluid at
contour-length position s, respectively, and ζ‖ and ζ⊥ are the drag coefficients for motion parallel
and perpendicular to the local tangent respectively [32,35]. For a slender rod of length L and radius
r in an infinite fluid, we have

ζ⊥ ≈ 4πμ

ln(L/r )
, ρ ≡ ζ‖/ζ⊥ ≈ 1/2, (3)

where μ is the dynamic viscosity of the fluid.
The fact that the perpendicular drag coefficient is twice the parallel one captures the fact that it

is twice as hard to pull a rod through a viscous fluid in a direction perpendicular to its length than
lengthwise. This drag anisotropy is at the heart of the propulsion physics for microorganisms such
as bacteria and spermatozoa [33].

As a result, the total hydrodynamic force and the z component of the torque on the phage tail due
to its motion in the fluid are given by

Ftail = −
∫ Lt

0
[ζ‖,t ttailttail + ζ⊥,t (1 − ttailttail )] · urel

tail (s) ds, (4)

ez · Mtail = −ez ·
∫ Lt

0
rt (s) ∧ {

[ζ‖,t ttailttail + ζ⊥,t (1 − ttailttail )] · urel
tail (s)

}
ds, (5)

where rt (s) and ttail (s) are the position and unit tangent vectors of the fiber centerline at contour
length position s, respectively. The symbols ζ⊥,t and ζ‖,t are the drag coefficients for motion
perpendicular and parallel to the local tangent, and ρt is their ratio, with ζ‖,t ≡ ρtζ⊥,t , and the
velocity of the tail relative to the fluid is

urel
tail (s) = ωp(ez ∧ rt ) + Uez. (6)

For the fibers, we use the version of RFT modified to capture the motion of slender rods near a flat
surface. The flagellar filament is rotating at rate ωf l , thus the velocity of the fibers relative to the
flagellar filament is given by

urel
fib(s) = �rel(ez ∧ rfib) + Uez, (7)
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where the relative angular velocity is given by

�rel = ωp − ωf l. (8)

The expressions for the fibers are similar, and we have

Ffib = −
∫ L

(R)
fib

−L
(L)
fib

[ζ‖,fibtfibtfib + ζ⊥,fib(1 − tfibtfib)] · urel
fib(s) ds, (9)

ez · Mfib = −ez ·
∫ L

(R)
fib

−L
(L)
fib

rfib(s) ∧ {
[ζ‖,fibtfibtfib + ζ⊥,fib(1 − tfibtfib)] · urel

fib(s)
}
ds. (10)

The difference between the pairs of expressions in Eqs. (4), (5) and (9), (10) is that in the latter
pair we use the appropriate resistance coefficients ζ⊥,fib and ζ‖,fib for motion at a small constant
distance d from a nearby surface, in directions perpendicular and parallel to the local tangent of the
fiber, respectively, given by

ζ⊥,fib ≈ 4πμ

ln(2d/rfib)
, (11)

with ζ‖,fib = ρfibζ⊥,fib and again ρfib ≈ 1/2 (see Ref. [36] and references therein). These results are
valid in the limit in which the distance d between the fiber and the surface of the flagellar filament is
much smaller than the radius of the flagellar filament (d � Rf l) such that the surface of the smooth
flagellar filament is locally planar. Importantly, a similar drag anisotropy that allows the rotation of
helical flagellar filaments to propel bacteria in the bulk will also enable the rotation of helical fibers
around a smooth, straight flagellar filament to induce translocation along the axis of the filament.

If rb = (Rf l, 0, 0) is the base of the tail from which the fibers emanate and we assume the tail to
be straight with total length Lt , it is parametrized as rt = rb + sttail, with 0 < s < Lt , and assuming
the head to be spherical with radius ah, the position of the center of the head is given by

rh = rb + Lt ttail + ahth, (12)

where Lt is the total length of the tail. The drag force and torque due to the motion of the head in
the otherwise stagnant fluid are given by

Fhead = −6πμahurel
head, (13)

ez · Mhead = ez · [−6πμah

(
rh ∧ urel

head

)] − 8πμa3
hωp, (14)

with urel
h given by

urel
h = ωp(ez ∧ rh) + Uez. (15)

