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Actuating periodically an elastic filament in a viscous liquid generally breaks the constraints of Purcell’s
scallop theorem, resulting in the generation of a net propulsive force. This observation suggests a method to
design simple swimming devices—which we call “elastic swimmers”—where the actuation mechanism is
embedded in a solid body and the resulting swimmer is free to move. In this paper, we study theoretically the
kinematics of elastic swimming. After discussing the basic physical picture of the phenomenon and the ex-
pected scaling relationships, we derive analytically the elastic swimming velocities in the limit of small
actuation amplitude. The emphasis is on the coupling between the two unknowns of the problems—namely the
shape of the elastic filament and the swimming kinematics—which have to be solved simultaneously. We then
compute the performance of the resulting swimming device and its dependence on geometry. The optimal
actuation frequency and body shapes are derived and a discussion of filament shapes and internal torques is
presented. Swimming using multiple elastic filaments is discussed, and simple strategies are presented which
result in straight swimming trajectories. Finally, we compare the performance of elastic swimming with that of
swimming micro-organisms.
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I. INTRODUCTION

The fluid mechanics of micro-organism locomotion, pio-
neered more than 50 years ago by Taylor, has become one of
the most successful branches of biomechanics, with success
in both the basic physical understanding of flow behavior
and the quantitative prediction of kinematics and energetics
of locomotion �1–8�.

Recent technical advances have led to ever more precise
fabrication at small scales �microns or less�, prompting both
theorists �9–13� and experimentalists �14� to design and ana-
lyze a series of simple low-Reynolds number swimmers. The
experiment of Dreyfus et al. �14�, in particular, reported lo-
comotion in a spermlike microswimmer, composed of a
cargo �red blood cell� and a slender flexible filament made of
a series of paramagnetic beads. In that case, actuation by
oscillating transverse magnetic fields leads to the generation
of bending waves propagating along the filament and re-
sulted in the motion of the microswimmer. In this system, the
right-left symmetry was broken by the presence of a cargo
and leads to a preferential tip-to-base propagation of the
bending waves, resulting in locomotion in the direction base-
to-tip.

An alternative way to break the symmetry in a similar
system would be to build-in the asymmetry in the actuation.
In particular, if an elastic filament is periodically actuated at
one of its extremities in a viscous liquid, the resulting motion
will lead to the propagation of bending waves and, in gen-
eral, propulsive forces. This idea was originally proposed by
Purcell �8�. Physically, actuating an elastic filament allows
one to break the constraints of the “scallop theorem”—which
states that a body performing a reciprocal motion at low
Reynolds number cannot propel itself—by allowing the
boundary conditions on the fluid problem—that is, the shape

of the filament—to be itself a function of the fluid flow. The
original theoretical study on this problem was proposed by
Wiggins and Goldstein �15�, who showed that the amplitude
of the actuated elastic filament satisfies a hyperdiffusion
equation. This equation was also derived in earlier work by
Machin in the context of wave propagation in the flagella of
swimming micro-organisms �16,17�. A similar theoretical
treatment was proposed as a simple model of the sliding
filament model of eukaryotic axonemal beating by coupling
the elastohydrodynamics problem with models for the behav-
ior of active molecular motors �18,19�.

The main features of this problem have been successfully
exploited experimentally to measure the bending modulus of
biopolymers �actin filaments and microtubules�, either using
thermal fluctuations �20� or using an active actuation �21,22�.
Related studies include the dynamics of magnetic filaments
�23–25�, the three-dimensional actuation and instabilities of
flexible filaments �26–29�, and the exploitation of symmetry
breaking to pump fluid in a channel �30�.

In this paper, we consider the case where the actuated
flexible filaments are exploited for locomotion purposes. We
consider a prototypical microswimmer composed of a solid
body and an elastic slender filament �see Fig. 1�. The fila-
ment is fixed to the body and its base angle is varied sinu-
soidally at frequency �, in two or three dimensions, by a
mechanism embedded in the swimmer body. This generates
the propagation of bending waves down the elastic filament
and propels the swimmer forward. This design for an “elastic
swimmer” is the simplest locally forced low-Reynolds swim-
mer exploiting the interplay of fluid drag and bending rigid-
ity for propulsive purposes, and as a result, its swimming
kinematics and energetics are of fundamental interest.

As we will see below, the locomotion of the elastic swim-
mer also turns out to be an interesting mathematical problem.
Indeed, to characterize the swimmer completely, two main
problems need to be solved for, namely �1� the periodic
shape of the elastic filament and �2� the kinematics of swim-
ming. However, these two problems cannot be solved inde-*Electronic address: lauga@mit.edu
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pendently. Along the filament, drag forces and bending
forces balance. On one hand, the swimming kinematics af-
fects the drag and therefore the filament shape. On the other
hand, the shape influences the viscous propulsive force and
therefore the overall swimming velocity. As a result, these
two problems have to be solved simultaneously, a fact which
results—as will be seen below—in the appearance of inte-
grodifferential equations. This feature might have been over-
looked by previous analytical studies.

Numerical simulations of the elastic swimming problem
were presented by Lagomarsino et al. �31� using particle-
based methods �see also Ref. �32��. However, in this study,
the filament was actuated by external forces and torques, and
as a result is fundamentally different from the self-contained
force-free and torque-free swimmer which we consider in
this paper. Moreover, in the case of small amplitude oscilla-
tions of the actuation point, the simulations by Lagomarsino
et al. obtain a constant swimming velocity for long filaments
�long in the sense L���, see below�, whereas in fact the
velocity should decrease to zero because of excessive drag
on the filament. This discrepancy is resolved in our paper.

Numerical simulations of the three-dimensional actuation
�rotation� of the filament were presented by Manghi et al.
�26� using particle-based methods which include hydrody-
namic interactions �similar to those used to study polymer
dynamics�. However, the simulations by Manghi et al. obtain
swimming even in the case where the body sizes shrink to
zero, a fact which also violates torque balance for a torque-
free swimmer at zero Reynolds number �33,34�.

Recently, Yu et al. performed a macroscale experiment
aimed at measuring the propulsive force generated by actu-
ated elastic filaments in Stokes flows and compared it with
existing theories �35�. The filaments were fixed in space with
base angles which were actuated sinusoidally and very good
quantitative agreement was found between the measured pro-
pulsive force and that predicted by the small-amplitude the-
oretical study of Wiggins and Goldstein �15�.

This paper is organized as follows. In Sec. II we present
the basic physical picture for the coupling of hydrodynamics
and bending forces in actuated filaments. We estimate the
optimal actuation conditions of the filament and derive the
expected scalings for the swimming speed of the swimmers.
In Sec. III we derive the swimming kinematics of the elastic
swimmers analytically in the limit of small actuation ampli-
tude. The assumptions necessary to perform the calculation

are clearly stated, and the final results are six analytical for-
mulas for the three-dimensional trajectory of the swimmer
�Eq. �49��. The performance of the elastic swimmer is dis-
cussed in Sec. IV. In particular, we characterize optimal
swimmers as well as the difference between filament shapes
for free-swimming versus fixed actuated filaments. Elastic
swimming with more than one flexible filament is discussed
in Sec. V and we show that steady swimming on a straight
line can be obtained with six filaments. Finally, a discussion
of the results and a comparison of the swimmer performance
with swimming micro-organisms are presented in Sec. VI.