Taking th = ttail, the center of the head will be located at position rh = rb + (Lt + ah)ttail.
Evaluating the integrals in Eqs. (4), (5), (9), and (10) and the expressions of Eqs. (13) and (14)
with this geometry, we obtain the forces and torques exerted on the different parts of the phage
(projected along the z axis),

ez · Ffib = −ζ⊥,fibLfib[(sin2 α + ρfib cos2 α)U − (1 − ρfib) sin α cos αh�relRf l], (16)

ez · Mfib = −hζ⊥,fibRf lLfib[hRf l�rel(cos2 α + ρfib sin2 α) − (1 − ρfib) sin α cos αU ], (17)

ez · Ftail = −ζ⊥,tLt

{
U

[
1 − (1 − ρt )t

2
z

] − ωpRf l (1 − ρt )ty tz
}
, (18)

ez · Mtail = −ζ⊥,t

{
ωp

[
LtR

2
f l + L2

t Rf ltx + 1
3L3

t

(
t2
x + t2

y

)] − (1 − ρt )ty (Utz + ωpRf lty )Rf lLt

}
,

(19)
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ez · Fhead = −6πμahU, (20)

ez · Mhead = −6πμahωp

[
R2

f l + 2Rf l (Lt + ah)tx + (Lt + ah)2
(
t2
x + t2

y

)] − 8πμa3
hωp, (21)

where we use the notation ttail = (tx, ty, tz) for the components of the tangent of the tail.

C. Phage translocation: General formulation

The overall force and torque balance on the phage along the z axis is written as

0 = ez · [Ffib + Ftail + Fhead], 0 = ez · [Mfib + Mtail + Mhead], (22)

which leads to

0 = −ζ⊥,fibLfib[(sin2 α + ρfib cos2 α)U − (1 − ρfib) sin α cos αh�relRf l]

− ζ⊥,tLt

{
U

[
1 − (1 − ρt )t

2
z

] − ωpRf l (1 − ρt )ty tz
} − 6πμahU, (23)

0 = −hζ⊥,fibRf lLfib[hRf l�rel(cos2 α + ρfib sin2 α) − (1 − ρfib) sin α cos αU ]

− ζ⊥,t

{
ωp

[
LtR

2
f l + L2

t Rf ltx + 1
3L3

t

(
t2
x + t2

y

)] − (1 − ρt )ty (Utz + ωpRf lty )Rf lLt

}
− 6πμahωp

[
R2

f l + 2Rf l (Lt + ah)tx + (Lt + ah)2
(
t2
x + t2

y

)] − 8πμa3
hωp. (24)

Writing this system in a formal matrix form for U and ωp in terms of ωf l gives

(
A B

B D

)(
U

ωp

)
=

(
Z

H

)
ωf l, (25)

where we have

A = ζ⊥,tLt

[
1 − (1 − ρt )t

2
z

] + ζ⊥,fibLfib(sin2 α + ρfib cos2 α) + 6πμah, (26)

B = −[ζ⊥,tLt (1 − ρt )ty tz + hζ⊥,fibLfib(1 − ρfib) sin α cos α]Rf l, (27)

D = ζ⊥,tLt

[
R2

f l + LtRf ltx + L2
t

3

(
1 − t2

z

) − (1 − ρt )R
2
f l t

2
y

]

+ ζ⊥,fibLfibR
2
f l (cos2 α + ρfib sin2 α)

+ 6πμah

[
R2

f l + 2Rf l (Lt + ah)tx + (Lt + ah)2(1 − t2
z

)] + 8πμa3
h, (28)

Z = −hζ⊥,fibLfibRf l (1 − ρfib) sin α cos α, (29)

H = ζ⊥,fibLfibR
2
f l (cos2 α + ρfib sin2 α). (30)

Inverting Eq. (25) gives the linear translation and rotational speeds as

(
U

ωp

)
= 1

AD − B2

(
D −B

−B A

)(
Z

H

)
ωf l. (31)

The full expressions for (DZ − BH ) and (AD − B2) for a general phage geometry are given in the
Supplemental Material [37].
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D. Two limits: Long- vs short-tailed phages

From the experimental images in Fig. 2 we can distinguish two geometries of wrapping according
to how far the tail and head are sticking out in the bulk fluid and away from the flagellar filament.
We thus proceed by considering the two limiting geometries of long- and short-tailed phages.

1. Long-tailed phages

Examples of long-tailed morphology include the χ phage of E. coli and the PBS1 phage of
B. subtilis shown in Figs. 2(b) and 2(c). We use below the χ phage as a typical long-tailed phage,
whose detailed dimensions are reported in Ref. [24]. The hexagonal head measures 650–675 Å
between parallel sides (that is, 2ah ≈ 650–675 Å). The tail is a flexible rod that is 2200 Å long and
140 Å wide and the tail fibers are 2000–2200 Å long and 20 − 25 Å wide. The flagellar filaments
are 5–10 μm long and have a diameter 20 nm, hence Rf l ≈ 100 Å [38]. For this specific phage,
we thus have ah ≈ 30 nm, Lt ≈ 220 nm, Lfib ≈ 200 nm, rfib ≈ 1 nm, and Rf l ≈ 10 nm. From this
we see that we can safely assume that Rf l, ah � Lt, Lfib. Notice however that Lfib ≈ Lt and that
Rf l and ah are of the same order of magnitude. Our variables are thus divided into the short length
scales of ah and Rf l and the long length scales of Lfib and Lt . With these approximations we obtain
the translocation speed as

Ulong ≈ −hωf lRf l (1 − ρfib) sin α cos α Glong, (32)

Glong = ζ⊥,fibLfib
{

1
3ζ⊥,tLt

(
1 − t2

z

) + [ζ⊥,tRf ltx + 6πμah

(
1 − t2

z )
]}

1
3ζ⊥,tLt

(
1 − t2

z

){
ζ⊥,tLt

[
1 − (1 − ρt )t2

z

] + ζ⊥,fibLfib(sin2 α + ρfib cos2 α)
} (33)

≈ ζ⊥,fibLfib{
ζ⊥,tLt

[
1 − (1 − ρt )t2

z

] + ζ⊥,fibLfib(sin2 α + ρfib cos2 α)
} , (34)

with a relative error of O(ah/Lt , ah/Lfib, Rf l/Lt , Rf l/Lfib). Details of the approximation are given
in the Supplemental Material [37].

2. Short-tailed phages

Phages with very short tails that use their fibers to wrap around flagellar filaments are geometri-
cally similar to phages that use their entire tail for wrapping since in both cases there is a filamentous
part of the phage wrapped around the flagellar filament and the head is sticking out in the bulk close
to the surface of the filament. For example, the phage OWB that infects V. parahaemolyticus studied
in Ref. [21] and shown in Fig. 2(a) uses its tail for wrapping.

In order to avoid any confusion, we will carry out the calculations of this section using the
geometry of short-tailed phages and assume that (i) the tail is negligible and (ii) the fibers are
wrapping around the flagellar filament. In this case we obtain a translocation speed of

Ushort = −hRf lωf l (1 − ρfib) sin α cos α Gshort, (35)

Gshort = ζ⊥,fibLfib6πμah

[
(Rf l + ahtx )2 + a2

ht
2
y + 4

3a2
h

]
× ({

ρfibζ
2
⊥,fibL

2
fibR

2
f l + 6πμahζ⊥,fibLfibR

2
f l (cos2 α + ρfib sin2 α)

+ 6πμah[ζ⊥,fibLfib(sin2 α+ρfib cos2 α)+6πμah]
[
(Rf l+ahtx )2+a2

ht
2
y + 4

3a2
h

]})−1
,

(36)

with details of the calculation given in the Supplemental Material [37]. Note that the results for
phages which use their tail to wrap around the flagellar filament can be readily obtained by replacing
Lfib with Lt and all relevant quantities in the above result.
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3. Interpretation and discussion of asymptotic results

We now interpret and compare the results we obtained in Eqs. (32) and (35). As we now see, our
formulas give the correct directionality and speed of translocation in agreement with the qualitative
predictions and the experimental data of Ref. [29], as well as the requirements for translocation,
thereby providing insights into the translocation mechanism.

First, and most importantly, both results for the translocation speeds in Eqs. (32) and (35) have
the common factor −hRf lωf l (1 − ρfib) sin α cos α, which is multiplying the positive dimensionless
expressions Glong and Gshort, respectively. The factor −hωf l gives a directionality for U in agreement
with the qualitative prediction of Ref. [29] that CCW rotation will only pull the phage toward the cell
body if the phage slides along a right-handed groove. Indeed, our model captures this feature: For
right-handed helical wrapping (h = +1) and CCW rotation of the flagellar filament when viewing
the flagellar filament towards the cell body (ωf l < 0), the phage moves towards the cell body (i.e.,
U > 0).

Second, the factor 1 − ρfib reveals that translocation requires anisotropy in the friction between
the fibers and the surface of the flagellar filament (i.e., ρfib �= 1). We interpret the requirement
for anisotropy as an indication of the important role of the grooves in guiding the motion of the
fibers. The assumption of a helical wrapping of the fibers coupled with this anisotropy simulates
the guiding effect of the grooves in this first model by resisting motion perpendicular to the local
tangent of the grooves and promoting motion parallel to it.

Third, the presence of the factor sin α cos α shows the requirement of a proper helix, i.e., there is
no translocation in the limiting cases of a straight (α = 0) or circular wrapping (α = π/2).

Fourth, translocation requires a nonvanishing value of Lfib in the numerator of both Eqs. (33) and
(36). This is because the fibers are providing the “grip” by wrapping around the flagellar filament.