II. PHYSICAL PICTURE

A. Elastohydrodynamics

As explained above, we consider in this paper the proto-
typical elastic swimmer displayed in Fig. 1. We denote by L
the length of the filament, r its radius, A its bending stiffness,
and �� its normal drag coefficient, i.e., the viscous force
exerted by the fluid per unit length of the filament for motion
perpendicular to its length �3–5�. Let us first consider the
case where the filament is actuated but not free to move
�15,35�. If y denotes the typical amplitude of a material point
at a distance x along the filament, the balance between local
viscous drag and bending forces on the filament results in a
hyperdiffusion equation for small-amplitude motion,

��

�y

�t
= − A

�4y

�x4 · �1�

For a given actuation frequency �, inspection of Eq. �1�
shows the appearance of an intrinsic bending-hydrodynamics
length scale, ��= �A /����1/4 �15�. If L���, bending forces
win and the filament is straight. On the contrary, if L���

drag forces win and the portions of the filament located at a
distance larger than �� from the actuation point are essen-
tially straight, a feature which is expressed mathematically
by an exponential decay of the amplitude of the solution to
the elastohydrodynamics problem over the length scale ��

�15�.
In the case where the actuated filament is embedded in a

swimming device, the limit L��� results in a reciprocal
actuation of the filament, and therefore—by use of the scal-
lop theorem—the swimming velocity is zero �8�. The other
limit L��� leads to a constant value of the propulsive force,

•

FIG. 1. �Color online� Notations for the elastic swimmer. The filament has length L and radius r. The distance between the center of mass
of the body and the actuation point is denoted a. The frame �ex ,ey ,ez� moves with the swimmer body whereas the frame �e1 ,e2 ,e3� is fixed.

ERIC LAUGA PHYSICAL REVIEW E 75, 041916 �2007�

041916-2



as there are no contributions from any portion of the filament
beyond L���, and since in this case the viscous drag is
large, and this limit also results in swimming, velocity de-
creasing to zero. As a consequence, we expect that the opti-
mal swimming will be obtained for a filament length L
���, taking full advantage of the drag-induced bending of
the filament while keeping the overall drag on the swimmer
low �31,32�. This result is confirmed in Sec. IV where we
compute the optimal elastic swimmers.

B. Optimal forcing

Before considering the swimming kinematics, we show
here using scaling arguments that it is energetically favor-
able, when actuating the elastic filament periodically, to only
use the fundamental frequency. Let us call T the actuation
period and � its amplitude. Such periodic actuation is neces-
sary in order to constantly generate bending deformation and
therefore propulsion. The mechanical forcing at the base of
the filament can, in principle, include the fundamental fre-
quency 2� /T, and all other harmonics. For small-amplitude
motion, the propulsive force is quadratic in the filament dy-
namics, so by orthogonality we can study each frequency
independently. Let us consider forcing at a given frequency
�. The elastic propulsive force scales as �15,35�

F � A�
0

L �y

�x

�4y

�x4 dx . �2�

For an optimal propulsion, the filament length L is on the
order of the intrinsic length scale ��. Since we have y
����, we expect Eq. �2� to scale as F�A�2 /��

2

��2�A���1/2, where � is the typical value of the drag coef-
ficient. As a difference, the total work done by the actuator
against the viscous fluid in the period T is given by

W � T�
0

L

�	 �y

�t

2

dx , �3�

which scales as W��2T���
3 �2��2T�A3��5�1/4. To within

logarithmic terms �arising in �, see below�, the propulsive
force scales therefore with frequency as F	�1/2 whereas the
total work done scales with a higher power as W	�5/4. For a
given period and a given amount of energy available, the
maximum propulsive force will therefore be obtained by ac-
tuating the filament only at the minimum frequency possible,
�=2� /T, with no harmonics.

C. Swimming

We now consider the swimming kinematics and derive
here the expected scaling for the mean swimming velocity.
The detailed calculations will be presented in the main sec-
tion of the paper. We assume that L��� as this is the case
where the optimal propulsion is expected to be generated,
and we fix the amplitude, �, and frequency, �, of the actua-
tion.

First, we consider the case where the body, of typical size
a, is much larger than the filament length, i.e., a���. In that
case, the large viscous resistance of the body results in a

slow-moving swimmer, and therefore small perturbations to
the shape of filament due to swimming-induced additional
drag. In that case, everywhere along the filament bending
forces balance the drag due to the actuation and the bending
amplitude, y, is on the order of ���. The swimming velocity,
U, is then found by balancing the drag on the swimmer body
by the typical filament propulsive force �15,35�


aU � A�
0

L �y

�x

�4y

�x4 dx � A	 y

��
2 
2

� �2����
2 , �4�

and therefore

U � �2�
��

2

a

1

log��w/r�
, �5�

where the �slow� logarithmic dependence arises from the
drag coefficient, ��
 / log��� /r�, where 
 is the fluid vis-
cosity.

In the case of small body size, a���, the expected scal-
ing is more difficult to derive and requires a proper look at
the local and global force balance for the swimmer. Let us
denote by V the transverse velocity and by � the out-of-
plane rotation rate of the swimmer, as measured as the center
of mass of its body. Both V and � average to zero over one
actuation period but play a significant role nonetheless. Let
us denote by � the typical length scale along the filament
where bending of the filament, of amplitude y, is concen-
trated. The transverse force balance and out-of-plane torque
balance on the swimmer body lead to the scalings


a�V + a�� � A
y

�3 , 
a2�V + a�� � A
y

�2 , �6�

and therefore

V � a�, � �
Ay



	 1

a2�3 +
1

a3�2
 · �7�

Close to the hinge point, the drag due to the actuation is
small and therefore the local force balance along the filament
is between bending and drag due to the solid-body motion
with velocity V, so that we expect

�V � A
y

�4 , �8�

and therefore, given Eq. �7�,

1

�2 �
1

log���/r�	 1

a�
+

1

a2
 , �9�

which has the solution

� � a�log	��

r

�1/2

· �10�

The deformations of the filament are therefore concentrated
in a �small� region of the size of the body �to within loga-
rithmic terms�. The bending amplitude y is finally deter-
mined by local force balance along the filament beyond the
small region of size �, where only the drag forces balance so
that ����, and therefore, given Eqs. �7� and �10�, we get
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y � �
a5

��
4 �log	��

r

�2

. �11�

In that case, the rotation rate exactly counterbalances the
actuation and results in a straight unperturbed filament in the
laboratory frame beyond the actuation region of size �� near
the actuation point. Finally, the swimming speed is found by
balancing the drag on the filament by the propulsive force

���U � A�
0

L �y

�x

�4y

�x4 dx � A�
y

�3 , �12�

as the slope of the �almost straight� filament is set by the
actuation ��y /�x��� and the bending forces are nonzero
only in the region of size � �with �4y /�x4�y4 /�4�. Conse-
quently, we get the scaling

U � �2�
a2

��
�log	��

r

�1/2

· �13�

Note that this result implies that an elastic swimmer with no
head cannot swim. The results of Eqs. �5� and �13� show
therefore that the swimmer velocity is small for both large
and small body size, and therefore an optimal body size
should exist. This will be confirmed by calculations pre-
sented in Sec. IV.

III. SOLVING FOR THE KINEMATICS OF SWIMMING

We now turn to the analytical calculations of the swim-
ming kinematics of the elastic swimmer. We first present the
assumptions used in this paper in Sec. III A. The intrinsic
formulation of the equations of motion is derived in Sec.
III B and simplified in Sec. III C using the small-slope ap-
proximation. Using swimming kinematics defined in Sec.
III D, we can derive the free-swimming equations �Sec.
III E�, nondimensionalize the equations �Sec. III F� and solve
for the shape of the oscillating filament together with the
transverse velocities and rotation rates �Sec. III G�. The val-
ues of the axial velocity and rotation rates are then calculated
in Sec. III H and the final expressions for the laboratory-
frame kinematics are given in Sec. III I. Finally, the hydro-
dynamic efficiency of the swimmer is calculated in Sec. III J.

A. Assumptions

The calculations presented in this paper will be made un-
der several simplifying assumptions. First, the hydrodynam-
ics is simplified to the level of resistive-force theory
�3–5,34�, a version of the equations of slender-body hydro-
dynamics �36–41� where only the leading term in an expan-
sion of hydrodynamic forces and moments in powers of
1 / log�L /r� is conserved. In that case, the filament hydrody-
namics is completely described by two drag coefficients, ��

and �, relating linearly the drag forces per unit length of the
filament to the local velocity relative to the fluid, for motion
perpendicular and parallel to the filament, respectively. This
widely used approximation is asymptotically valid in the
limit of very slender filaments L�r and results in theoretical
predictions in quantitative agreement with propulsive force

measurements for actuated filaments �35�. To simplify the
analysis, we will also ignore hydrodynamic interactions be-
tween the swimmer body and the oscillating filament.