Fifth, the terms involving the tail and head appear in both the numerator and denominator of
Eq. (33). Similarly, terms involving the head appear in both the numerator and denominator of
Eq. (36). These show that the parts of the phage that are sticking out in the bulk are contributing
to both the torque actuating the motion of the phage relative to the flagellar filament and the drag
resisting it. In the case of short phages, only the head is providing the torque, hence the terms in the
numerator of Eq. (36).

Finally, focusing on the χ phage, the lengths of the tail and the fibers are similar and the
logarithmic dependence of the resistance coefficients allows us to estimate the fraction Glong in
Eqs. (33), (34) to be of O(1). The grooves have a pitch of approximately 50 nm [29] and the
radius of the flagellar filament is approximately 10 nm, giving rise to helix angle α ≈ 51◦. With
ωf l ≈ 100 Hz, we have that U = O(μm s−1). Importantly, this means that it is possible for the
χ phage to translocate along a flagellar filament of a few microns long within the timescale of
a second, in agreement with the CCW time interval for bacteria with alternating CCW and CW
rotation, thereby enabling the phage to reach the cell body and infect the bacterium.

E. Dependence of translocation speed on geometrical parameters

We now illustrate the dependence of the translocation speed on the geometrical parameters of the
phage, namely, the lengths Lt and Lfib. The asymptotic formulas we obtained above and discussed
in Sec. II D will help verify the asymptotic behavior of U for large values of Lt and for vanishing
tail length, as well as explain the trends for the translocation speed with increasing Lt and Lfib.

To fix ideas, we consider the specific case of the χ phage and hence the following set of parameter
values (as in Sec. II D 1 and Ref. [24]): ah ≈ 30 nm, Lt ≈ 220 nm, rtail = 7 nm, Lfib ≈ 200 nm,
rfib ≈ 1 nm, Rf l ≈ 10 nm, and μ = 10−3 Pa s. For the helix angle we take α = 51◦ (see Sec. II D 3).
We also take (tx, ty, tz) = (1, 1, 1)/

√
3. Note that for simplicity we do not include the slow variation

of the resistive coefficients with Lt , but instead keep their constant nondimensional values ζ̂⊥,t =
4π/ ln(220/7) and ζ̂⊥,fib = 4π/ ln(4) based on ζ⊥,t ≈ 4πμ/ ln(Lt/rtail ) with Lt/rtail = 220/7 and
ζ⊥,fib ≈ 4πμ/ ln(2d/rfib) with d = 2rfib.
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FIG. 6. Smooth flagellum model: dependence of the translocation speed U on the geometrical parameters
of the phage. Dimensionless quantities, indicated by a hat, are used for the plots. (a) Plot of U vs the length
of the phage tail Lt based on Eq. (31) (blue solid line). The speed is a decreasing function of Lt . The value
of U for vanishing tail length is well captured by the theoretical approximation for short-tailed phages (red
disk, indicated by red arrow). For large values of Lt it approaches the theoretical approximation for long-tailed
phages (black dash-dotted line, inset). (b) Plot of U vs the length of the fibers Lfib following Eq. (31). The
speed is an increasing function of Lfib. The long-tailed approximation of Eq. (34) also captures this increasing
behavior.

We then use Eq. (31) to plot U versus Lt and Lfib in Fig. 6. For simplicity we have nondimen-
sionalized lengths by Rf l , time by ω−1

f l , and viscosity by μ and denote dimensionless quantities
using a hat. We use all parameter values according to those for the χ phage, with the exception of
the parameter varied in each plot.

In Fig. 6(a) we observe that the phage translocation speed is a decreasing function of Lt .
The value of U for vanishing tail length is well captured by the theoretical approximation for
short-tailed phages of Eq. (36) (red disk, indicated by red arrow). For large values of Lt , it
approaches the theoretical approximation for long-tailed phages (black dash-dotted line, inset). For
the long-tailed approximation we used the expressions in Eqs. (A1) and (A2) in the Supplemental
Material [37], keeping terms up to and including L3, for L either Lt or Lfib. We note that the
smaller the phage head size ah, the better the convergence between Eq. (31) and the long-tailed
approximation (which assumes ah, Rf l � Lt, Lfib). In Fig. 6(a) we used the dimensions for the χ

phage that correspond to ah/Lfib = 3/22 and the long-tailed approximation also requires âh � L̂t .
The long-tailed approximation from Eq. (34) captures the decreasing behavior of U with Lt and
can be used to explain this result. Specifically, the term involving Lt in the denominator of Eq. (34)
shows that this decay arises from the resistive part of the hydrodynamic force on the tail [the first
term in Eq. (18)] which increases as Lt increases. In other words, when Lt increases the drag
increases and therefore the speed decreases.

In Fig. 6(b) we next show the speed U as a function of the length of the fibers Lfib. Clearly
the speed is an increasing function of Lfib and the long-tailed approximation of Eq. (34) captures
this increasing behavior. We observe that terms involving Lfib appear in both the numerator and
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FIG. 7. Guided translocation of the phage along a grooved flagellar filament. The phage, shown in green,
has a capsid head of size 2ah, a tail of length Lt , and fibers of cross-sectional radius rfib. The flagellar filament
(light blue) has helical grooves of helix angle α and is rotating at a rate ωf l . The phage slides along the grooves
with speed V in the frame of the flagellar filament. As shown in the inset, the force acting on the fiber sliding
along the grooves consists of two parts: (i) a drag resisting the sliding motion of magnitude μ̃V in the −tfib

direction and (ii) a restoring force acting to keep the fiber in the center of the groove of magnitude kδ in the
hbfib direction, where δ is the local offset of the center of the fiber cross section from the center of the groove
and bfib is the local binormal to the fiber centerline that lies in the local tangent plane of the surface of the
flagellar filament and is perpendicular to the tangent of the fiber centerline. The chirality index h takes the
value +1 or −1 for right-handed or left-handed helical grooves respectively.

denominator of Eq. (34). Dividing the top and bottom by Lfib, we see that as Lfib increases, U

increases (at some point U will asymptote to a constant value, but the length at which this happens
appears to be too large to be relevant biologically). The increase of U with Lfib stems from the
propulsive forces per unit length on the fibers that integrate to a larger propulsive torque as Lfib

increases. Of course there is also the resistive drag on the fibers but that starts to become more
important only at larger values of Lfib.

III. GUIDED TRANSLOCATION ALONG GROOVED FLAGELLAR FILAMENTS

A. Geometry

As a more refined physical model, we now include in this section the mechanics arising from the
microscopic details of the grooved surface of the flagellar filament due to the packing of the flagellin
molecules and modify the previous calculation in order to account for the motion of the phage fibers
sliding along the helical grooves. If the phage slides with speed V along the grooves of helix angle α

in the frame of the straight flagellar filament, as illustrated in Fig. 7, then the translocation velocity
and rotation rate measured in the laboratory frame U and ωp, respectively, become

U = V cos α, (37)

ωp = hV sin α

Rf l

+ ωf l. (38)

With this substitution into Eqs. (18)–(21) we obtain the forces and torques acting on the tail and
head as

ez · Ftail = −ζ⊥,tLt

{
U

[
1 − (1 − ρt )t

2
z

] − ωpRf l (1 − ρt )ty tz
}
, (39)

ez · Mtail = −ζ⊥,t

{
ωp

[
LtR

2
f l + L2

t Rf ltx + 1
3L3

t

(
t2
x + t2

y

)]
− (1 − ρt )ty (Utz + ωpRf lty )Rf lLt

}
, (40)
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ez · Fhead = −6πμahU, (41)

ez · Mhead = −6πμahωp

[
R2

f l + 2Rf l (Lt + ah)tx + (Lt + ah)2
(
t2
x + t2

y

)] − 8πμa3
hωp. (42)

B. Forces and moments

The details of the interactions between the phage fibers and the grooves are expected to be
complicated as they depend on the parts of the flagellin molecules that make up the grooved surface
and interact with the proteins that the fibers consist of. These interactions could originate from a
number of short-range intermolecular forces, for example, electrostatic repulsion or van der Waals
forces. We model here the local resultant of the interaction forces acting on the fiber sliding along
the grooves as consisting of two parts, a drag and a restoring force, as shown in the inset of Fig. 7.

First, the fiber is subject to a viscous drag −μ̃V tfib per unit length where μ̃ is a hydrodynamic
resistance coefficient against the sliding motion (with dimensions of a viscosity). A simple
approximation for that coefficient is to assume that there is a fully developed shear flow resisting the
sliding between the fibers and the surface of the grooves. Assuming the cross section of the latter
to be a circular arc so that a fraction fcov of the circumference of a cross section of the fibers lies
inside the groove, we obtain approximately

μ̃ ≈ 2πrfibfcovμ

hgap
, (43)

where hgap is the size of the gap between the grooves and the fibers and rfib is the radius of the fibers.
Second, there should be a restoring force acting to keep the fiber in the center of the groove

arising from the physical interactions between the fiber and the groove. A simple modeling approach
consists of viewing each side of the groove as repelling the fiber, with the resultant of these forces
providing a restoring force hkδbfib(s) per unit length, arising from a potential well 1