In the case of planar actuation, we then make the assump-
tion in this paper that the amplitude of the actuation is small.
More precisely, we will denote by � the amplitude of the
oscillation of the filament slope and will derive the swim-
ming kinematics in the limit where ��1. This has the ad-
vantage that the entire problem can be solved analytically
and therefore shows directly the variations of swimming
speeds and rotation rates with the various parameters of the
problem. As was shown in the previous experimental study
of the propulsive force mechanism by Yu et al. �35�, the
small slope approximation gives results which agree quanti-
tatively with numerical and experimental results even for
large slopes, and therefore we expect the results of this paper
to remain valid up to ��1.

In the case where the actuation of the elastic filament is
three-dimensional, we will furthermore neglect twist strains
which will be generated along the filament. Obviously, the
precise nature of the twist strain density in the filament de-
pends on the exact actuation mechanism at the base of the
filament. However, it is possible to show that such twist
strains do not influence the kinematics of the swimmers
in the limit which is of interest to us. Indeed, as a difference
with bending amplitude which hyperdiffuses as described
in Eq. �1�, twist strains satisfy a diffusion equation,
and the intrinsic twisting-hydrodynamics length scale is L�

= �C /��r�1/2, where C is the twisting modulus and �r is the
rotational drag coefficient for the filament, that is �r
=4�
r2 �28�. Since the relevant filament length for effective
swimming is L���, and since for most solids A�C, we
have L /L���� /L���r /����log��� /r��1/2. As the filament is
slender, the typical twist penetration length scale is therefore
much larger than the relevant filament length, L /L��1, and
as a consequence twist strains are always in diffusive equi-
librium: They vary linearly between zero at the free end of
the filament and a constant at the base, which can be ob-
tained by a local balance between viscous torque and twist.
Now, with this balance, it is possible to show �28� that the
twist term in the equation of motion for the filament is
smaller by a factor r2 /��

2 �within logarithmic terms� than
the bending term, and therefore can safely be neglected. This
also means that we can ignore in this paper possible buckling
�whirling� instabilities, which occur above a critical rota-
tion frequency �c�A /�rL

2�A /
r2L2 �28�. Indeed, in the
case where L���, we get �c /����

2 / �r2 log��� /r���1, and
therefore buckling instabilities appear for much larger values
of the typical actuation frequency and can be neglected. In
that case, we will also ignore local rotational drag along the
long filament �27�.

B. Intrinsic formulation and equations

The elastic energy of the flexible filament as a function of
its confirmation is given by

E =
1

2
�

0

L �A	 �2r

�s2
2

+ 	 �r

�s

2�ds , �14�

where A is the bending modulus, �s� the Lagrange multi-
plier �tension� which enforces local inextensibility, and s the
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curvilinear coordinate along the filament �0�s�L�. As dis-
cussed above, twist strains are not included in this paper and
therefore do not appear in Eq. �14�. In the case of filament of
circular cross section with radius r, we have A=�r4E /4,
where E is the Young’s modulus of the material composing
the filament. Assuming resistive force theory for the fluids
forces �see above�, the intrinsic formulation for the filament
elastohydrodynamics is obtained by calculus of variation
from Eq. �14� and is given by

��tt + ���1 − tt�� · u = − A
�4r

�s4 +
�

�s
	

�r

�s

 , �15�

where u is the local instantaneous velocity along the fila-
ment. The equation for the Lagrange multiplier , which
enforces inextensibility �rs ·rs�t=0 is given in an implicit
form by

t ·
�u

�s
= 0. �16�

These two equations have boundary conditions which are
given by

Fext = A
�3r

�s3 − 
�r

�s
, t � �Text � t + A

�2r

�s2� = 0, at s = 0,

�17a�

Fext = − A
�3r

�s3 + 
�r

�s
, t � �Text � t − A

�2r

�s2� = 0,

at s = L , �17b�

where Fext and Text are externally applied forces and torques
at the ends of the filament and t=rs.

C. Small-slope approximation

Let us consider a Cartesian coordinate system �ex ,ey ,ez�
moving with the swimmer and located at the base of the
elastic filament such that ex is directed in the mean direction
of the filament �see Fig. 1�. The actuation oscillates therefore
around the ex axis. The laboratory coordinate system is de-
fined as �e1 ,e2 ,e3� and is chosen such that the average swim-
ming occurs in the e1 direction. The filament positions are
described by the functions y�x , t� and z�x , t�. We assume that
the filament shape is slowly varying, that is

� �y

�x
� � 1, � �z

�x
� � 1, �18�

so that a point on the filament is defined as r�xex+r�,
where r�=y�x , t�ey +z�x , t�ez, and we also have s�x. In that
case, Eqs. �15� and �16� become, when written in the frame
moving with the swimmer,

�ux + �� − ���
�y

�x
uy + �� − ���

�z

�x
uz =

�

�x
, �19a�

�� − ���
�y

�x
ux + ��uy + �� − ���

�y

�x

�z

�x
uz

= − A
�4y

�x4 +
�

�x
	

�y

�x

 , �19b�

�� − ���
�z

�x
ux + �� − ���

�y

�x

�z

�x
uy + ��uz

= − A
�4z

�x4 +
�

�x
	

�z

�x

 , �19c�

�2

�x2 + A	 �

��

− 1
 �2r�

�x2

�4r�

�x4 = A
�r�

�x

�5r�

�x5 , �19d�

where �ux ,uy ,uz� are the local velocity components of the
filament. The leading-order boundary conditions at either end
of the filament are given, for all times, by

Fext = A
�3r�

�x3 − 
�r�

�x
− ex,

Text,y = A
�2z

�x2 , Text,z = − A
�2y

�x2 , at s = 0, �20a�

Fext = − A
�3r�

�x3 ey + 
�r�

�x
+ ex,

Text,y = − A
�2z

�x2 , Text,z = A
�2y

�x2 , at s = L . �20b�

The most general periodic actuation at the frequency � is

y�0,t� = 0,
�y

�x
�0,t� = � cos �t , �21a�

z�0,t� = 0,
�z

�x
�0,t� = �� sin �t . �21b�

where 0���1 measures the extent of the three-
dimensionality of the actuation. In that case, �=0 represents
a purely planar actuation, whereas for �=1, the actuating
hinge sweeps a cone. With these notations, the small slope
approximation of Eq. �18� is written ��1.

D. Swimming kinematics

Let us denote by U�t� the instantaneous velocity of the
swimmer body and ��t� its instantaneous rotation rate
around the hinge point �43�. The motion of the filament is
then described as a superposition of a solid body translation
at velocity U, a solid body rotation with rotation rate �, and
a relative motion due to the oscillations of the filament and
described by the functions �y /�t and �z /�t. As a conse-
quence, the local velocity components along the filament are
given by

ux = Ux + z�y − y�z, �22a�
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uy = Uy +
�y

�t
+ x�z − z�x, �22b�

uz = Uz +
�z

�t
+ y�x − x�y · �22c�

E. Free-swimming assumption

We consider a free-swimmer in Stokes flow, so the total
force and torque on the swimmer must vanish. This means
that the forces and torques in Eqs. �20a� have to balance the
hydrodynamic forces and torques on the body of the swim-
mer, whereas the forces and torques in Eqs. �20b� must van-
ish. In this paper the swimmer will be assumed to have an
axisymmetric body around the x axis. This allows the math-
ematical formulation to remain manageable and the generali-
zation to more complex body shapes is straightforward. In
the center of mass of the swimmer body, the resistance ma-
trices for fluid forces and torques acting on the body are
written, by symmetry, as

F̃ext = − �R
FU 0 0

0 R�
FU 0

0 0 R�
FU� · Ũ ,

T̃ext = − �R
L� 0 0

0 R�
L� 0

0 0 R�
L�� · �̃ , �23�

where everything is measured relative to the center of mass
of the body. In the frame of reference located at the base of
the filament �see Fig. 1�, these relations are now written as