2kδ2, where δ is
the distance from the center of the well and bfib is the local binormal vector to the fiber centerline,

bfib =
[
h cos α sin

(
s

Rf l/ sin α

)
,− cos α cos

(
s

Rf l/ sin α

)
, h sin α

]
, (44)

that lies in the local tangent plane of the cylinder that envelops the surface of the flagellar filament
and is perpendicular to the tangent vector tfib of the fiber centerline. Assuming δ to be uniform along
the length of the fibers, the expressions for the force and torque on the fibers given as the integrals

Ffib =
∫ L

(R)
fib

−L
(L)
fib

[−μ̃V tfib(s) − hkδbfib(s)]ds, (45)

Mfib =
∫ L

(R)
fib

−L
(L)
fib

rfib(s) ∧ [−μ̃V tfib(s) − hkδbfib(s)]ds, (46)

when projected along the z direction become

ez · Ffib = [−μ̃V cos α − kδ sin α]Lfib, (47)

ez · Mfib = −[μ̃V hRf l sin α − hkδRf l cos α]Lfib. (48)

C. Phage translocation: General formulation

The total force and torque balance on the phage along the z axis,

0 = ez · [Ffib + Ftail + Fhead], 0 = ez · [Mfib + Mtail + Mhead], (49)
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gives the system to be solved in order to find the two unknown quantities V and kδ in terms of ωf l ,

0 = [−μ̃V cos α − kδ sin α]Lfib

−ζ⊥,tLt

{
V cos α

[
1 − (1 − ρt )t

2
z

] −
(

hV sin α

Rf l

+ ωf l

)
Rf l (1 − ρt )ty tz

}

−6πμahV cos α, (50)

0 = −[μ̃V hRf l sin α − hkδRf l cos α]Lfib

− ζ⊥,t

{(
hV sin α

Rf l

+ ωf l

)[
LtR

2
f l + L2

t Rf ltx + 1

3
L3

t

(
t2
x + t2

y

)]

− (1 − ρt )ty

[
V cos αtz +

(
hV sin α

Rf l

+ ωf l

)
Rf lty

]
Rf lLt

}

− 6πμah

(
hV sin α

Rf l

+ ωf l

)[
R2

f l + 2Rf l (Lt + ah)tx + (Lt + ah)2
(
t2
x + t2

y

)]

− 8πμa3
h

(
hV sin α

Rf l

+ ωf l

)
. (51)

Using matrix notation, these two equations take the form
(

A B

C D

)(
V

kδ

)
=

(
Z

H

)
ωf l, (52)

where

A = {
ζ⊥,tLt (cos α

[
1 − (1 − ρt )t

2
z

] − h sin α(1 − ρt )ty tz) + μ̃Lfib cos α + 6πμah cos α
}
, (53)

B = Lfib sin α, (54)

C =
{
hμ̃LfibRf l sin α + ζ⊥,t

h sin α

Rf l

[
LtR

2
f l + L2

t Rf ltx + 1

3
L3

t

(
t2
x + t2

y

)]

− (1 − ρt )tyζ⊥,t [cos αtz + h sin αty]Rf lLt

+ 6πμah

h sin α

Rf l

[
R2

f l + 2Rf l (Lt + ah)tx + (Lt + ah)2
(
t2
x + t2

y

)] + 8πμa3
h

h sin α

Rf l

}
, (55)

D = −hRf lLfib cos α, (56)

Z = ζ⊥,tLtRf l (1 − ρt )ty tz, (57)

H = −
{
ζ⊥,t

[
LtR

2
f l + L2

t Rf ltx + 1

3
L3

t

(
t2
x + t2

y

) − (1 − ρt )t
2
y R2

f lLt

]

+ 6πμah

[
R2

f l + 2Rf l (Lt + ah)tx + (Lt + ah)2(t2
x + t2

y

)] + 8πμa3
h

}
. (58)

The details of the calculation are given in the Supplemental Material [37].
Inverting Eq. (52), V and kδ are obtained as

V = DZ − BH

AD − BC
ωf l, (59)

kδ = −CZ + AH

AD − BC
ωf l, (60)
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where the full expressions for (DZ − BH ), (AD − BC), and (−CZ + AH ) for a general phage
geometry are given in the Supplemental Material [37]. Finally, from Eq. (59), the translocation
velocity along the z axis is calculated as U = V cos α.

D. Two limits: Long- vs short-tailed phages

We now proceed by considering the two limiting geometries of long-tailed and short-tailed
phages similarly to Sec. II D.

1. Long-tailed phages

Under the approximations relevant for long-tailed phages such as the χ phage described in
Sec. II D, i.e., Rf l, ah � Lt, Lfib, the translocation velocity along the z axis gets simplified to

Ulong = −hRf lωf l sin α cos αGlong, (61)

Glong = L2
t

[
1
3ζ⊥,tLt + 6πμah

](
1 − t2

z

)
L2

t

[
1
3ζ⊥,tLt + 6πμah

](
1 − t2

z

)
sin2 α + μ̃R2

f lLfib
, (62)

with the details of the approximation given in the Supplemental Material [37].