Fext = − �R
FU 0 0

0 R�
FU 0

0 0 R�
FU� · U

+ �0 0 0

0 0 aR�
FU

0 − aR�
FU 0

� · � , �24�

Text = �0 0 0

0 0 − aR�
FU

0 aR�
FU 0

� · U

− �R
L� 0 0

0 R�
L� + a2R�

FU 0

0 0 R�
L� + a2R�

FU� · � ,

�25�

where a is the distance between the center of mass of the
swimmer body and the actuation point �see Fig. 1� and � the
rotation rate around the actuation point. Using these nota-
tions, the force-free and torque-free conditions at s=0, Eq.
�20a�, are written as

R
FUUx�t� = �0,t� , �26a�

R�
FUUy�t� − aR�

FU�z�t� = − A
�3y

�x3 �0,t� + 
�y

�x
�0,t� ,

�26b�

− aR�
FUUy�t� + �R�

L� + a2R�
FU��z�t� = A

�2y

�x2 �0,t� ,

�26c�

R�
FUUz�t� + aR�

FU�y�t� = − A
�3z

�x3 �0,t� + 
�z

�x
�0,t� ,

�26d�

aR�
FUUz�t� + �R�

L� + a2R�
FU��y�t� = − A

�2z

�x2 �0,t� ,

�26e�

while the conditions at s=L �Eq. �20b�� become

�2y

�x2 �L,t� =
�2z

�x2 �L,t� =
�3y

�x3 �L,t� =
�3z

�x3 �L,t� = �L,t� = 0.

�27�

The system of partial differential equations is closed by writ-
ing down the overall torque balance in the x-direction, lead-
ing to an equation for �x

R
L��x = �

0

L �A	y
�4z

�x4 − z
�4y

�x4
 + z
�

�x
	

�y

�x



− y
�

�x
	

�z

�x

�dx = A� �y

�x

�2z

�x2 −
�z

�x

�2y

�x2�
x=0

,

�28�

where we have used integration by parts and conditions
�21� and �27�. We have now as many equations as we
have unknowns. There are nine unknowns �Ux ,Uy ,Uz ,
�x ,�y ,�z , ,y ,z� and nine equations �Eqs. �19a�–�19d�,
�26b�–�26e�, and �28��. The equation for  is second order,
and is accompanied by two boundary conditions �Eqs. �26a�
and �27��. The equations for y and z are fourth-order and are
accompanied by four boundary conditions each �Eqs. �21�
and �27��.

F. Nondimensionalization and simplifications

We now nondimensionalize the equations of motion.
We scale lengths by the intrinsic length scale ��, time by
�−1, rotation rates by �, velocities by ���, resistivities by
����

n �n=1 or 3 depending if it is a force-velocity or a
torque-rotation rate resistivity�, forces by ����

2 �, and torques
by ����

3 �.
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Furthermore, we can use the fact that � is small to sim-
plify the dimensionless equations further. Let us evaluate the
leading order power of � for each of our nine unknowns.
From Eq. �21� we see that y�z��. Consequently, from Eqs.
�26b�–�26e� we see that Uy �Uz��y ��z��. We then get
from Eq. �28� that �x��2 and Eq. �19d� shows that ��2,
so that Eq. �26a� leads to Ux��2. The magnitude of the axial
swimming speed and rotation rate are therefore one order of
magnitude smaller than the transverse velocities and rotation
rates. These scalings allow one to simplify the equations for
y and z further, and we obtain, using the same symbols as for
the dimensional variables for simplification,

�y

�t
+ Uy�t� + x�z�t� = −

�4y

�x4 , �29a�

�z

�t
+ Uz�t� − x�y�t� = −

�4z

�x4 . �29b�

Because of the � scaling for the transverse problem is an
order of magnitude larger than the scaling �2 for the axial
problem, we see that the axial unknowns �Ux ,�x� have dis-
appeared from Eq. �29�. We can therefore solve these two
problems in two separate times. First, we solve Eq. �29� for
the filament shape �y ,z� and the transverse swimming kine-
matics �Uy ,Uz ,�y ,�z� with boundary conditions

y�0,t� = 0,
�y

�x
�0,t� = � cos t,

�2y

�x2 �L,t� = 0,
�3y

�x3 �L,t� = 0,

�30a�

z�0,t� = 0,
�z

�x
�0,t� = �� sin t,

�2z

�x2 �L,t� = 0,
�3z

�x3 �L,t� = 0,

�30b�

where L now refers to the dimensionless length of the fila-
ment. The dimensionless resistance equations become, with
all the symbols referring now to dimensionless variables,

R�
FUUy�t� − aR�

FU�z�t� = −
�3y

�x3 �0,t� , �31a�

− aR�
FUUy�t� + �R�

L� + a2R�
FU��z�t� =

�2y

�x2 �0,t� ,

�31b�

R�
FUUz�t� + aR�

FU�y�t� = −
�3z

�x3 �0,t� , �31c�

aR�
FUUz�t� + �R�

L� + a2R�
FU��y�t� = −

�2z

�x2 �0,t� ,

�31d�

which can be inverted to give

Uy�t� = − 	R�
L� + a2R�

FU

R�
FUR�

L� 
 �3y

�x3 �0,t� +
a

R�
L�

�2y

�x2 �0,t� ,

�32a�

�z�t� = −
a

R�
L�

�3y

�x3 �0,t� +
1

R�
L�

�2y

�x2 �0,t� , �32b�

Uz�t� = − 	R�
L� + a2R�

FU

R�
FUR�

L� 
 �3z

�x3 �0,t� +
a

R�
L�

�2z

�x2 �0,t� ,

�32c�

�y�t� =
a

R�
L�

�3z

�x3 �0,t� −
1

R�
L�

�2z

�x2 �0,t� . �32d�

Once we have the solution for �y ,z ,Uy ,Uz ,�y ,�z�, we can
use Eqs. �19a�, �26a�, and �28� to get Ux and �x. Note that
the dimensionless version of Eq. �19a� is written as

ux + �1 − ���	 �y

�x
uy +

�z

�x
uz
 = ��

�

�x
, �33�

where ��=�� /�. Integration of Eq. �33� along the filament,
using Eqs. �26a� and �29�, leads to the formula we will use
for the axial swimming velocity, Ux, as

���R
FU + L�Ux = �z�

0

L

ydx − �y�
0

L

zdx + �1 − ���

��1

2
	 �2y

�x2
2

−
�y

�x

�3y

�x3 +
1

2
	 �2z

�x2
2

−
�z

�x

�3z

�x3�
x=0

. �34�

It is important to note at this point that the small-slope
approximation has resulted in a partial simplification of the
problem: The axial velocity and rotation rate of the swimmer
being one order of magnitude smaller than the transverse
velocities and rotation rates, the axial swimming kinematics
is slaved to the transverse kinematics. The problem of deter-
mining the filament shape and the transverse swimming ki-
nematics cannot, however, be simplified any further and both
still have to be solved simultaneously.

G. Solving the transverse problem: Filament shape
and swimming kinematics

Let us now solve Eq. �29�. Since the forcing is harmonic,
we will solve these equations in Fourier space and write, for

all variables, A�x , t�=Re�Â�x�exp�−it��. Using Eq. �32�, we
have the relations
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Uy�t� + x�z�t� = − 	R�
L� + a�a + x�R�

FU

R�
FUR�

L� 
 �3y

�x3 �0,t�

+
�a + x�
R�

L�

�2y

�x2 �0,t� , �35a�

Uz�t� − x�y�t� = − 	R�
L� + a�a + x�R�

FU

R�
FUR�

L� 
 �3z

�x3 �0,t�

+
�a + x�
R�

L�

�2z

�x2 �0,t� . �35b�

From Eqs. �29� and �35� we see that the generic equation
satisfied by both y and z is a hyperdiffusion equation forced
by a first order polynomial whose coefficients depend on the
boundary condition of the solution. This integrodifferential
equation is a consequence of the problem-coupling discussed
in the Introduction of the paper and reflects the nonlocal
aspect of locomotion without inertia where, at all times, ve-
locities and rotation rates adjust so that total forces and
torques sum up to zero.