2. Short-tailed phages

In the case of short-tail phages, we assume that the tail is negligible and that the fibers are
wrapping around the flagellar filament. The translocation velocity simplifies then to

Ushort = −hRf lωf l sin α cos αGshort, (63)

Gshort = 6πμah

[
R2

f l + 2Rf lahtx + a2
h

(
7
3 − t2

z

)]
μ̃LfibR

2
f l + 6πμah

[
R2

f l + 2Rf lahtx sin2 α + a2
h sin2 α

(
7
3 − t2

z

)] , (64)

with all calculation details in the Supplemental Material [37].

3. Interpretation and discussion

Similarly to Sec. II D 3, we interpret and compare the results in Eqs. (61) and (63). Here
again, the crucial factor −hRf lωf l sin α cos α appears in both equations multiplying a positive
nondimensional expression and we obtain the correct directionality and speed of translocation in
agreement with Ref. [29]. The prefactor −hωf l gives the correct directionality for U , i.e., for
right-handed helical wrapping (h = +1) and CCW rotation of the flagellar filament (ωf l < 0), the
phage moves towards the cell body (U > 0), in agreement with Ref. [29]. Again, the translocation
speed of O(μm s−1) allows translocation of the phage during the CCW time interval to the bacterial
cell body for infection to occur in the case of bacteria that alternate between the CCW and CW
senses, in agreement with Ref. [29]. The factor sin α cos α shows that a proper helix is needed
for translocation. The presence of the term μ̃R2

f lLfib in the denominator implies that the sliding
drag from the fiber decreases the translocation speed, and longer fibers give a decreased speed.
Further, and similarly to Sec. II D 3, the terms inside the square brackets in both the numerator and
denominator of Eqs. (62) and (64) show that the parts of the phage that are sticking out in the bulk
(for the long phages these are the tail and the head, for the short phages it is only the head) are
contributing to both the torque that is actuating the motion of the phage relative to the flagellar
filament and to the drag.

E. Dependence of translocation speed on geometrical parameters

We now illustrate the dependence of the translocation speed on the geometrical parameters of
the phage, namely, Lt and Lfib, according to our model of translocation along grooved flagellar
filaments. We use the same approach, parameter values, and nondimensionalization as in Sec. II E
and as there we denote dimensionless quantities using a hat. For ˆ̃μ ≡ μ̃/μ ≈ 2πrfibfcov/hgap, we
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FIG. 8. Grooved flagellum model: dependence of the translocation speed on the geometrical parameters
of the phage. Dimensionless quantities, indicated by a hat, are used for the plots. (a) Plot of U as a function
of the length of the phage tail Lt based on Eq. (59) (blue solid line). The speed is an increasing function of
Lt . The value of U at vanishing tail length is well captured by the theoretical approximation for short-tailed
phages (red disk, indicated by red arrow). For large values of Lt , it approaches the theoretical approximation
for long-tailed phages (black dash-dotted line). (b) Plot of U vs the length of the fibers Lfib based on Eq. (59).
The long-tailed approximation of Eq. (62) captures the decreasing behavior of U with Lfib.

take rfib/hgap = 2, i.e., assume the gap between the grooves and the fibers is half the fiber cross-
sectional radius, and fcov = 1/2, so the cross section of the grooves is a semicircle. These parameter
values give ˆ̃μ = 2π . We then use Eq. (59) to plot Û (calculated as Û = V̂ cos α) as a function of

FIG. 9. Grooved flagellum model: dependence of the dimensionless phage translocation speed Û on the
effective viscosity ˆ̃μ (nondimensionalized by the fluid viscosity μ). As μ̃ increases, the resistive part of the
force from the motion of the fibers in the grooves increases, which slows down the phage and leads to a
decrease of Û .
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both L̂t and L̂fib in Fig. 8. We use all parameter values according to those for the χ phage, with the
exception of the parameter varied in each plot.

In Fig. 8(a) we observe that the translocation speed is an increasing function of Lt . The value of
U at vanishing tail length is well captured by the theoretical approximation for short-tailed phages
of Eq. (64) (red disk, indicated by red arrow in figure). For large values of Lt , the result approaches
the theoretical approximation for long-tailed phages (black dash-dotted line).