Let us denote by ��x ;� , ,� ,
 ,h� the solution to the dif-
ferential equation

�− i +
d4

dx4���x� = �� + x�
d3�

dx3 �0� + �� + 
x�
d2�

dx2 �0� ,

�36�

with boundary conditions

��0� = 0,
d�

dx
�0� = 1,

d2�

dx2 �h� = 0,
d3�

dx3 �h� = 0. �37�

In that case, it is easy to see from Eqs. �29� and �30� that, if
we define

���x� = �	x;
1

R�
FU +

a2

R�
L� ,

a

R�
L� ,−

a

R�
L� ,−

1

R�
L� ,L
 ,

�38�

then we have

y�x,t� = � Re�e−it���x��, z�x,t� = �� Re�ie−it���x�� ,

�39�

and we note that ẑ= i�ŷ.
The analytical solution to Eqs. �36� and �37� is given by

��x� = �
n=0

3

Ane�nx + Bx + C , �40�

where �n=exp�i�1+4n�� /8� �0�n�3� and where the six
constants satisfy the linear system

�
1 1 1 1 0 1

�0 �1 �2 �3 1 0

�0
2e�0h �1

2e�1h �2
2e�2h �3

2e�3h 0 0

�0
3e�0h �1

3e�1h �2
3e�2h �3

3e�3h 0 0

�0
2�� + ��0� �1

2�� + ��1� �2
2�� + ��2� �3

2�� + ��3� 0 i

�0
2�
 + �0� �1

2�
 + �1� �2
2�
 + �2� �3

2�
 + �3� i 0

� · �
A0

A1

A2

A3

B

C

� = �
0

1

0

0

0

0

� · �41�

With this solution known, we get the transverse velocities
and rotation rates

Ûy = − �	R�
L� + a2R�

FU

R�
FUR�

L� 
����0� +
a�

R�
L���� �0� , �42a�

�̂z = −
a�

R�
L�����0� +

�

R�
L���� �0� , �42b�

Ûz = i�Ûy , �42c�

�̂y = − i��̂z. �42d�

This completes the solution of the transverse problem,
and we now have the expressions for both the filament shape
�Eq. �39�� and the transverse swimming kinematics �Eq.
�42��.

H. Solving the axial problem: Swimming velocity
and rotation rate

We can now solve the second problem, namely find the
expression for the axial velocity and rotation rates. Using the
Fourier-space notation defined above, it is then easy to see
that the axial swimming velocity �Eq. �34�� has two compo-
nents, Ux= �Ux�+Ux�, where �Ux� is the steady component
and Ux� the zero-mean oscillatory component, which are
given by
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�Ux� =
�2�1 + �2�

2���R
FU + L�

Re�I�̄z
* + �1 − ���	1

2
���� �0��2

− ��� �0�����0�*
� , �43a�

Ux� =
�2�1 − �2�

2���R
FU + L�

Re�e−2it�I�̄z + �1 − ���	1

2
��� �0�2

− ��� �0�����0�
�� , �43b�

where we have defined I=�0
L���x�dx and �̄z=�̂z /� �which

is of order one�. Note that when �=1, the unsteady compo-
nent is exactly equal to zero �although the trajectory is
not—it is a helix�. This is because in this case, the shape of
the filament is steady in the frame rotating with the hinge
�27�.

The equations above can be simplified further by noting
that the integration in space of the Fourier-transform of Eq.
�29a�, using Eq. �31a� as the boundary condition, leads to the
value of I as given by

I = i�̄z	aR�
FU −

L2

2

 − i�R�

FU + L�Ūy , �44�

where Ūy = Ûy /�. As a consequence, we get

Re�I�̄z
*� = �R�

FU + L�Im�Ūy�̄z
*� �45�

and, given Eq. �42�, it is straightforward to show that

Im�Ūy�̄z
*� =

1

R�
FUR�

L� Im���� �0�����0�*� , �46�

so that the expression for the axial swimming velocity is
simplified to

�Ux� =
�2�1 + �2�

2���R
FU + L���1 − ���Re�1

2
���� �0��2

− ��� �0�����0�*� + 	 R�
FU + L

R�
FUR�

L�
Im���� �0�����0�*�� ,

�47a�

Ux� =
�2�1 − �2�

2���R
FU + L�

��1 − ���Re�e−2it	1

2
��� �0�2

− ��� �0�����0�
� + �R�
FU + L�Im�Ūy�̄ze

−2it�

+ 	L2

2
− aR�

FU
Im��̄z
2e−2it�� . �47b�

Finally, the leading order version of torque balance in the
x direction, Eq. �28�, shows that �x does not have any oscil-
lating components �i.e., is steady� and is equal to

�x = ��x� =
��2

R
L� Im���� �0����

*�0�� , �48�

which finishes the solution for the axial problem. We now
have the expression of all three components of swimming
velocities and rotation rates in the frame moving with the
swimmer body.

I. Swimming kinematics in the laboratory frame

The final step in the calculation is to transform the expres-
sions we have for the swimming kinematics in the body-
fixed frame to the laboratory-fixed frame. The general calcu-
lation for this transformation is presented in the Appendix. It
is worth noting that the distinction between the two frames
of references has rarely been discussed in the context of
swimming micro-organisms but can have important conse-
quences if not properly taken into account. In our case, using
the transformation given by Eqs. �A8� and �A9� as well as
the swimming velocities obtained above, we find the final
formulas for the leading-order swimming speeds in the labo-
ratory frame as given by

�U1� =
�2�1 + �2�

2���R
FU + L���1 − ���

�Re�1

2
���� �0��2 − ��� �0�����0�*�

+ 	R�
FU − ��R

FU

R�
FUR�

L� 
Im���� �0�����0�*�� , �49a�

�U2� = 0, �49b�

�U3� = 0, �49c�

U1� =
�2�1 − �2�

2���R
FU + L�

��1 − ���Re�e−2it	1

2
��� �0�2

− ��� �0�����0�
� + �R�
FU + ��R

FU + 2L�Im�Ūy�̄ze
−2it�

+ 	L2

2
− aR�

FU
Im��̄z
2e−2it�� , �49d�

U2� = ��cos��xt�Re�e−itŪy� + � sin��xt�Im�e−itŪy�� ,

�49e�

U3 = ��sin��xt�Re�e−itŪy� − � cos��xt�Im�e−itŪy�� .

�49f�

The expressions given in Eq. �49� are the main results of this
paper. Note that when the drag is isotropic ���=1, R

FU

=R�
FU�, the mean swimming velocity is exactly equal to

zero. Drag anisotropy is therefore crucial for locomotion
without inertia �9�. Note also that in Eqs. �49e� and �49f�,
time appears as a parameter as a result of the separation of
time scales in the limit of small � �see discussion in the
Appendix�.
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J. Hydrodynamic efficiency

We define in this paper the efficiency of the motion, E, as
the ratio of useful work �defined as the work necessary to
move the entire swimmer at the steady speed �U1�� by the
total work done by the swimmer,

E =
�F1��U1�

�� f · udx� , �50�

which becomes in dimensionless variables and at leading
order in �2

E =
	R

FU +
1

��

L
�U1�2

�U · F + � · L + �
0

L �	 �4y

�x4
2

+ 	 �4z

�x4
2�dx� .

�51�

The first term in the denominator is given by

U · F + � · L = R�
FU�Uy − a�z�2 + R�

FU�Uz + a�y�2 + R�
L��y

2

+ R�
L��z

2, �52�

while the second term can be evaluated in Fourier space and
we obtain the efficiency as given by

E=

2	R
FU +

1

��

L
�U1�2

�2�1 + �2��R�
FU�Ūy − a�̄z�2 +R�

L���̄z�2 +�
0

L

������x��2dx� ,

�53�

with �U1� given by Eq. �49a�. Note that since �U1� scales
linearly with �1+�2� and appears squared in Eq. �53�, we
obtain the result that a three-dimensional actuation ���0� is
always more efficient than a planar one.

K. Asymptotic limit of long filament

With our analytical formulas, we can now derive the
swimming velocity in the limit of a long filament L�1 �that
is, L��� in dimensional variables�. Although we expect the
swimming velocity to decrease to zero in this case, it is the
biologically relevant limit for the motion of spermatozoa
�5,15�. Obviously, spermatozoa use a different swimming
mechanism as the one described in this paper, so our purpose
is merely to be able to compare swimming performances.

In the limit of large body a�1 �a��� in dimensional
variables�, it is easy to see that the mean velocity, given by
Eq. �49a�, becomes

�U1� = �2 �1 + �2��1 − ���
���R

FU + L�
	�2 − 1

2�2

 . �54�

In the limit of small body a�1 �a��� in dimensional vari-
ables�, one needs to write down Taylor expansions for each
of the body resistivities in a /��, which is tedious but
straightforward, and the mean swimming velocity is given by

TABLE I. Geometrical and actuation characteristics of the optimal elastic swimmers �spherical body and
elongated body of aspect ratio 500�. Four different quantities are optimized: The velocity in the laboratory
frame �I�, the velocity in swimmer length per unit beat �II�, the velocity in body length per unit beat �III�, and
the mechanical efficiency of the swimmer �IV�. Velocities and efficiencies are given for the planar swimmer
��=0� but the geometrical characteristics of the optimal swimmers are independent of the value of �. The
swimmers are illustrated in Fig. 2.

a

L

L

��

Velocity �I�
��U1��

�2 103

Velocity �II�
��U1��

�2�2a+L�
103

Velocity �III�
��U1��

2�2a
103

Efficiency �IV�
E
�2 �%�

Spherical body

Optimal I 0.30 2.51 6.9 1.7 4.6 0.122

Optimal II 0.29 2.38 6.7 1.8 4.9 0.100

Optimal III 0.18 2.83 5.7 1.5 5.7 0.079

Optimal IV 0.37 2.70 6.1 1.3 3.1 0.142

Elongated body

Optimal I 0.62 2.78 17.9 2.9 5.2 0.418

Optimal II 0.44 2.82 16.7 3.1 6.7 0.369

Optimal III 0.24 3.34 12.6 2.6 7.9 0.336

Optimal IV 0.49 3.20 16.9 2.6 5.4 0.465
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�U1� = �2 �1 + �2�a��

L
R�

FU�R
FU − R�

FU���2 − 1

4�2
.

�55�

IV. PERFORMANCE AND OPTIMAL DESIGN OF THE
ELASTIC SWIMMER

As we have now analytical solutions for the complete
swimming kinematics, we can study the performance of the
elastic swimmer.

A. Optimal spherical swimmers

As we have noted before, and as is confirmed by our
analytical formulas, swimming velocities and efficiencies de-
crease to zero for both large and small filament length and
body size. As a consequence, optimal swimmers exist. The
geometrical characteristics of these optimal swimmers are
given in Table I and represented schematically in Fig. 2. For
the calculations presented below, we have assumed the fila-
ment to be far from any boundaries and therefore the appro-
priate drag coefficients are given by

� =
2�


log�L/r� − 1/2
, �� =

4�


log�L/r� + 1/2
, �56�

and we have chosen the aspect ratio of the filament to be
L /2r=500 �44�. We will furthermore assume the body to be
a spheroid of revolution �42�.

We first determine the optimal swimmers with spherical
body �Table I and Fig. 2 �left��. There are a variety of ways
to define the cost function to optimize, and we study four
different optimality conditions. The first one is the swimming
speed �U1� �I�. The second measure of performance is the
swimming speed expressed in swimmer length per beat, that
is �U1� / �2a+L� �II�. The third important velocity is the
swimming velocity expressed in body length per unit beat,
and is given by �U1� /2a �III�. Finally, we also consider the
swimming efficiency as a measure of performance to opti-
mize �IV�. As shown in Table I and Fig. 2, the geometrical
characteristics of the optimal swimmers are a strong function
of the performance index which is chosen �but are indepen-
dent of the value of ��. In all cases, the optimal filament

length L is on the order of the intrinsic length scale ��.
The variations of the swimming speed and efficiency of

the optimal swimmer I �the fastest� and IV �the most effi-
cient� with changing filament length and body size are dis-
played in Fig. 3. In particular, we see that the swimmer can-
not move if either its filament or its body is too small. In the
limit of large swimmer, the velocity also decreases to zero as
the inverse of the swimmer size.

It is interesting to note that, out of the three length scales
which can be a priori chosen independently in designing an
elastic swimmer—namely a, L, and ��—their relative mag-
nitude is fixed for the optimal swimmers �see Table I� and
therefore only one of them can be chosen arbitrarily. For a
given performance index, once a specific body size or fila-
ment length or actuation frequency �through ��� is chosen,
everything else is fixed and there is only one possible opti-
mal swimmer.

B. Optimal swimmers

We then study how the shape of the swimmer body influ-
ences the swimming performance and we find that a better
performance is always obtained for a long slender body of
large aspect ratio in the swimming direction �the overall best
is obtained in the limit of an infinite aspect ratio�. We present
in Table I the performance of the optimal swimmer with an
elongated body of aspect ratio 500, the same aspect ratio as
the filament. Both swimming speed and efficiency improve
significantly by taking a slender swimming body. The opti-
mal swimmers are displayed in Fig. 2 �right�. Again, the
choice of a performance index has consequences on the re-
sulting optimal shape.

I

II

III

IV

FIG. 2. �Color online� Optimal swimmers. Left �blue�: Optimal
swimmers with spherical body. Right �red�: Optimal swimmers with
elongated body �see caption of Table I for description�.

FIG. 3. �Color online� Variation of the mean swimming velocity,
�U1�, and the mechanical efficiency, E, as a function of the body-
to-filament length ratio, a /L, and the dimensionless filament length,
L /��, for the optimal swimmer with spherical body I and IV �see
Table I�. The values are displayed for the planar swimmer ��=0�.
Top: Variation of the swimming velocity for the fastest swimmer
�a /L=0.3, L /��=2.51�. Bottom: Variation of the efficiency for the
most efficient swimmer �a /L=0.37, L /��=2.7�.
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C. Driving torque

From a possible practical standpoint, it is important to
quantify the internal torque necessary to drive the actuation
at the given amplitude, �, and frequency, �. We consider here
the case of planar actuation. In that case, the oscillating
torque is equal to the torque given in Eq. �26c� and there-
fore, in dimensionless form, the torque amplitude is given by
�T�=����� �0��. The variation of the internal torque with the
swimmer size is illustrated in Fig. 4 in the case of the fastest
swimmer with a spherical body �optimal swimmer I�.

D. Filament shape

Finally, we can use our analytical solution to characterize
the shape of the flexible filament as the swimmers move, and
compare it to the shape obtained when the filament is actu-
ated but does not swim �15,35�. The results are shown in Fig.
5 for the planar swimmer with a /L=0.3. Since the swimmer
body can always rotate to relieve some of the applied torque
at the base of the filament, the curvature of the filament is
smaller in the free-swimming case than it is in the case
where the filament is not free to move �compare the shapes
on the left and at the center of Fig. 5�. We also note that the
filaments in both cases display exponentially decaying am-
plitude, a feature which makes this problem intrinsically dif-
ferent from eukaryotic flagellar propulsion where large-
amplitude oscillations are present along the entire filament.

V. ELASTIC SWIMMING WITH MORE THAN ONE
FILAMENT

In this final section, we discuss possible improvements on
the design of elastic swimmers. One drawback of using a
single filament as a propeller is the oscillatory nature of the
swimming kinematics. As a result, a lot of effort goes into
propelling the swimmer body in a direction which is differ-
ent from the main swimming direction. In fact, in the limit of
small actuation amplitude �, we have seen above that the
mean swimming speed is of order �2 whereas the transverse
swimming speed �and rotation rate� are both of order � and
therefore one order of magnitude larger. We propose in this
section to use more than one filament in order to have better
control over the instantaneous swimming direction. For sim-

plicity, we will ignore hydrodynamic interactions between
the filaments in the analysis below.