The long-tailed approximation from Eq. (62), through the terms with Lt in both the numerator
and denominator, is able to capture the increasing behavior of U with Lt . Physically, this trend
is caused by the propulsive terms in ez · Mtail in Eq. (40) (proportional to L3

t ) that increase as Lt

increases.
Next, in Fig. 8(b) we show the speed U as a function of the length of the fibers Lfib, as predicted

by Eq. (59), and observe a decreasing trend. The long-tailed approximation of Eq. (62) is able to
capture this behavior. The presence of the term involving Lfib in the denominator of Eq. (62) leads
to a decrease of U with Lfib and is physically due to an increase of the viscous drag on the fibers as
Lfib increases.

Finally, as shown in Fig. 9, we obtain that the translocation speed is a decreasing function of the
effective viscosity in the grooves ˆ̃μ due to the resistive part of the force from the motion of the fibers
in the grooves, as expected.

IV. CONCLUSION

In this work we carried out a first-principles theoretical study of the nut-and-bolt mechanism
of phage translocation along the straight flagellar filaments of bacteria. The main theoretical
predictions from our two models [Eqs. (32), (35), (61), and (63)] give the phage translocation
speed U in terms of the phage and groove geometries and the rotation rate of the flagellar filament,
in the two relevant limits of long- and short-tailed phages. These mathematical results capture
the basic qualitative experimental observations and predictions of Refs. [25,29] for the speed and
directionality of translocation which are both crucial for successful infection.

The common prefactor in the formulas for the translocation speed along the filament U ∼
−hωf lRf l sin α cos α appears in the expressions from both models. This provides the expected
directionality in agreement with Refs. [25,29]: Sliding of the fibers along flagellar filaments
with right-handed helical grooves (h = +1), combined with CCW rotation of flagellar filament
(ωf l < 0), will give rise to phage translocation towards the cell body (U > 0) for infection to follow,
whereas CW rotation (ωf l > 0) would translocate the phage away from the cell body (U < 0),
towards the free end of the flagellar filament and thus away from the cell body, back to the bulk
fluid.

Quantitatively, the speeds predicted by our model are estimated to a few microns per second,
U = O(μm s−1). This is important for phages infecting bacteria which alternate between CCW and
CW senses of rotation. The phage needs translocation speeds of this magnitude in order to move
along a flagellar filament of a few microns long within a timescale of 1 s, which is approximately
the CCW time interval [29].

Furthermore, the two limits of long- and short-tailed phages clarify that the physical requirements
for translocation along the flagellar filament are the grip from the part of the phage that is wrapped
around the flagellar filament, in a helical shape (indeed as dictated by the shape of the grooves),
combined with torque provided by the parts of the phage sticking out in the bulk, away from
the flagellar filament. The plots for the translocation speed as a function of the phage tail length
approach the asymptotic approximations for long- and short-tailed phages at large and vanishing
tail lengths, respectively, in both models.

The important point where the two models deviate from each other is their opposite predictions
for the increasing/decreasing trends of the translocation speed as a function of the phage tail length
and the phage fiber length. We conjecture that the second model with its explicit inclusion of the
grooves should be closer to the real-life situation. According to it, U increases when Lt increases
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because the propulsive terms in the axial torque on the tail increase with Lt . In contrast, the
decreasing behavior of U with Lfib is caused by the resistive part of the force exerted by the motion
of the fibers in the grooves that increases with Lfib and thus slows down the motion.

Having modeled phage translocation along straight flagellar filaments of mutant bacteria, the
next natural step will be to model phage translocation along the naturally helical flagellar filaments
of wild-type bacteria. In this case, the geometry is more intricate as it involves motion along
helical grooves on top of a flagellar filament whose centerline is also a helix. This is a more
complicated system geometrically, as the helical fibers are sliding along a helical flagellar filament
with a spatially varying local tangent and therefore we expect that numerical computations would be
required in order to tackle it. Notably, there will be an additional hydrodynamic drag on the phage
due to the rotation and translation of the helical flagellar filament. The hydrodynamic drag from the
translation will oppose or enhance the translocation of the phage towards the cell body depending
on the chirality of the flagellar filament. This opens up the possibility of a competition between the
nut-and-bolt translocation effect and drag due to translation, which will vary with the helical angle
of the flagellar filament. Different regimes are expected to arise as the helical angle of the flagellar
filament is increased from zero, hinting at a rich nonlinear behavior.

In this work we focused on the translocation of the phage once it has reached a steady
postwrapping state and thus assuming that it is moving rigidly. Future studies could address
the transient period of wrapping, where the length of the fibers wrapped around the filament is
increasing and the grip is possibly becoming tighter. Some phages (in the Siphoviridae family) have
long flexible tails, thereby requiring the addition of the elasticity of the tail and fibers into the model.
We hope that the modeling developed in this paper will motivate not only further theoretical studies
along those lines but also more experimental work, particularly video/continuous imaging, that will
clarify the processes involved in the wrapping and motion of the fiber in the grooves.
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