A. Two filaments in planar motion

If the swimmer has two filaments which are �a� positioned
exactly symmetrically with respect to the axis of symmetry
of the swimmer body and �b� are actuated with 180° out of
phase, then all transverse forcing due to one filament will be
exactly canceled by the second one, and this will result in a
straight �yet unsteady� swimming trajectory �see Fig. 6�a��.
From a mathematical standpoint, the dynamic in the x and y
directions will be coupled for each filament, and we expect
therefore a steady swimming of order ��2 with oscillations
of magnitude �� along the same direction. In that case, the
only nonzero component of the velocity is U�t�, along the e1

direction �the direction ex still refers to the direction of each
of the filaments� and there is no rotation rate. The equation
for the shape of each filament becomes

�y

�t
+

�4y

�x4 = U sin � , �57�

where � is the angle between the average position of the
filament base and the swimming direction. Force balance in
the x direction gives

FIG. 4. �Color online� Variation of the amplitude of the internal
torque supplied by the actuating mechanism as a function of the
body-to-filament length ratio, a /L, and the dimensionless filament
length, L /��, for the fastest swimmer with spherical body �a /L
=0.3, L /��=2.51, see Table I� and for planar actuation ��=0�.

L/�ω = 1

L/�ω = 2

L/�ω = 3

L/�ω = 4

L/�ω = 5

L/�ω = 6

L/�ω = 7

FIG. 5. �Color online� Shapes of the elastic filament as a func-
tion of the dimensionless length L /��. Left �black�: Shape of the
filament in the case where the actuation point is fixed in space. In
that case, the filament does not swim and its shape is that found
theoretically by Wiggins and Goldstein �15� and experimentally by
Yu et al. �35�. Center �blue�: Shape of the filament in the case of
free-swimming as seen in the frame �ex ,ey ,ez� translating and ro-
tating with the swimmer body. The body size is a /L=0.3. Right
�red�: Shape of the filament for the same swimmer as seen in the
laboratory frame �e1 ,e2 ,e3�. In that case, the instantaneous swim-
ming velocities have been subtracted in order to be able to compare
shapes.
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���R
FU + 2L cos2 ��U�t�

= 2�� sin �� �3y

�x3�
x=0

+ 2�1 − ���

�cos ��1

2
	 �2y

�x2
2

−
�y

�x

�3y

�x3�
x=0

. �58�

This is solved order by order for both y�x , t�=�y1+�2y2+ . . .
and U�t�=�U1+�2U2+ . . ., and only U2 has a nonzero time
average. At leading order we find that y1 is the solution to the
equation

�y1

�t
+

�4y1

�x4 =
2�� sin2 �

��R
FU + 2L cos2 �

� �3y1

�x3 �
x=0

, �59�

with boundary conditions

y1�0,t� = 0,
�y1

�x
�0,t� = cos t,

�2y1

�x2 �L,t� = 0,

�3y1

�x3 �L,t� = 0. �60�

Consequently, y1 is given by

y1�x,t� = Re�e−it�1�x�� ,

�1�x� = �	x;
2�� sin2 �

��R
FU + 2L cos2 �

,0,0,0,L
 , �61�

and then the leading order component of the velocity can be
calculated by

U1�t� =
2�� sin �

��R
FU + 2L cos2 �

Re�e−it�1��0�� , �62�

which is purely oscillating �no mean component�. We need to
go to next order to calculate the mean component of the
swimming. Since there is a component of the mean swim-
ming velocity normal to the filament, each filament is there-
fore slightly asymmetric �the asymmetry, i.e., the mean value
for y2, is of order �2�, a feature which is not present when we
consider the case of a single filament. The second order term,
y2, satisfies the equation

�y2

�t
+

�4y2

�x4 = U2�t�sin � , �63�

with homogeneous boundary conditions. Since U2 is ex-
pected to have both a mean value and an oscillating part,

U2�t�= �U2�+U2�, we consider them separately. The oscillat-
ing part of U2 will lead to an oscillating value for y2 which
will average out to zero in Eq. �58�, and therefore we do not
need to solve for it. On the contrary the steady component of
U2 leads to a steady deflection of the filament, described by

d4�y2�
dx4 = �U2�sin � , �64�

with homogeneous boundary conditions. This can be inte-
grated to give

�y2��x� = �U2�sin �f�x�, f�x� = � x4

24
−

x3L

6
+

x2L2

4
� ,

�65�

which can be then used to evaluate the mean swimming
speed by averaging Eq. �58� at second order, and we find

���R
FU + 2L cos2 � + 2��L sin2 ���U2�

= �1 − ���cos ��1

2
��1��0��2 − Re��1��0��1�

*�0��� .

�66�

When the swimmer does not have a body, R
FU=0, we obtain

the “elastic scallop,” the flexible version of the two-arm
swimmer discussed by Purcell and whose name is at the
origin of the so-called scallop theorem �8�. Note that a two-
filament swimmer with no head can swim, whereas a swim-
mer with a single filament cannot swim without a head. In
the case where L�1, the function �1 can be simplified fur-
ther �15� and we find the average swimming velocity as
given by

�U� =
�2 − 1

�2

�2�1 − ���cos �

��R
FU + 2L cos2 � + 2��Lsin2 �

, �67�

with corrections exponentially small in L /��.

B. Steady swimming: More than two filaments

The setup with two filaments allowed us to get motion on
a straight line. However, we obtained a steady swimming
speed of order ��2 with longitudinal oscillations of order
��, which is not ideal. Here we ask the question, can we
design a swimmer which moves on a straight line steadily?
Since we look for straight motion, we will always look for
pairs of filaments, located symmetrically with respect to the
body symmetry axis �recall that the body is assumed to be
axisymmetric�, and mirror image to one another �see Fig.
6�b��. We need to find the minimum number of filament pairs
together with the phase differences between each of them
which is necessary to choose in order to achieve an overall
steady propulsive force despite the unsteady propulsive
forces �and shapes� of the individual filaments. When appro-
priately chosen, these phase differences will cancel out all of
the �� contributions from each individual filaments and
should leave us with a steady ��2 swimming speed.

The equation for each of the individual filaments in one
pair �1�n�N, where N is the number of pairs� is given by

(a) (b)

FIG. 6. �Color online� Swimming with more than one elastic
filament: �a� Swimming with two symmetric filaments in planar
motion leads to unsteady straight swimming �Sec. V A�. �b� Swim-
ming with three symmetric filament pairs �so six filaments� in pla-
nar motion with each 2� /3 phase difference leads to steady straight
swimming �Sec. V B�.

FLOPPY SWIMMING: VISCOUS LOCOMOTION OF… PHYSICAL REVIEW E 75, 041916 �2007�

041916-13



�yn

�t
+

�4yn

�x4 = U sin � , �68�

with the boundary conditions,

yn�0,t� = 0,
�yn

�x
�0,t� = �Re�cne−it� ,

�2yn

�x2 �L,t� = 0,
�3yn

�x3 �L,t� = 0, �69�

where the set of complex constants cn is determining the
phase difference in the actuation for each filament pair. Note
that the filaments could be located anywhere around the
swimmer body, but the assumption of ignoring hydrody-
namic interactions will be the most valid when they are the
furthest apart, so we assume the filaments to be distributed
with an angle � /N apart from each other. Assuming a steady
swimming speed, the solution to Eq. �68� is given formally
by

yn�x,t� = U sin �f�x� + �Re�cne−itg�x�� , �70�

where f is the steady deflection above �Eq. �65�� and g�x� is
the Wiggins and Goldstein shape �shape of the elastica when
it is actuated at one end and does not swim�, that is

g�x� = ��x;0,0,0,0,L� . �71�

The force balance in the swimming direction leads to the
swimming speed as given by

���R
FU + 2N cos2 �L�U

= 2�� sin ��
n=1

N � �3yn

�x3 �
x=0

+ 2�1 − ���cos �

��
n=1

N �1

2
	 �2yn

�x2 
2

−
�yn

�x

�3yn

�x3 �
x=0

. �72�

Given that the filament shape appears in Eq. �72� with linear
and quadratic terms, it is straightforward to see that the
smallest number of filament pairs necessary to achieve
straight steady swimming is such that

�
n=1

N

cn = 0, �
n=1

N

cn
2 = 0. �73�

The minimum number of filament pairs is therefore N=3 �so
six individual filaments� with cn=e2ni�/3 �n=1,2 ,3�. The
value of these constants show that if one pair of filaments
displays base oscillations of the form cos t then the other two
pairs need to oscillate as cos�t±2� /3�. In that case, we ob-
tain that the �steady� swimming speed is given by the qua-
dratic equation

���R
FU + 6L cos2 � + 6��L sin2 ��U

=
3

4
�1 − ���U2L4 sin2 � cos � + 3�2�1 − ���cos �

��1

2
�g��0��2 − Re�g��0�g�*�0��� , �74�

and since we have assumed ��1 we get the leading order
solution given by

���R
FU + 6L cos2 � + 6��L sin2 ��U

= 3�2�1 − ���cos ��1

2
�g��0��2 − Re�g��0�g�*�0��� .

�75�

Equation �75� is the only instance where, up to geometric
factors, the equation for the swimming speed is simply given
by a balance between the viscous drag on the filaments and
the propulsive forces from Wiggins and Goldstein for all six
filaments. In the limit L�1, the approximate solution for the
swimming velocity is now given by

U =
3��2 − 1�

�2

�2�1 − ���cos �

��R
FU + 6L cos2 � + 6��L sin2 �

· �76�

VI. DISCUSSION

We have presented in this paper an analytical treatment of
the locomotion of an elastic swimmer in the limit of small
amplitude actuation. This is arguably the simplest device
which takes advantage of the coupling between drag and
bending forces for locomotion purposes. Our study is differ-
ent from and improves upon previous work in many aspects.
�a� Our analysis does not violate force balance nor torque
balance and the constraints of free-swimming motion are
fully enforced. �b� We include in our study the distinction
between body-fixed and laboratory-fixed frames of refer-
ences and calculate the swimming kinematics in both frames.
�c� The coupling between the two problems—finding the
shape of the filament and the swimming kinematics—is dis-
cussed for the first time and is solved in a self-consistent
manner. �d� Our study produces analytical formulas. �e� We
obtain the expected limits of vanishing swimming speed for
small and large swimmer sizes. �f� We characterize the ge-
ometry and performance of optimal swimmers. �g� The study
of elastic swimming with more than one filament is pre-
sented, as it allows better control on the swimming trajecto-
ries.

It is enlightening to compare the performance of the elas-
tic swimmer with that of swimming micro-organisms, which
of course use different actuation mechanisms. First, let us
consider the bacterium E. coli �6�. The helical flagella of E.
coli are rotated at a frequency ��100 Hz, resulting in a
swimming velocity of about U�30 
m/s for a bacterium of
size L�10 
m. As a consequence, E. coli swims approxi-
mately at the speed of U�1/30 body length per beat. As a
difference, the flagellum of sea-urchin spermatozoon is ac-
tively oscillating at a frequency ��40 Hz, resulting in a
velocity U�200 
m/s for an organism of size L�50 
m
�5�. The swimming speed in this case is therefore about U
�1/10 body length per beat. How does that compare with
our optimal swimmers? To answer this, we look at the results
of Table I for optimal swimmer II. Since we have nondimen-
sionalized times by �−1, we need to multiply the results by
2� to obtain velocities per unit frequency. In the case ��1,
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we find that the optimal swimmer with a spherical body
swims at about U�1/90 body length per beat whereas the
optimal swimmer with a slender body has a velocity U
�1/50 body length per beat. The optimal elastic swimmers
have therefore swimming performances which are compa-
rable �although smaller by less than one order of magnitude�
with that of real micro-organisms. The most efficient elastic
swimmers �typically 0.1%–0.4% efficiency� are also outper-
formed by typical swimming micro-organisms �usually 1%
to 2% of swimming efficiency�. Both performances result
from the exponentially decaying filament amplitude in the
case of elastic swimmers, as compared with the large ampli-
tude motion of real flagella.

To conclude, we note that the results of our study could be
improved upon in different ways. First, the treatment of the
hydrodynamics of the filament using resistive-force theory is
approximate and could be improved upon by using slender-
body theory—most likely numerically. Hydrodynamic inter-
actions between the filament and the swimmer body should
also be included. Further improvement could be obtained by
computing the swimming trajectories in the case of large-
amplitude actuation and by including, in the case of three-
dimensional actuation, the filament twist strains. Finally, the
issue of thermal fluctuations �for the filament shape� and dif-
fusion �for the swimmer position and orientation� should also
be considered. Work in these directions is currently under-
way and will be reported in a future paper.
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APPENDIX: RELATIONSHIP BETWEEN
THE BODY-FIXED AND THE LABORATORY-FIXED

FRAMES OF REFERENCE

In this appendix we derive the relationship between the
swimming kinematics in the frame translating and rotating
with the swimmer body and those in the laboratory frame of
reference. The calculations are straightforward but have to be
done correctly, and therefore are worth deriving. As in the
main text of this paper, we denote by �ex ,ey ,ez� the Cartesian
coordinate system moving with the swimmer body and by
�e1 ,e2 ,e3� the Cartesian coordinate system in the laboratory
frame of reference, with e1 being the average swimming di-
rection. In the limit of � going to zero, we expect ex to be
almost equal to e1, and both ey and ez to be almost given by
a solid body rotation around e1 at a constant rate, equal to
�x.

Let us define the matrix

E�t,�� = �exeyez�T, �A1�

then the equation for the kinematics of the moving frame is
given by

d

dt
E = M�t�E , �A2�

with

M�t� = � 0 �z�t� − �y�t�
− �z�t� 0 �x

�y�t� − �x 0
� · �A3�

The subtle issue which arises here is the appearance of a
new �long� time scale �1/�x�1/�2, a time scale over
which the y and z axis are expected to rotate by an angle
� /2. Since the other time scale is �1, then in order to obtain
a solution for the dynamics of the body-attached frame for
all times �both short and long time scales� in the limit of
small �, we have to use the method of multiple scales.

We then define a new time �=�2t, so that d /dt is formally
replaced by � /�t+�2� /��. In that case, Eq. �A2� becomes, in
the multiple scale setting,

	 �

�t
+ �2 �

��

E = ��M�t� + �2N�E , �A4�

where we have used the fact that both �y and �z are func-
tions of the short time scale and of order �, while �x is
constant and of order �2. We then look for a solution as a
perturbation expansion E�t ,��=E0+�E1+�2E2+ . . ., and ob-
tain

�E0

�t
= 0, �A5a�

�E1

�t
= M�t�E0, �A5b�

�E2

�t
+

�E0

��
= NE0 + M�t�E1, �A5c�

�E3

�t
+

�E1

��
= NE1 + M�t�E2. �A5d�

We then can solve the system given by Eq. �A5� order by
order, using the usual multiple-scales trick that terms which
would violate the perturbation expansion hypothesis have to
be set to zero, and we obtain, written in the original time
variable for the first two terms,

ex = e1 + Re�i�̂ze
−it��cos��xt�e2 + sin��xt�e3� − Re�i�̂ye

−it�

��− sin��xt�e2 + cos��xt�e3� , �A6a�

ey = − Re�i�̂ze
−it�e1 + cos��xt�e2 + sin��xt�e3,

�A6b�

ez = Re�i�̂ye
−it�e1 − sin��xt�e2 + cos��xt�e3, �A6c�

where the notations introduced in the main part of this paper
for the Fourier transforms have been used. We can now write
down the relationship between velocities in the laboratory
frame and velocities in the frame moving with the swimmer:

U = Uxex + Uyey + Uzez, �A7�

which means, given Eq. �A6�, that we have, at leading order
for each component,
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U1 = Ux − UyRe�i�̂ze
−it� + UzRe�i�̂ye

−it� , �A8a�

U2 = Uy cos��xt� − Uzsin��xt� , �A8b�

U3 = Uysin��xt� + Uzcos��xt� . �A8c�

Finally, denoting the averages on the short time scale by
�¯�, we get

�U1� = �Ux� +
1

2
Im�Ûz�̂y

* + Ûy
*�̂z� , �A9a�

U1� = Ux� +
1

2
Im�e−2it�Ûy�̂z − Ûz�̂y�� , �A9b�

and since both Uy and Uz average to zero, we obtain �U2�
= �U3�=0.
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